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1. Introduction

There is a growing interest in difference equations because of their applications in modern sciences
and computer control. Various researchers have been interested in analyzing the asymptotic behavior of
perturbed difference equations, they proposed methods that can be subdivided into two aspects. The mul-
tiple scales perturbation method for ordinary difference equations introduced in 1977 by Hoppensteadt
and Miranker [2], a formal technique which has been improved by Horssen et al. [8, 12]. The second
method is the singular perturbation method proposed in 1976 by Comstock and Hsiao [1] for a linear
second order equation defined over a finite interval, these authors presented the zeroth order solution
as a composition of an outer solution and a boundary layer correction solution; their method followed the
theory of singular perturbations for ODES. Naidu and Rao [7] have heuristically extended this procedure
to higher order equations and have given a lot of applications to discrete control problems while Jodar
and Morera [3] studied linear systems of second order difference equations. Some particular cases of non-
linear second order equations have been examined by Reinhardt [9] and Suzuki [11]. Kelley [4] studied
a general second order model with a right-end perturbation; his method is given for zeroth and first order
of approximation but higher order approximations have not been made explicitly. In [10, 13], we have
elucidated that we could define homogeneous asymptotic expansions for singularly perturbed difference
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equations bypassing the correction terms and we gave applications to control problems in [14–17]. Re-
cently in [18, 19], we used this homogeneous method for a class of nonlinear equations giving explicitly
asymptotic solutions up to any order. The plan of this paper is to extend this procedure based on Faa Di
Bruno formula [6] and contraction mapping principle, to a wide class of nonlinear singularly-perturbed
difference equations. In the next Section, we introduce a nonlinear model with left-end perturbation, we
describe an iterative algorithm to compute asymptotic solutions of a boundary value problem. Section
3, is reserved to another kind of perturbation said right-end perturbation, an analogous method is briefly
exposed. Finally the paper ends in Section 4 with a concise conclusion.

2. Left end perturbation

Let IN = {0, 1, · · · ,N}, N ∈ N∗; N∗ denote the set of positive integers. We assume that (X, ‖.‖) is
a Banach space, F(IN,X) is the space of all mappings of IN into X, and the mapping f : F(IN,X)r+1 ×
(−1, 1)× IN → X, is n-differentiable in its arguments. We consider the difference equation

f (x(t), x(t+ 1), . . . , x(t+ r− 1), εx(t+ r), ε, t) = 0, t ∈ IN−r, (2.1)

subject to the multipoint boundary-value conditions

x(0) = α0(ε), x(1) = α1(ε), . . . , x(r− 2) = αr−2(ε), x(N) = β(ε). (2.2)

We assume that for |ε| < δ 6 1, αk(ε) and β(ε) have the asymptotic representations

αk(ε) = α
(0)
k + εα

(1)
k + · · ·+ εnα(n)

k , β(ε) = β(0) + εβ(1) + · · ·+ εnβ(n).

In the singularly perturbed model (2.1) the small parameter ε is assigned to the term of highest order,
i.e., x(t+ r), in the literature it is called a left-end perturbation. In this section, for the BVP (2.1)-(2.2), we
study the existence and uniqueness of a solution x(t, ε), t ∈ IN, and we show how to compute recursively
the coefficients of its asymptotic development

x(t, ε) = x(t)(0) + εx(t)(1) + ε2x(t)(2) + · · ·+ εnx(t)(n) +O(εn+1). (2.3)

In what follows, we will denote the partial derivative ∂
k0+k1+···+kpf(x0,x1,...,xp)

∂x
k0
0 ∂x

k1
1 ···∂xkpp

by Dk0
0 D

k1
1 · · ·D

kp
p f.

2.1. Reduced Problem
As for the singular perturbation theory of differential equations, it is assumptive that the singular

nature of difference equations containing a small parameter is simply caused by a reduction of its order
when the parameter is canceled. In the reduced problem

f (x(t), x(t+ 1), . . . , x(t+ r− 1), 0, 0, t) , t = 0, 1, . . . ,N− r,
x(0) = α(0)

0 , x(1) = α(0)
1 , · · · , x(r− 2) = α(0)

r−2,
(2.4)

x(N) = β(0), (2.5)

the order of the difference equation is equal to r− 1, the problem displays a boundary layer behavior at
the endpoint, i.e., the values x(0), x(1), . . . , x(N− 1), can be calculated regardless of the final condition
(2.5). Seeing that the boundary conditions are uncoupled, we will only have to solve recursively the initial
value problem (2.4). The following hypothesis guarantee that the reduced problem (2.4)-(2.5) has a unique
solution.

H1. Suppose the range of f contains the value 0, and ∀x ∈ X,

Dr−1f (x(t), x(t+ 1), . . . , x(t+ r− 1), 0, 0, t) 6= 0, t = 0, 1, . . . ,N− r.

Proposition 2.1. If H1 holds, then problem (2.4)-(2.5) has a unique solution.
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2.2. Preliminary results
To establish the existence of a solution as well to find approximate solutions, the BVP (2.1)-(2.2) is

converted to a system of equations depending on a parameter by denoting χ = (x(0), x(1), . . . , x(N)), for
x ∈ X, and writing the system (2.1)-(2.2) in the form

F : (−1, 1)×XN+1 −→ XN+1, F (ε,χ) = 0, (2.6)

where F (ε,χ) = (F0 (ε,χ) ,F1 (ε,χ) , . . . ,FN (ε,χ)),

Ft (ε,χ) = x(t) −αt(ε), t = 0, . . . , r− 2,
Ft+r−1 (ε,χ) = f (x(t), x(t+ 1), . . . , x(t+ r− 1), εx(t+ r), ε, t) ,

t = 0, . . . ,N− r,
FN (ε,χ) = x(N) −β(ε).

Under suitable assumptions, we can apply the classical Implicit Function Theorem [5] to (2.6). If the
hypothesis H1 is satisfied, then for a small parameter ε, we can determine a function

φ(ε) = (φ0(ε),φ1(ε), . . . ,φN(ε)),

with same regularity as F, i.e., of class Cn, such that F (ε,φ(ε)) = 0. Therefore,

f(φt(ε),φt+1(ε), . . . ,φt+r−1(ε), εφt+r(ε), ε, t) = 0, t = 0, 1, . . . ,N− r,
φ0(ε) = α0(ε), φ1(ε) = α1(ε), . . . , φr−2(ε) = αr−2(ε), φN(ε) = β(ε).

(2.7)

For small |ε|, to get an approximate value for the function φt(ε), we use the Taylor/Maclaurin polynomial
expansion

φt(ε) = φt(0) +
ε

1!
dφt

dε
(0) +

ε2

2!
d2φt

dε2 (0) + · · ·+ ε
n

n!
dnφt

dεn
(0) +O(εn+1), (2.8)

and we apply Faa di Bruno formula [6] to explicitly find the sequential differentiation of (2.7) to be able to
calculate the coefficients of (2.8). For making writing concise, we drop the arguments for f in the following
lemma.

Lemma 2.2. Assume that f satisfies (2.7), and that all the necessary derivatives are defined. Then we have for
n > 2,

r−1∑
l=0

Dlf
∂nφ(ε)

∂εn
+nDrf

∂n−1φt+r(ε)

∂εn−1 = −
∑

0

∑
1

· · ·
∑
n

D
p0
0 D

p1
1 · · ·D

pr+1
r+1 f

×
n!
∏n
i=1(

∂iφt(ε)
∂εi

)qi0 · · · (∂
iφt+r−1(ε)
∂εi

)qir−1(i
di−1φt+r(ε)
∂εi−1 + ε

∂iφt+r(ε)
∂εi

)qir(ε(i))qir+1∏n
i=1(i!)ki

∏n
i=1
∏r+1
j=0 qij!

,

(2.9)

where the coefficients ki, qij, and pj, i = 0, . . . , 1, i = 0, . . . , 1, are all nonnegative integer solutions of the
Diophantine equations ∑

0

→ k1 + 2k2 + · · ·+nkn = n,∑
i

→ qi0 + qi1 + · · ·+ qir + qir+1 = ki, i = 1, . . . ,n,

pj = q1j + q2j + · · ·+ qnj, j = 0, 1, . . . , r+ 1,
p0 + p1 + · · ·+ pr+1 = k1 + k2 + · · ·+ kn,

(2.10)

in
∑

0 · · ·
∑
n we fix kn = 0; the case kn = 1 is omitted and corresponds to the left side of equation (2.9), and(

ε(i)
)qir+1

:=

{
1, i = 1 ∨ qir+1 = 0,
0, i > 2 ∧ qir+1 6= 0.
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Proof. Define φr+1(ε) := ε, we have

diφr+1(ε)

dεi
= ε(i) =

{
1, i = 1,
0, i > 2.

Expanding Faa Di Bruno’s Formula into (2.8) and noticing that for i > 1,

di (εφk+r(ε))

dεi
= i
di−1φk+r(ε)

dεi−1 + ε
diφk+r(ε)

dεi
,

we obtain (2.9) by arranging the equation (2.10) so that on the left hand side, we have the terms corre-
sponding to k(0)

n = 1.

2.3. Description of the method
In this section we describe an iterative process giving the coefficients of (2.3). Knowing that the coeffi-

cients of 0th-order approximation are the solution sequence of the reduced problem (2.4)-(2.5), substituting

x(i)(t+ l) :=
1
i!
∂iφt+l
∂εi

(0), t = 0, 1, . . . ,N, l = 0, . . . , r (2.11)

into (2.9), we obtain the following. For 1st-order approximation,

Dr−1f0x
(1)(t+ r− 1) = −

r−2∑
l=0

Dlf0x
(1)(t+ l) −Drf0x

(0)(t+ r) −Dr+1f0, t = 0, . . . ,N− r,

x(1)(0) = α(1)
0 , x(1)(1) = α(1)

1 , . . . , x(1)(r− 2) = α(1)
r−2, x(1)(N) = β(1),

(2.12)

where f0 shortly denotes tha value

f(x(0)(t), x(0)(t+ 1), . . . , x(0)(t+ r− 1), 0, 0, t).

To calculate the coefficients x(1)(0), x(1)(1), . . . , x(1)(N − 1), only the initial values are needed, the final
value x(1)(N) does not serve in this recurrence, but the 0th-order solution found from (2.4)-(2.5) are also
needed. For the 2th-order development, and with the same calculation method as for the previous step,
we have

Dr−1f0x
(2)(t+ r− 1)

= −

r−2∑
l=0

Dlf0x
(2)(t+ l) − 2Drf0x

(1)(t+ r) −D2
r+1f0

− 2
∑

06l6r−1

DlDrf0x
(1)(t+ l)x(0)(t+ r) −D2

rf0

(
x(0)(t+ r)

)2

−

r−1∑
l=0

D2
lf0

(
x(1)(t+ l)

)2
− 2

∑
06l6r−1

DlDr+1f0x
(1)(t+ l)

− 2DrDr+1f0x
(0)(t+ r) − 2

∑
06l<m6r−1

DlDmf0x
(1)(t+ l)x(1)(t+m), t = 0, . . . ,N− r,

x(2)(0) = α(2)
0 , x(2)(1) = α(2)

1 , . . . , x(2)(r− 2) = α(2)
r−2, x(2)(N) = β(2).

(2.13)

For the nth-order development, using the initial values

x(n)(0) = α(n)
0 , x(n)(1) = α(n)

1 , . . . , x(n)(r− 2) = α(n)
r−2, (2.14)
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we have the recurrence formula

Dr−1f0x
(n)(t+ r− 1) = −

r−2∑
l=0

Dlf0x
(n)(t+ l) −nDrf0x

(n−1)(t+ r)

−
∑

0

· · ·
∑
n

D
p0
0 · · ·D

pr+1
r+1 f0

∏n
i=1(x

(i)(t))qi0 · · · (x(i)(t+ r− 1))qir−1(x(i)(t+ r))qir(δi)
qir+1∏n

i=1
∏r+1
j=0 qij!

,

(2.15)

where in
∑

0 · · ·
∑
n we fix k(0)

n = 0, and the final value remains fixed,

x(n)(N) = β(n). (2.16)

Above are the consecutive steps to compute the coeffients that make up the approximate solutions defined
by (2.3). This computation process is confirmed in the following theorem.

Theorem 2.3. If H1 holds, there exists ε > 0, such that for all |ε| < ε, the boundary value problem (2.1)-(2.2) has a
unique solution which satisfies (2.3); where x(0)

k , x(1)
k , x(2)

k , and x(n)k , are the solutions of (2.4)-(2.5), (2.12), (2.13),
and (2.15)-(2.14)-(2.16), respectively.

Proof. Let χ̃ = (ε,χ), |ε| 6 δ < 1, we introduce the functional F defined by F (χ̃) = (ε,F (χ̃)), and we
denote by DF its jacobian matrix. Obviously DF is invertible at χ̃(0) =

(
0, x(0)(0), x(1)(0), . . . , x(N)(0)

)
,

where x(t)(0), t ∈ IN, is the solution of the reduced problem (2.4)-(2.5), since from H1 we have

detDF
(
χ̃(0)

)
=

N−r∏
i=0

Dr−1f
(
x
(0)
i , x(0)

i+1, . . . , x(0)
i+r−1, 0, 0, i

)
6= 0.

We can choose ξ > 0 such that, if ‖χ̃− χ̃(0)‖ < ξ, we have

‖DF (χ̃) −DF
(
χ̃(0)

)
‖ < 1

2
‖
(
DF

(
χ̃(0)

))−1
‖−1,

resulting from the continuity of DF. We denote ε = ξ
2 ‖

(
DF

(
χ̃(0)

))−1 ‖−1, we can easily verify that the

mapping Φτ(χ̃) = χ̃−
(
DF

(
χ̃(0)

))−1
(F(χ̃) − τ) is a contraction that maps B

(
χ̃(0), ξ

)
to itself, when |ε| < ε

and ‖τ‖ < ε. Therefore Φτ has a unique fixed point χ̃, which means that for τ fixed, ‖τ‖ < ε, there exists
a unique χ̃ such that ‖χ̃− χ̃(0)‖ < ξ, and τ = F(χ̃), i.e., F is one-to-one from F−1 (B(0, ε)) into B(0, ε).

If |ε| < ε, obviously (ε, 0, . . . , 0) ∈ B(0, ε), there exists a unique (ε,φ(ε)) in B
(
χ̃(0), ξ

)
, such that

(ε, 0, . . . , 0) = F(ε,φ(ε)), φ(ε) = (φ0(ε), . . . ,φN(ε)). We proved that |ε| < ε, there exists a unique φ(ε)
such that F(ε,φ(ε)) = 0, then the boundary value problem (2.1)-(2.2) has a unique solution. Moreover,
the function φ is Cn (−ε, ε), as are F and F−1, and its derivatives are given in Lemma 2.2.

The iterative problems given above are defined for any order provided f being a smooth function and
the asymptotic developments for the boundary conditions are convergent.

H2. Assume that ‖α(i)
k ‖ 6

A
δi

, ‖β(i)‖ 6 B
δi

, A and B are constants.

Theorem 2.4. If assumptions H1 and H2 hold, and f is a smooth function, then there exists ε > 0, for all |ε| < ε,
that the boundary value problem (2.1)-(2.2) has a unique solution xk(ε) =

∑∞
n=0 ε

nx
(n)
k , where x(0)

k , x(1)
k , x(2)

k ,
and x(n)k , are solutions of (2.4)-(2.5), (2.12), (2.13), and (2.15)-(2.14)-(2.16), respectively.

3. Right end perturbation

In this section, we report on a model said right-end perturbation, the small parameter ε is assigned to
the term of lowest order, i.e., x(t),

f (εx(t), x(t+ 1), . . . , x(t+ r− 1), x(t+ r), ε, t) = 0, t = 0, . . . ,N− r, (3.1)

combined with the boundary conditions
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x(0) = α(ε), x(N− r+ 2) = βr−2(ε), . . . , x(N) = β0(ε), (3.2)

where |ε| < δ 6 1, and α(ε) and βk(ε) have the asymptotic representations

α(ε) = α(0) + εα(1) + · · ·+ εnα(n), βk(ε) = β
(0)
k + εβ

(1)
k + · · ·+ εnβ(n)

k .

We indicate directly the results, which are found by a similar technique as in previous section, the modi-
fications required are obvious and are left to the reader. In the reduced problem

x0 = α(0), (3.3)

f (0, x(t+ 1), . . . , x(t+ r− 1), x(t+ r), 0, t) = 0, t = 0, 1, . . . ,N− r,
x(N− r+ 2) = β(0)

r−2, · · · , x(N− 1) = β(0)
1 , x(N) = β

(0)
0 ,

(3.4)

involving only the final values, we compute backward the values x1, . . . , xN−r+1, without using (3.3); the
boundary layer behavior is located at the initial value.

H3. Suppose that f has range containing zero, and ∀x ∈ X, we have

D1f(0, x(t+ 1), x(t+ 2), . . . , x(t+ r), 0, t) 6= 0.

Proposition 3.1. If H3 holds, then (3.3)-(3.4) has a unique solution.

Under some conditions, there exists an open neighborhood V(0) where a function

φ(ε) = (φ0(ε), . . . ,φN(ε)) ∈ Cn(V)

satisfies
f(εφ(t, ε),φ(t+ 1, ε), . . . ,φ(t+ r, ε), ε, t) = 0, t = 0, . . . ,N− r,
φ0(ε) = α(ε), φN−r+2(ε) = βr−2(ε), . . . , φN(ε) = β0(ε).

(3.5)

The consecutive derivatives of the equation in (3.5) are given in the following Lemma.

Lemma 3.2. Assume that the functions φk and f satisfy (3.5), and that all the necessary derivatives are defined.
Then we have for n > 2,

nD0f
∂n−1φt(ε)

∂εn−1 +

r∑
l=1

Dlf
∂nφt+l(ε)

∂εn
= −
∑

0

∑
1

· · ·
∑
n

D
p0
0 D

p1
1 · · ·D

pr+1
r+1 f

×
n!
∏n
i=1(i

di−1φt(ε)
∂εi−1 + ε

∂iφt(ε)
∂εi

)qi0 · · · (∂
iφt+r−1(ε)
∂εi

)qir−1(
∂iφt+r(ε)
∂εi

)qir(ε(i))qir+1∏n
i=1(i!)ki

∏n
i=1
∏r+1
j=0 qij!

,

(3.6)

where the coefficients in (3.6) are the solutions of the Diophantine (2.10); in
∑

0 · · ·
∑
n we fix k(0)

n = 0, the case

k
(0)
n = 1 corresponds to the left side of equation (3.6).

Therefore, from (2.3), (2.11), and (3.6), we find for the following. For 1st-order development,

x(1)(a) = α(1),

D1f0x
(1)(t+ 1) = −

r∑
l=2

Dlf0x
(1)(t+ l) −D0f0x

(0)(t) −Dr+1f0, t = 0, . . . ,N− r,

x(1)(N− r+ 2) = β(1)
r−2, · · · , x(1)(N− 1) = β(1)

1 , x(1)(N) = β
(1)
0 .

(3.7)
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For 2nd-order development, we have

x(2)(0) = α(2),

D1f0x
(2)(k+ 1) = −

r∑
l=2

Dlf0x
(2)(t+ l) − 2D0f0x

(1)(t)

−D2
r+1f0 − 2

∑
16l6r

D0Dlf0x
(0)(t)x(1)(t+ l) −D2

0f0(x
(0)(t))2

−

r∑
l=1

D2
lf0(x

(1)(t+ l))2 − 2
∑

16l6r

DlDr+1f0x
(1)(t+ l)

− 2D0Dr+1f0x
(0)(t)

− 2
∑

16l<m6r

DlDmf0x
(1)(t+ l)x(1)(t+m), k = 0, . . . ,N− r,

x(2)(N− r+ 2) = β(2)
r−2, . . . , x(2)(N− 1) = β(2)

1 , x(2)(N) = β
(2)
0 .

(3.8)

For nth-order order development, n > 2, we have

D1f0x
(n)(t+ 1) = −

r∑
l=2

Dlf0x
(n)(t+ l) −nD0f0x

(n−1)(t)

−
∑

0

· · ·
∑
n

D
p0
0 · · ·D

pr+1
r+1 f0

∏n
i=1(x

(i−1)(t))qi0 · · · (x(i)(t+ r− 1))qir−1(x(i)(t+ r))qir(δi)
qir+1∏n

i=1
∏r+1
j=0 qij!

,
(3.9)

in
∑

0 · · ·
∑
n we fix k(0)

n = 0. In the above recurrence formulas we only use the final values, the initial
values do not serve in the computation process. The iteration is done backward from the final values

x(n)(N− r+ 2) = β(n)
r−2, . . . , x(n)(N− 1) = β(n)

1 , x(n)(N) = β
(n)
0 , (3.10)

while the initial value remains fixed,
x(n)(0) = α(n). (3.11)

Theorem 3.3. If H3 holds, there exists ε > 0, such that for all |ε| < ε, the boundary value problem (3.1)-(3.2) has a
unique solution which satisfies (2.3); the coefficients x(0)

k , x(1)
k , x(2)

k , and x(n)k , are the solutions of (3.3)-(3.4), (3.7),
and (3.8), (3.9)-(3.10)-(3.11), respectively.

For a development at any order, we need that the asymptotic developments for the boundary condi-
tions are convergent.

H4. Assume that ‖α(i)‖ 6 A
δi

, ‖β(i)
k ‖ 6

B
δi

, A and B are constants.

Theorem 3.4. If H3 and H4 hold, and f is a smooth function, then there exists ε > 0 such that for all |ε| < ε,
the boundary value problem (3.1)-(3.2) has a unique solution which satisfy xk(ε) =

∑∞
n=0 ε

nx
(n)
k , where the

coefficients x(0)
k , x(1)

k , x(2)
k , and x(n)k are the solution of the problems (3.3)-(3.4), (3.7), (3.8), and (3.9)-(3.10)-(3.11),

respectively.

4. conclusion

In this paper, we consider some boundary value problems related to a large class of singular perturba-
tion models of nonlinear difference equations. We study the existence and uniqueness of the solution and
formulate an iterative process to find approximate asymptotic solutions up to any order by combining Faa
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Di Bruno formula and the contraction mapping principle. The same procedure can be applied to initial
value problems with a left-end perturbation, or final value problems with right-end perturbation. The
singular perturbation theory developed herein shows a possibility to study models with multiple scale
parameters or singularly perturbed discrete-time systems, which may be a future research topic.
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