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Abstract
In this paper we consider a new type of the q-Apostol Bernoulli numbers and polynomials. Firstly, we define the q-Apostol

Bernoulli numbers and polynomials by making use of their generating function. Also, we observe many properties, i.e., the
recurrence formula, the difference equation, the differential relation.
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1. Introduction

Bernoulli numbers were discovered by Jacob Bernoulli in the 17th century. As it is well known,
Bernoulli numbers are related to many important properties appearing in mathematics and physics.
Thereby many mathematicians have studied the Bernoulli numbers and polynomials. In this paper, we
introduce the generalized second kind Bernoulli numbers and polynomials and derive many interesting
properties. In the last section, we will give a relation between the Bn,q(x, λ) and En,q(x, λ).

Throughout this paper, we will use the following notation: N denotes the set of natural numbers, Z

denotes the ring of rational integers, Q denotes the field of rational numbers, C denotes the set of complex
numbers, Z+

0 = N∪
{

0
}

, and Z−
0 =
{

0,−1,−2, · · ·
}

. In this paper, [x]q is defined as below:

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x

1 + q
.

And [x]q has useful properties as following:

[x+ y]q = [x]q + q
x[y]q. (1.1)

Note that [x]q tends to x as q→ 1, so limq→1[x]q = x.
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As a well known definition, the Bernoulli polynomials Bn(x) is defined by the following generating
function (see, for details, [11], [3, pp.48-49], and [7, pp.25-32]):

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, | t |< 2π.

If x = 0, then Bn = Bn(0) is called the Bernoulli numbers.
The second kind Apostol Bernoulli polynomials Bn(λ) have been studied by Lee et al. in 2011 and

defined as below (see, [6, 9]):

Fλ(x, t) =
tet

λe2t − 1
ext =

∞∑
n=0

Bn(x, λ)
tn

n!
, | 2t+ log λ |< 2π.

If x = 0, then Bn(λ) = Bn(0, λ) is called the second kind Apostol Bernoulli numbers.
For the complex numbers λ ∈ C, the above generating function Fλ(x, t) can be rewrited as below:

Fλ(x, t) =
tet

λe2t − 1
ext = −t

∞∑
n=0

λne(2n+1+x)t, | 2t+ log λ |< 2π.

The classical Euler polynomials En(x) are defined by means of the following generating functions (see,
[8, 11]):

2
et + 1

ext =

∞∑
n=0

En(x)
tn

n!
, | t |< π.

If x = 0, then En = En(0) is called the classical Euler numbers. The second kind Apostol Euler polynomi-
als En(x, λ) are defined by means of the generating function:

2et

λe2t + 1
ext =

∞∑
n=0

En(x, λ)
tn

n!
, | 2t+ log λ |< π.

If x = 0, En(λ) = En(0, λ) we called Apostol Euler numbers. Note that, En(x) = En(x, 1) and En(λ) =
En(0, λ).

For the complex numbers λ ∈ C the above generating function Fλ(x, t) can be rewrited as below:

2et

λe2t + 1
ext = 2

∞∑
n=0

(−λ)ne(2n+1+x)t, | 2t+ log λ |< π.

In Section 2, we introduce the second kind q-Apostol Bernoulli numbers Bn,q(λ) and polynomials
Bn,q(x, λ).

2. Definition for the q-Apostol Bernoulli numbers and polynomials and its basic properties

Definition 2.1. For λ ∈ C and |q| < 1, the q-Apostol Bernoulli numbers Bn,q(λ) and polynomials Bn,q(x, λ)
are defined by means of the generaing functions:

Fλ,q(t) = −t

∞∑
n=0

λne[2n+1]qt =

∞∑
n=0

Bn,q(λ)
tn

n!
, (2.1)

Fλ,q(x, t) = −t

∞∑
n=0

λne[2n+1+x]qt =

∞∑
n=0

Bn,q(x, λ)
tn

n!
. (2.2)
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Definition 2.2. For λ ∈ C and |q| < 1, the q-Apostol Euler numbers En,q(λ) and polynomials En,q(x, λ)
are defined by means of the generaing functions:

2
∞∑
n=0

(−λ)ne[2n+1]qt =

∞∑
n=0

En,q(λ)
tn

n!
, 2

∞∑
n=0

(−λ)ne[2n+1+x]qt =

∞∑
n=0

En,q(x, λ)
tn

n!
.

From Definition 2.1, we can easily get as below:

∞∑
n=0

Bn,q(x, λ)
tn−1

n!
= −

∞∑
n=0

λne[2n+1+x]qt. (2.3)

Setting B0,q(x, λ) = 0 in the left-hand side of the above equation (2.3), we get the following results.

∞∑
n=0

Bn,q(x, λ)
tn

n!
=

∞∑
m=0

1
m+ 1

Bm+1,q(x, λ)
tm

m!
. (2.4)

Using binomial theorem in the right-hand side of the above equation (2.3), we get the following results.

−

∞∑
n=0

λne[2n+1+x]qt = −

∞∑
n=0

λn
∞∑
m=0

[2n+ 1 + x]mq
tm

m!

= −

∞∑
m=0

(
1

(1 − q)m

n∑
l=0

(
m

l

)
(−1)lq(x+1)l 1

1 − λq2l

)
tm

m!
.

(2.5)

Comparing the coefficient of t
m

m! on both sides of (2.4) and (2.5), respectivelty, we obtain the Theorem 2.3.

Theorem 2.3. For a nonnegative integer n,

Bn,q(x, λ) = −
n

(1 − q)n−1

n−1∑
l=0

(
n− 1
l

)
(−1)l

1 − λq2lq
(x+1)l, Bn,q(λ) = −

n

(1 − q)n−1

n−1∑
l=0

(
n− 1
l

)
(−1)lql

1 − λq2l .

Using Definitions 2.1 and (1.1), we get the following:

∞∑
n=0

Bn,q(x, λ)
tn

n!
= −t

∞∑
n=0

λne[2n+1+x]qt =

∞∑
n=0

(
n∑
k=0

(
n

k

)
Bk,q(λ)q

(k−1)x[x]n−kq

)
tn

n!
. (2.6)

Comparing the coefficient of t
n

n! on both sides of (2.6), we obtain the Theorem 2.4.

Theorem 2.4. For a nonnegative integer n,

Bn,q(x, λ) =
n∑
k=0

(
n

k

)
Bk,q(λ)q

(k−1)x[x]n−kq .

From Definition 2.1, we get the following:

∞∑
n=0

λBn,q(x+ 2, λ) −Bn,q(x, λ)
tn

n!
= −t

( ∞∑
n=0

λn+1e[2n+1+x+2]qt −

∞∑
n=0

λne[2n+1+x]qt

)

=

∞∑
n=0

n[x+ 1]n−1
q

tn

n!
.

(2.7)

Comparing the coefficient of t
n

n! on both sides of (2.7), we obtain the Theorem 2.5.
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Theorem 2.5. For a nonnegative integer n,

λBn,q(x+ 2, λ) −Bn,q(x, λ) = n[x+ 1]n−1
q .

Using result of the Theorem 2.4 to differentiate both sides, we obtain the following:

∂

∂x

( ∞∑
n=0

Bn,q(x, λ)
tn

n!

)
=
∂

∂x

(
−t

∞∑
n=0

λne[2n+1+x]qt

)
=
qx+1

q− 1
logq

∞∑
n=0

nBn−1,q(x, λq2)
tn

n!
. (2.8)

Comparing the coefficient of t
n

n! on both sides of (2.8) we obtain the Theorem 2.6.

Theorem 2.6. For a nonnegative integer n,

∂

∂x
Bn,q(x, λ) =

qx+1

q− 1
logq ·n ·Bn−1,q(x, λq2).

Integrating both sides using the result of Theorem 2.6, we obtain the following:∫b
a

∂

∂x
Bn,q(x, λ) =

∫b
a

qx+1

q− 1
logq ·n ·Bn−1,q(x, λq2)dx.

The following equation can be obtained by summarizing the above equation

q− 1
n logq

(Bn,q(b, λ) −Bn,q(a, λ)) =
∫b
a

qx+1Bn−1,q(x, λq2)dx.

Thus, the result of the Theorem 2.7 can be obtained.

Theorem 2.7. For a nonnegative integer n,∫b
a

qx+1Bn,q(x, λq2)dx =
(q− 1)

(
Bn+1,q(b, λ) −Bn+1,q(a, λ)

)
(n+ 1) logq

.

From Definition 2.1, we obtain the following:

∞∑
n=0

Bn,q(x+ y, λ)
tn

n!
= −t

∞∑
n=0

λne[2n+1+x+y]qt

= q−y
∞∑
n=0

Bn,q(x, λ)qyn
tn

n!

∞∑
n=0

[y]nq
tn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
Bk,q(x, λ)q(k−1)y[y]n−kq

)
tn

n!
.

(2.9)

Comparing the coefficient of t
n

n! on both sides of (2.9), we obtain the result of Theorem 2.8.

Theorem 2.8. For a nonnegative integer n,

Bn,q(x+ y, λ) =
n∑
k=0

(
n

k

)
Bk,q(x, λ)q(k−1)y[y]n−kq .

From Theorem 2.3, we get the following:

Bn,q−1(x, λ−1) = −
n

(1 − q)n−1

n−1∑
l=0

(
n− 1
l

)
(−1)l

1 − λq2lq
(x+1)l = (−1)nλqn−1Bn,q(−x, λ).

Then we can easily get the following results.
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Theorem 2.9. For a nonnegative integer n,

Bn,q(x, λ) =
(−1)n

λqn−1Bn,q−1(−x, λ−1).

From the Definition 2.1, we get

∞∑
n=0

{
Bn,q(x, λ) − λk+1Bn,q(x+ 2k+ 2, λ)

} tn
n!

= −t

k∑
l=0

λle[x+2l+1]qt

= −

∞∑
n=1

(
k∑
l=0

nλl[x+ 2l+ 1]q
n−1

)
tn

n!
.

(2.10)

Comparing the coefficient of t
n

n! on both sides of (2.10), we obtain the result of Theorem 2.10.

Theorem 2.10. For a nonnegative integer n,

λk+1Bn,q(x+ 2k+ 2, λ) −Bn,q(x, λ)
n

=

k∑
l=0

λl[x+ 2l+ 1]q
n−1.

Remark 2.11. When q→ 1−, then Theorems 2.3-2.10 become the corresponding properties for the Apostol-
Bernoulli polynomials.

Remark 2.12. When λ → 1−, then equations in Theorems 2.3-2.10 become corresponding properties for
the q-Bernoulli polynomials. Setting q → 1−1 and λ → 1 in Theorems 2.3-2.10, these formulas become
well-known formulas (see [10, pp.532-533]).

3. The generated function and applications

By the equations (2.1) and (2.2), we get

∞∑
n=0

Bn,q(x, λ)
tn

n!
= −t

∞∑
n=0

λne[2n+1+x]qt

= −te
t

1−q

∞∑
n=0

λn
∞∑
k=0

(
−
q2n+1+x

1 − q

)k tk
k!

= −te
t

1−q

∞∑
k=0

(−1)kq(x+1)k

1 − λq2k
1

(1 − q)k
tk

k!
.

Therefore, we obtain the generating function for Bn,q(x, λ) as follows:

∞∑
n=0

Bn,q(x, λ)
tn

n!
= −te

t
1−q

∞∑
n=0

(−1)nq(x+1)n

1 − λq2n

( 1
1 − q

)n tn
n!

. (3.1)

Obviously, the generating function of Bn,q(λ) is

∞∑
n=0

Bn,q(λ)
tn

n!
= −te

t
1−q

∞∑
n=0

(−1)nqn

1 − λq2n

( 1
1 − q

)n tn
n!

.

Similarly, we can derive the following generating function of En,q(x, λ) and En,q(λ) by Definition 2.2
as below: ∞∑

n=0

En,q(x, λ)
tn

n!
= 2e

t
1−q

∞∑
n=0

(−1)nq(x+1)n

1 + λq2n

( 1
1 − q

)n tn
n! (3.2)



C. K. An, H. Y. Lee, Y. R. Kim, J. Nonlinear Sci. Appl., 12 (2019), 56–64 61

and
∞∑
n=0

En,q(λ)
tn

n!
= 2e

t
1−q

∞∑
n=0

(−1)nqn

1 + λq2n

( 1
1 − q

)n tn
n!

, (3.3)

respectively.
Clearly, it is easy to find the generating functions of En,q(x) and En,q by setting λ = 1 in (3.2) and

(3.3).
By (3.1), we calculate the following sum.

∞∑
n=0

[
[m]q

n−1
m−1∑
l=0

λlBn,qm

(
x+

2l+ 1 −m

m
, λm

)]
tn

n!

=

m−1∑
l=0

λl

[m]q

∞∑
n=0

Bn,qm

(
x+

2l+ 1 −m

m
, λm

)
([m]qt)

n

n!

= −te
t

1−q

∞∑
n=0

(
(−1)nq(mx+1)n

1 − (λq2n)m
1

(1 − q)n

)(m−1∑
l=0

(λq2n)l

)
tn

n!

= −te
t

1−q

∞∑
n=0

(−1)nq(mx+1)n

1 − λq2n
1

(1 − q)n
tn

n!

=

∞∑
n=0

Bn,q(mx, λ)
tn

n!
.

(3.4)

Comparing the coefficient of t
n

n! on both sides of the above equation (3.4), we have Theorem 3.1.

Theorem 3.1. For a nonnegative integer n,

Bn,q(mx, λ) = [m]q
n−1

m−1∑
l=0

λlBn,qm

(
x+

2l+ 1 −m

m
, λm

)
. (3.5)

By the equations (3.1) and (3.2), we calculate the following sum.

∞∑
n=0

[
−
n

2
[m]q

n−1
m−1∑
l=0

λlEn−1,qm

(
x+

2l+ 1 −m

m
,−λm

)]
tn

n!

= −te
t

1−q

∞∑
n=0

(−1)nq(mx+1)n

1 − λq2n
1

(1 − q)n
tn

n!
=

∞∑
n=0

Bn,q(mx, λ)
tn

n!
.

(3.6)

Comparing the coefficient of t
n

n! on both sides of (3.6), we obtain the result of the Theorem 3.2.

Theorem 3.2. For a nonnegative integer n,

Bn,q(mx, λ) = −
n

2
[m]q

n−1
m−1∑
l=0

λlEn−1,qm

(
x+

2l+ 1 −m

m
,−λm

)
. (3.7)

Using the results of the above two theorems, we get the following Corollary (3.3) immediately.

Corollary 3.3. For a nonnegative integer n,

m−1∑
l=0

λlBn,qm
(
x+

2l+ 1 −m

m
, λm

)
= −

n

2

m−1∑
l=0

λlEn−1,qm
(
x+

2l+ 1 −m

m
,−λm

)
.
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Letting q→ 1 in the equations (3.5) and (3.7), we get the following.

Corollary 3.4. For a nonnegative integer n and letting q→ 1,

Bn(mx, λ) =


mn−1

m−1∑
l=0

λlBn

(
x+

2l+ 1 −m

m
, λm

)
,

−
n

2
mn−1

m−1∑
l=0

λlEn−1

(
x+

2l+ 1 −m

m
,−λm

)
.

Putting λ = 1 into the equations (3.5) and (3.7), we get the following.

Corollary 3.5. For a nonnegative integer n and λ = 1,

Bn,q(mx) =


[m]q

n−1
m−1∑
l=0

Bn,qm

(
x+

2l+ 1 −m

m

)
,

−
n

2
[m]q

n−1
m−1∑
l=0

En−1,qm

(
x+

2l+ 1 −m

m

)
.

Noticeably, when q→ 1, we get the following.

Corollary 3.6. For a nonnegative integer n, let q→ 1 and λ = 1,

Bn(mx) =


mn−1

m−1∑
l=0

Bn

(
x+

2l+ 1 −m

m

)
,

−
n

2
mn−1

m−1∑
l=0

En−1

(
x+

2l+ 1 −m

m

)
.

4. The q-Hurwitz-Lerch Zeta function

The Hurwitz-Lerch zeta function Φ(z, s,a) is defined ([1, 4, 5, 12], e.g., [2, pp.121, et seq.], [3]) as
below:

Φ(z, s,a) =
∞∑
n=0

zn

(n+ a)s
, (a ∈ C\Z−

0 , s ∈ C, when |z| < 1 and R(s) > 1 when |z| = 1).

Φ(z, s,a) contains, as its special cases, not only the Riemann and Hurwitz (or generalized) zeta functions:

ζ(s) = Φ(1, s, 1) = ζ(s, 1) =
1

2s − 1
ζ

(
s,

1
2

)
and

ζ(s,a) = Φ(1, s,a) =
∞∑
n=0

1
(n+ a)s

, (R(s) > 1 , a /∈ Z−
0 ).

We first define the q-Hurwitz zeta function as follows:

Definition 4.1. The q-Hurwitz zeta function of the second kind is defined by

Φq(z, s,a) =
∞∑
n=0

zn

[2n+ 1 + a]sq
, (R(a) > 0 , a ∈ C\Z−

0 ).
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We differentiate both side of (2.2) with respect to the variable t which yields

dk

dtk

( ∞∑
n=0

Bn,q(a, λ)
tn

n!

)∣∣∣∣
t=0

=
dk

dtk

(
−t

∞∑
n=0

λne[2n+1+a]qt

)∣∣∣∣
t=0

.

The following equation can be obtained by summarizing the above equation

Bk,q(a, λ) = −k

∞∑
n=0

λn

[2n+ 1 + a]1−kq

= −kΦq(λ, 1 − k,a).

Hence, we have the following relationship.

Theorem 4.2. For n ∈N and a ∈ C\Z−
0 ,

Bn,q(a, λ) = −nΦq(λ, 1 −n,a). (4.1)

The above equation holds between the q-Apostol Bernoulli polynomials and the q-Hurwitz-Lerch zeta
function of the second kind.

Letting q→ 1 in (4.1), we get the following corollary.

Corollary 4.3. For n ∈N, as q→ 1 and a ∈ C\Z−
0 ,

Bn(a, λ) = −nΦ(λ, 1 −n,a).

The above equation holds between the Apostol Bernoulli polynomials and the Hurwitz-Lerch zeta
function.

It follows that we define an analogue of the Hurwitz zeta function of the second kind as follows.

Definition 4.4. The L-function of the second kind is defined by

L(s,a) =
∞∑
n=0

1
(2n+ 1 + a)s

, (R(s) > 1 , a ∈ C\Z−
0 ).

It follows that we define a q-analogue of the L-function of the second kind as follows.

Definition 4.5. The q-L-function of the second kind is defined by

Lq(s,a) =
∞∑
n=0

1
[2n+ 1 + a]sq

, (R(s) > 1 , a ∈ C\Z−
0 ).

Obviously, Φq(1, s,a) = Lq(s,a). In the same way, we get the following.

Theorem 4.6. For n ∈N and a ∈ C\Z−
0 ,

Bn,q(a) = −nLq(1 −n,a).

The above equation holds between the q-Bernoulli polynomials and the q-L-function of the second
kind.

Corollary 4.7. For n ∈N and a ∈ C\Z−
0 ,

Bn(a) = −nL(1 −n,a).

The above equation holds between the Bernoulli polynomials and the q-L-function of the second kind.
Finally, we introduce an analogue of Riemann zeta function of the second kind as follows.
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Definition 4.8. The l-function of the second kind is defined by

l(s) =

∞∑
n=1

1
(2n+ 1)s

, (R(s) > 1).

It follows that we introduce a q-analogue of the l-function of the second kind.

Definition 4.9. The q-l-function is defined by

lq(s) =

∞∑
n=1

1
[2n+ 1]sq

, (R(s) > 1).

Similarly, we have the following.

Theorem 4.10. For n ∈N,
Bn,q = −nlq(1 −n).

The above equation holds between the q-Bernoulli numbers and the q-l-function of the second kind.

Corollary 4.11. For n ∈N,
Bn = −nl(1 −n).

The above equation holds between the Bernoulli numbers and the l-function of the second kind.
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