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Abstract
In this paper, we investigate the large-time behavior of a nonlinear size-structured population model with logistic term and

T -periodic vital rates. We establish the existence of a unique non-negative solution of the given model with the given initial
distribution. We prove that there exists at most two T -periodic non-negative solutions (one of them being the trivial one) of the
periodic model associated with the given model. We show that for any initial distribution of population the solution of the given
model tends to the nontrivial non-negative T -periodic solution of the associated model. At last, we give the numerical tests,
which are used to demonstrate the effectiveness of the theoretical results in our paper.
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1. Introduction

Most engineering, physical, and biological problems are governed by functional equations, for exam-
ple, ordinary differential equations, partial differential equations, integral equations, integro-differential
equations, fractional-order differential equations, and stochastic differential equations. As a result, many
authors have discussed the numerical solutions ([1]), approximate solutions ([3, 4, 9–11, 31]) and asymp-
totic behaviors ([7, 14, 19]) of functional equations.

In the past few decades, functional equations are widely used in population dynamics. In [2], the
authors investigated a mathematical model of the generalized biological population model and got a new
exact solution with a conformable derivative operator. In [33], the authors studied the boundedness and
the asymptotic behavior of positive solutions for the difference equation in a new population model. It
is worth pointing out that populations consist of individuals, with many structural differences such as
age, size, gender, and gene. In the last century, a number of studies appeared on the topic of dynamical
population models with individual structure. Especially, age-structured first-order partial differential
equations provide a main tool for modeling population systems and are recently employed in economics.
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To name a few, see [5–8, 14–17, 23, 25, 30] and their references therein. Book [5] focuses on the well-
posedness and optimal control problems of the age-dependent population dynamics, while [23] is mainly
on the mathematical theory analysis of age-structured population dynamics. In [16], the authors studied
the single-species population dynamics with delayed argument and age-structure. In [7], Aniţa et al.
investigated the global behavior for the following age-dependent population model with logistic term
and periodic vital rates.

∂u(a,t)
∂t +

∂u(a,t)
∂a + µ(a, t)u(a, t) +Φ(I(t))u(a, t) = 0, (a, t) ∈ Q,

u(0, t) =
∫a†

0
β(a, t)u(a, t)da, t ∈ (0,+∞),

u(a, 0) = u0(a), x ∈ (0,a†),

I(t) =

∫a†
0
u(a, t)da, t ∈ (0,+∞),

(1.1)

where Q = (0,a†)× (0,+∞) and a† ∈ (0,+∞) is the maximal age for the population species.
Long-term ecological researches show that, for many populations especially in many ectothermic

animal species, body size is a more significant parameter and has a strong influence upon dynamical
processes like its feeding, growth and reproduction [34]. In [13], Caswell said: “size-dependent demog-
raphy is probably the rule rather than the exception”. Here by size we mean some indices displaying the
physiological or statistical characteristics of population individuals. Sizes can be mass, length, diameter,
volume, maturity, and so on. Body size determines the predation ability, survival, mortality, birth and
other vital rates of individuals, and it is more intuitive and easier to measure [29]. For example, for plants,
an individual’s size is important to capture light to grow [32]. As a result, modelling population dynamics
with size structure has been an active and fruitful theme in mathematical biology. There have been many
investigations on population models where the growth rate depends on body size (to name a few, see
[12, 18–22, 24, 26–28, 34]). In [22], the authors studied the theoretical aspects for an optimal harvesting
problem of the following nonlinear size-structured population model in a periodic environment.

∂u(x,t)
∂t +

∂(V(x,t)u(x,t))
∂x = f(x, t) − µ(x, t, I(t))u(x, t) +α(x, t)u(x, t), (x, t) ∈ Q,

V(0, t)u(0, t) =
∫ l

0
β(x, t, J(t))u(x, t)dx, t ∈ [0,+∞),

u(x, t) = u(x, t+ T), (x, t) ∈ Q,

I(t) =

∫ l
0
m(x)u(x, t)dx, t ∈ [0,+∞),

J(t) =

∫ l
0
b(x)u(x, t)dx, t ∈ [0,+∞),

where Q = [0, l)× [0,+∞) and l ∈ (0,+∞) is the maximum size for the population species.
To the best of our knowledge, so far only a few papers deal with large time behavior analysis [19, 26]

for the population models with size-structure. Moreover, natural populations are actually subject to
seasonal fluctuations, which leads to the vital rates of individuals vary periodically. Unfortunately, there
is no investigation on the behavior analysis of the size-structured population models with periodic vital
rates. The purpose of this paper is to make some contribution in this direction.

Motivated by the above discussion, in this paper, we consider the following nonlinear size structured
model with logistic term and T -periodic vital rates which describes the dynamics of a single population
species in periodic environments.

∂u(x,t)
∂t +

∂(g(x)u(x,t))
∂x + µ(x, t)u(x, t) +Φ(I(t))u(x, t) = 0, (x, t) ∈ Q,

g(0)u(0, t) =
∫ l

0
β(x, t)u(x, t)dx, t ∈ [0,+∞),

u(x, 0) = u0(x), x ∈ [0, l),

I(t) =

∫ l
0
u(x, t)dx, t ∈ [0,+∞),

(1.2)
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where Q = [0, l)× [0,+∞) and l ∈ (0,+∞) is the maximum size for the population species. The state
variable u(x, t) denotes the population density of size x at time t and by u0(x) we have denoted the
initial distribution of densities. g(x) stands for the growth rate of individual’s size, that is dx/dt = g(x).
µ(x, t) and β(x, t) are, respectively, the natural mortality and fertility. Φ(I(t))u is the logistic term, where
I(t) =

∫l
0 u(x, t)dx is the density of the total population at the moment t. The term Φ(I(t)) stands for an

external mortality rate which depends on the total population I(t) possibly due to the intra-competition
such as the limitation of the resources.

Compared with (1.1), our model generalizes it from age-structure to size-distribution. Note that

da
dt

= 1 and
dx
dt

= g(x).

If we take g(x) ≡ 1 for all (x, t) ∈ Q, then we can get (1.1). To study the limit behavior of the solution of
(1.2), it is necessary to consider the following periodic model.

∂u(x,t)
∂t +

∂(g(x)u(x,t))
∂x + µ(x, t)u(x, t) +Φ(I(t))u(x, t) = 0, (x, t) ∈ Q,

g(0)u(0, t) =
∫ l

0
β(x, t)u(x, t)dx, t ∈ [0,+∞),

u(x, t) = u(x, t+ T), (x, t) ∈ Q,

I(t) =

∫ l
0
u(x, t)dx, t ∈ [0,+∞),

(1.3)

which is associated with the given model (1.2). That is, the vital rates in model (1.3) are also T -periodic.
The purpose of this paper is to prove system (1.2) has a unique non-negative solution u, and the

periodic system (1.3) admits at most two nonnegative solutions and one of them being the trivial one.
Moreover, we will show

lim
t→∞ ‖u(·, t) − û(·, t)‖L∞(0,l) = 0,

where û is one of the nonnegative solutions to system (1.3).
Take R+=[0,∞). Let C1([0, l);R+) be the family of C1-class functions φ : [0, l)→R+. Let C(R+;L∞[0, l))

be the family of continuous functions ψ(·, t) with respect to t ∈ R+ and ψ(·, t) ∈ L∞[0, l) for each t ∈ R+.
Throughout this paper we assume that the following hypotheses hold.

(A1) g ∈ C1([0, l);R+) is a bounded function. g(0) = 1, lim
x↑l

g(x) = 0 and g(x) > 0, g ′(x) 6 0 for x ∈ [0, l).

Moreover, there is a positive constant LV such that for x1, x2 ∈ [0, l)

|g(x1) − g(x2)| 6 LV |x1 − x2|.

(A2) β ∈ C(R+;L∞[0, l)) and there exists β̄ ∈ R+ such that 0 < β(x, t) = β(x, t+ T) 6 β̄ for (x, t) ∈ Q.

(A3) µ ∈ C(R+;L∞[0, l)) and 0 6 µ(x, t)=µ(x, t+T) for all (x, t) ∈ Q. Moreover, we have µ(x, t)+g ′(x) > 0
for all (x, t) ∈ Q.

(A4) u0(·) ∈ L∞[0, l) and there exists ǔ ∈ R+ such that 0 < u0(x) 6 ǔ for all x ∈ [0, l).

(A5) Φ : R+ → R+ is an increasing continuously differentiable function satisfying Φ(0) = 0 and
lim
r→+∞Φ(r) = +∞. Moreover, Φ(r) has bounded derivatives with respect to r.

The remaining part of this paper is organized as follows. First, we give some definitions and prelim-
inaries in Section 2. Well-posedness and large time behavior of the state system are studied in Section 3
and Section 4, respectively. Section 5 contains some examples and numerical results, which are used to
demonstrate the effectiveness of the theoretical results in our paper. The paper ends with a conclusion
section.
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2. Preliminaries

In this section, we give some preliminaries. As in [7, 22], we first introduce some definitions.

Definition 2.1. The unique solution x = ϕ(t; t0, x0) of the initial-valued problem x ′(t) = g(x), x(t0) = x0
is said to be a characteristic curve of system (1.2). Let z(t) = ϕ(t; 0, 0) be the characteristic curve through
(0, 0) in the x− t plane.

Definition 2.2. The derivative of the function u(x, t) at (x, t) along the characteristic curve ϕ is given by

Dϕu(x, t) = lim
h→0

u(ϕ(t+ h; t, x), t+ h) − u(x, t)
h

.

Lemma 2.3. Let assumptions (A1)-(A3) hold. Then the following system
∂u∗(x,t)
∂t +

∂(g(x)u∗(x,t))
∂x + µ(x, t)u∗(x, t) +αu∗(x, t) = 0, (x, t) ∈ Q,

g(0)u∗(0, t) =
∫ l

0
β(x, t)u∗(x, t)dx, t ∈ R+,

u∗(x, 0) = u∗(x, t+ T), (x, t) ∈ Q,

(2.1)

has at most two nonnegative solutions, the trivial one and a nontrivial one, u∗.

Proof. For an arbitrary point (x, t) in the first quadrant of the x − t plane such that x 6 z(t), that is,
ϕ(t; t, x) 6 z(t), define the initial time τ , τ(x, t) implicitly by the relation ϕ(t; τ, 0) = x if and only if
ϕ(τ; t, x) = 0. Due to the periodicity of the state variables, u∗(x, t), we consider the case where t > z−1(l).
Utilizing the characteristic curve technique and τ = ϕ−1(0; t, x), we can get u∗(x, t) satisfies

u∗(x, t) = u∗(0,ϕ−1(0; t, x)) exp
{
−

∫t
τ

[µ(ϕ(s; t, x), s) + g ′(ϕ(s; t, x)) +α]ds
}

. (2.2)

Denote b∗(t) , g(0)u∗(0, t). It follows from g(0) = 1 and (2.2) that

b∗(t) = g(0)u∗(0, t) =
∫ l

0
β(x, t)u∗(x, t)dx

=

∫ l
0
β(x, t)u∗(0,ϕ−1(0; t, x))e{−

∫t
τ[µ(ϕ(s;t,x),s)+g ′(ϕ(s;t,x))+α]ds} dx

=

∫ l
0
β(x, t)g(0)u∗(0,ϕ−1(0; t, x))e{−

∫t
τ[µ(ϕ(s;t,x),s)+g ′(ϕ(s;t,x))+α]ds} dx

=

∫ l
0
β(x, t)b∗(ϕ−1(0; t, x))e{−

∫t
τ[µ(ϕ(s;t,x),s)+g ′(ϕ(s;t,x))+α]ds} dx

=

∫ l
0
e−α(t−τ)β(x, t)b∗(ϕ−1(0; t, x))e{−

∫t
τ[µ(ϕ(s;t,x),s)+g ′(ϕ(s;t,x))]ds} dx.

(2.3)

For (2.3), let σ = ϕ−1(0; t, x). Then by Definition 2.1, σ = ϕ−1(0; t, 0) = t when x = 0 while σ =
ϕ−1(0; t, l) = 0 when x = l. It follows from σ = ϕ−1(0; t, x) that x = ϕ(t;σ, 0). Note that dx/dσ is the
solution of the initial-valued problem  dz

dt
= g ′(ϕ(t;σ, 0))z,

z(σ) = −g(0) = −1.
(2.4)

It is clear that the solution of (2.4) is z(t) = − exp
{∫t
σ g
′(ϕ(r;σ, 0))dr

}
, which implies

dx = − exp
{∫t
σ

g ′(ϕ(r;σ, 0))dr
}

dσ. (2.5)
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Then (2.3) can be transformed into

b∗(t) =

∫t
0
e−α(t−σ)K(ϕ(t;σ, 0), t)b∗(σ)dσ, (2.6)

which is equivalent to the following equation

eαtb∗(t) =

∫t
0
K(ϕ(t;σ, 0), t)eασb∗(σ)dσ, (2.7)

with

K(ϕ(t;σ, 0), t) = β(ϕ(t;σ, 0), t)e
∫t
σ g
′(ϕ(r;σ,0))dre−

∫t
σ[µ(ϕ(s;t,ϕ(t;σ,0)),s)+g ′(ϕ(s;t,ϕ(t;σ,0)))]ds. (2.8)

Assume that

‖K(·, t)‖L1[0,l) =

∫ l
0
K(s, t)ds < 1. (2.9)

Denote b̄∗(t) = eαtb∗(t). It follows from the Banach fixed-point theorem that the solution of (2.7) can be
obtained via the standard iteration procedure

b̄∗0(t) = b̄
∗
0 ,

b̄∗n+1(t) =

∫t
0
K(ϕ(t;σ, 0), t)b̄∗n(σ)dσ.

Due to the periodicity of b∗, we need only to consider the case t ∈ [z−1(l), z−1(l) + T ]. Then by (2.8) and
assumptions we have b̄∗n ∈ CT , C([z−1(l), z−1(l) + T ]) and b̄∗n(t) > 0. Moreover

∣∣b̄∗n+1(t) − b̄
∗
n(t)

∣∣ = ∣∣∣∣∫t
0
K(ϕ(t;σ, 0), t)b̄∗n(σ)dσ−

∫t
0
K(ϕ(t;σ, 0), t)b̄∗n−1(σ)dσ

∣∣∣∣
6
∫t

0
K(ϕ(t;σ, 0), t)

∣∣b̄∗n(σ) − b̄∗n−1(σ)
∣∣ dσ,

and ∥∥b̄∗n+1 − b̄
∗
n

∥∥
CT

6
∥∥b̄∗n − b̄∗n−1

∥∥
CT

∫t
0
K(ϕ(t;σ, 0), t)dσ

6
∥∥b̄∗n − b̄∗n−1

∥∥
CT

∫ l
0
K(s, t)ds

6 ‖K(·, t)‖L1[0,l)

∥∥b̄∗n − b̄∗n−1
∥∥
CT

.

Thus by (2.9), the sequence b̄∗n(t) converges, uniformly on [z−1(l), z−1(l) + T ], to a solution b̄∗(t), such
that b̄∗ ∈ CT . Concerning uniqueness of this solution we see that if b̄∗1(t) and b̄∗2(t) are two solutions of
(2.7) we must have ∥∥b̄∗1 − b̄∗2∥∥CT

6 ‖K(·, t)‖L1[0,l)
∥∥b̄∗1 − b̄∗2∥∥CT

.

So that, by (2.9), b̄∗1(t) = b̄∗2(t). Moreover, if b̄∗0 = 0, then b̄∗(t) ≡ 0. If b̄∗0 is a positive constant, then
b̄∗(t) > 0. Then by the periodicity of b∗ we know Eq. (2.6) admits at most non-negative solutions the
trivial one b∗ ≡ 0 and a nontrivial one b∗ > 0 in R+. Thus, system (2.1) has at most two nonnegative
solutions, the trivial one u∗ ≡ 0 and a nontrivial one, u∗. The proof is therefore complete.
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Lemma 2.4. Let assumptions (A1)-(A4) hold. Then the following system
∂ū(x,t)
∂t +

∂(g(x)ū(x,t))
∂x + µ(x, t)ū(x, t) = 0, (x, t) ∈ Q,

g(0)ū(0, t) =
∫ l

0
β(x, t)ū(x, t)dx, t ∈ R+,

ū(x, 0) = u0(x), x ∈ [0, l),

(2.10)

has a unique nonnegative solution ū ∈ L∞(Q).

Proof. Utilizing the characteristic curve technique and τ = ϕ−1(0; t, x), we can get ū(x, t) satisfies

ū(x, t) =


ū(0,ϕ−1(0; t, x)) exp

{
−

∫t
τ

µ(ϕ(s; t, x), s) + g ′(ϕ(s; t, x))ds
}

, x 6 z(t),

u0(ϕ(0; t, x)) exp
{
−

∫t
0
µ(ϕ(s; t, x), s) + g ′(ϕ(s; t, x))ds

}
, x > z(t).

(2.11)

Let M , ǔl+ β̄ǔlTeβ̄T and X = L∞(Q). Define a new norm in X by

‖u‖∗ = Ess sup
t∈[0,T ]

{
e−λt

∫ l
0
|u(x, s)|dx

}
for some λ > 0, which is equivalent to the usual norm. It is clear that (X, ‖ · ‖∗) is a Banach space. Let

X =

{
u ∈ X

∣∣∣∣∣u(x, t) > 0 a.e. (x, t) ∈ Q and
∫ l

0
u(x, t)dx 6M

}
.

It is easy to show that X is a nonempty closed subset in X. Define A : X→ X by

(Aū)(x, t) =


ū(0,ϕ−1(0; t, x)) exp

{
−

∫t
τ

µ(ϕ(s; t, x), s) + g ′(ϕ(s; t, x))ds
}

, x 6 z(t),

u0(ϕ(0; t, x)) exp
{
−

∫t
0
µ(ϕ(s; t, x), s) + g ′(ϕ(s; t, x))ds

}
, x > z(t).

In the following, we verify that mapping A satisfies the conditions of the Banach fixed point theorem.

(i) It is easy to show that (X,d) is a complete metric space. Here d(u, v) = ‖u− v‖∗ for any u, v ∈ X.

(ii) The mapping A maps X into X. Denote b̄(t) , g(0)ū(0, t). From g(0) = 1, (A2), and (A4), it follows
that

b̄(t) =

∫z(t)
0

β(x, t)ū(x, t)dx+
∫ l
z(t)

β(x, t)ū(x, t)dx

=

∫z(t)
0

β(x, t)b̄(ϕ−1(0; t, x)) exp
{
−

∫t
τ

µ(ϕ(s; t, x), s) + g ′(ϕ(s; t, x))ds
}

dx

+

∫ l
z(t)

β(x, t)u0(ϕ(0; t, x)) exp
{
−

∫t
0

[
µ(ϕ(s; t, x), s) + g ′(ϕ(s; t, x))

]
ds
}

dx (2.12)

6
∫z(t)

0
β(x, t)b̄(ϕ−1(0; t, x))dx+

∫ l
z(t)

β(x, t)u0(ϕ(0; t, x))dx

6β̄ǔl+ β̄
∫z(t)

0
b̄(ϕ−1(0; t, x))dx.

For (2.12), let σ = ϕ−1(0; t, x). Then by Definition 2.1, σ = ϕ−1(0; t, 0) = t when x = 0, while σ =
ϕ−1(0; t, z(t)) = 0 when x = z(t). It follows from (2.5) and (2.12) that

b̄(t) 6 β̄ǔl+ β̄
∫t

0
b̄(σ)dσ.

It follows from Gronwall’s inequality that b̄(t) 6 β̄ǔleβ̄t 6 β̄ǔleβ̄T . Now, we consider (Aū)(x, t). It
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follows from (2.5) and (2.11) that∫ l
0
|Aū|(x, t)dx =

∫z(t)
0

ū(x, t)dx+
∫ l
z(t)

ū(x, t)dx

6
∫z(t)

0
b̄(ϕ(0; t, x))dx+

∫ l
0
u0(ϕ(0; t, x))dx 6 ǔl+

∫t
0
b̄(σ)dσ 6 ǔl+ β̄ǔlTeβ̄T .

It follows that A is a mapping from X to X.
(iii) A is a contraction mapping on the complete metric space (X,d). It follows from (2.5) and the defini-
tion of mapping A that∫ l

0
|Aū−Aū ′|(x, t)dx =

∫z(t)
0

|Aū−Aū ′|(x, t)dx+
∫ l
z(t)

|Aū−Aū ′|(x, t)dx

6
∫z(t)

0
|b̄(ϕ−1(0; t, x)) − b̄ ′(ϕ−1(0; t, x))|dx

6
∫t

0
|b̄(s) − b̄ ′(s)|ds

6 β̄
∫t

0

∫ l
0
|ū(x, s) − ū ′(x, s)|dxds

= β̄

∫t
0
‖ū(·, s) − ū ′(·, s)‖L1[0,l) ds.

Then

d(Aū,Aū ′) = Ess sup
t∈[0,T ]

{
e−λt

∫ l
0
|(Aū)(x, t) − (Aū ′)(x, t)|dx

}

6 β̄Ess sup
t∈[0,T ]

{
e−λt

∫t
0
eλs

[
e−λs

∫ l
0
|ū(x, s) − ū ′(x, s)|dx

]
ds

}
=
β̄

λ
d(ū, ū ′).

Choose λ such that λ > β̄. Then A becomes a contraction on the complete metric space (X,d).
Therefore, by Banach fixed point theorem the mapping A has a unique fixed point, which is the

solution of system (2.10). The proof is therefore complete.

By [23, Theorem 2.3, P36], we have the following results.

Lemma 2.5. Let assumptions (A1)-(A4) hold. Then there exists a unique α∗ ∈ R such that

b̄(t) = eα
∗tb∗(t)(1 +Ω(t)),

where lim
t→∞Ω(t) = 0.

Lemma 2.6. Let assumptions (A1)-(A4) hold. Then there exists a unique c0 ∈ R+ such that

lim
t→+∞ ‖ū(·, t)e−α∗t − c0u

∗(·, t)‖L∞[0,l) = 0, (2.13)

where ū is a solution to (2.10) and u∗ is a solution to (2.1) with α , α∗.

3. Well-posedness of the state system

This section is devoted to the well-posedness of system (1.2).

3.1. Special cases
We fix function I(·) ∈ L∞(R+) and for ∀ t ∈ R+, I(t) > 0. Then by Lemma 2.4, we have the following

result.

Proposition 3.1. Let assumptions (A1)-(A5) hold. For fixed I(·) ∈ L∞(R+), system (1.2) has one and only one
non-negative solution u(x, t, I) ∈ L∞(Q).
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3.2. General cases
By assumption (A5), we have |Φ ′(r)| 6M. Utilizing the characteristic curve technique, the solution of

system (1.2) can be given as

u(x, t, I) =
{
u(0,ϕ−1(0; t, x), I)E(t; x, I), x 6 z(t),
u0(ϕ(0; t, x))Π(t; x, I), x > z(t),

(3.1)

where

E(t; x, I) = exp
{
−

∫t
τ

[
µ(ϕ(s; t, x), s) + g ′(ϕ(s; t, x)) +Φ(I(s))

]
ds
}

,

Π(t; x, I) = exp
{
−

∫t
0

[
µ(ϕ(s; t, x), s) + g ′(ϕ(s; t, x)) +Φ(I(s))

]
ds
}

.

Denote b(t; I) , g(0)u(0, t; I). It follows from g(0) = 1 that

b(t; I) =
∫z(t)

0
β(x, t)u(x, t; I)dx+

∫ l
z(t)

β(x, t)u(x, t; I)dx

=

∫z(t)
0

β(x, t)E(t; x, I)b(ϕ−1(0; t, x), I)dx+
∫ l
z(t)

β(x, t)u0(ϕ(0; t, x))Π(t; x, I)dx

,S1 + S2.

(3.2)

For S1, let σ = ϕ−1(0; t, x). It follows from (2.5) that dx = − exp{
∫t
σ g
′(ϕ(r;σ, 0))dr}dσ. Then (3.2) can be

transformed into

b(t; I) =
∫t

0
K(ϕ(t;σ, 0), t; I)b(σ; I)dσ+ F(t; I), (3.3)

with

K(ϕ(t;σ, 0), t; I) = β(ϕ(t;σ, 0), t) exp
{∫t
σ

g ′(ϕ(r;σ, 0))dr
}

× exp
{
−

∫t
σ

[
µ(ϕ(s; t,ϕ(t;σ, 0)), s) + g ′(ϕ(s; t,ϕ(t;σ, 0))) +Φ(I(s))

]
ds
}

, (3.4)

F(t; I) =
∫ l
z(t)

β(x, t)u0(ϕ(0; t, x))Π(t; x, I)dx. (3.5)

For ∀ I1, I2 ∈ L∞(R+), using (3.4) and the fundamental inequality |e−a − e−b| 6 |a− b| for any a,b > 0,
yields ∣∣K(ϕ(t;σ, 0), t; I1) −K(ϕ(t;σ, 0), t; I2)

∣∣
=β(ϕ(t;σ, 0), t) exp

{∫t
σ
g ′(ϕ(r;σ, 0))dr

}
×
∣∣∣∣exp

{
−

∫t
σ

[
µ(ϕ(s; t,ϕ(t;σ, 0)), s) + g ′(ϕ(s; t,ϕ(t;σ, 0))) +Φ(I1(s))

]
ds
}

− exp
{
−

∫t
σ

[
µ(ϕ(s; t,ϕ(t;σ, 0)), s) + g ′(ϕ(s; t,ϕ(t;σ, 0))) +Φ(I2(s))

]
ds
}∣∣∣∣

6β̄

∣∣∣∣exp
{
−

∫t
σ

[
µ(ϕ(s; t,ϕ(t;σ, 0)), s) + g ′(ϕ(s; t,ϕ(t;σ, 0))) +Φ(I1(s))

]
ds
}

− exp
{
−

∫t
σ

[
µ(ϕ(s; t,ϕ(t;σ, 0)), s) + g ′(ϕ(s; t,ϕ(t;σ, 0))) +Φ(I2(s))

]
ds
}∣∣∣∣

6β̄
∫t
σ
|Φ(I1(s) −Φ(I2(s)| ds

6Mβ̄
∫t

0
|I1(s) − I2(s)| ds.

(3.6)
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By (3.5), we obtain

|F(t; I1) − F(t; I2)| =

∣∣∣∣∣
∫ l
z(t)

β(x, t)u0(ϕ(0; t, x))Π(t; x, I1)dx−
∫ l
z(t)

β(x, t)u0(ϕ(0; t, x))Π(t; x, I2)dx

∣∣∣∣∣
6 β̄ǔ

∫ l
z(t)

|Π(t; x, I1) −Π(t; x, I2)|dx

6 β̄ǔ
∫ l
z(t)

∫t
0
|Φ(I1(s)) −Φ(I2(s))| dsdx

6Mβ̄ŭl
∫t

0
|I1(s) − I2(s)| ds.

(3.7)

By (3.3)-(3.5), we get b(t; I) 6 β̄ǔl+ β̄
∫t

0 b(σ; I)dσ. From Gronwall’s inequality, it follows that

b(t; I) 6 lβ̄ǔeβ̄t. (3.8)

From (3.3) and (3.6)–(3.8), it follows that

|b(t; I1) − b(t; I2)| 6 |F(t; I1) − F(t; I2)|+
∣∣∣∣∫t

0
K(ϕ(t;σ, 0), t; I1)b(σ; I1)dσ−

∫t
0
K(ϕ(t;σ, 0), t; I2)b(σ; I2)dσ

∣∣∣∣
6 |F(t; I1) − F(t; I2)|+

∫t
0
|K(ϕ(t;σ, 0), t; I1) −K(ϕ(t;σ, 0), t; I2)|b(σ; I1)dσ

+

∫t
0
K(ϕ(t;σ, 0), t; I2)|b(σ; I1) − b(σ; I2)|dσ (3.9)

6
(
Mβ̄ǔl+ lMβ̄2ǔeβ̄tt

) ∫t
0
|I1(s) − I2(s)|ds+ β̄

∫t
0
|b(σ; I1) − b(σ; I2)|dσ

,
(
Mβ̄ǔl+ lMβ̄2ǔeβ̄tt

)
W(t) + β̄

∫t
0
|b(σ; I1) − b(σ; I2)|dσ,

where W(t) =
∫t

0 |I1(s) − I2(s)|ds. For the given T > 0, we consider the case t ∈ [0, T ]. It follows from (3.8)
that

b(t; I) 6 lβ̄ǔeβ̄T ,M1. (3.10)

From (3.9), we have

|b(t; I1) − b(t; I2)| 6
(
Mβ̄ǔl+ lMβ̄2ǔeβ̄TT

)
W(t) + β̄

∫t
0
|b(s; I1) − b(s; I2)|ds

,M2W(t) + β̄

∫t
0
|b(s; I1) − b(s; I2)|ds,

(3.11)

where M2 =Mβ̄ǔl+ lMβ̄2ǔeβ̄TT . Thus, use of Gronwall’s inequality in (3.11) gives

|b(t; I1) − b(t; I2)| 6M2W(t) +M2β̄e
β̄T

∫t
0
W(s)ds 6M3W(t), (3.12)

where M3 is a positive constant independent of u.
Let M4 ,M1T + ǔl and Y = L∞([0, T ],L1[0, l)). Define a new norm by

‖v‖λ = Ess sup
t∈[0,T ]

{
e−λt

∫ l
0
v(x, s)dx

}
= Ess sup

t∈[0,T ]
e−λt‖v(·, t)‖L1[0,l)
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for any v ∈ Y and some λ > 0, which is equivalent to the usual norm. It is clear that (Y, ‖ · ‖λ) is a Banach
space. Let

Y =

{
v ∈ Y

∣∣∣∣∣v(x, t) > 0 a.e. (x, t) ∈ Q and
∫ l

0
v(x, t)dx 6M4

}
.

Define B : Y→ Y by

(Bv)(x, t) = u(x, t;X), X(t) =

∫ l
0
v(x, t)dx,

where u(x, t;X) is a solution of system (1.2) corresponding to I(t) = X(t) and given by the right hand side
of (3.1).

In the following, we verify that mapping B satisfies the conditions of the Banach fixed point theorem.
(i) It is easy to show that (Y,d) is a complete metric space. Here d(u, v) = ‖u− v‖λ for any u, v ∈ Y.
(ii) The mapping B maps Y into Y. For any v ∈ Y, by (2.5), (3.10), and the definition of B, we have∫ l

0
u(x, t;X)dx =

∫z(t)
0

b(ϕ−1(0; t, x);X)E(t, x;X)dx+
∫ l
z(t)

u0(ϕ(0; t, x))Π(t, x;X)dx

6
∫z(t)

0
b(ϕ−1(0; t, x);X)dx+

∫ l
0
u0(ϕ(0; t, x))dx

6
∫t

0
b(s;X)ds+

∫ l
0
u0(ϕ(0; t, x))dx 6M1T + ǔl,

thus Bv ∈ Y, which means B is a mapping from Y to Y.
(iii) B is a contraction mapping on the complete metric space (Y,d). For arbitrary v1, v2 ∈ Y, it follows
from (3.10) and (3.12) that

‖(Bv1)(·, t) − (Bv2)(·, t)‖L1[0,l)

=

∫z(t)
0

|u(x, t;X1) − u(x, t;X2)|dx+
∫ l
z(t)

|u(x, t;X1) − u(x, t;X2)|dx

6
∫z(t)

0
b(ϕ−1(0; t, x);X1)|E(t, x;X1) − E(t, x;X2)|dx

+

∫z(t)
0

|b(ϕ−1(0; t, x);X1) − b(ϕ
−1(0; t, x);X2)|E(t, x;X2)dx

+

∫ l
z(t)

u0(ϕ(0; t, x))|Π(t, x;X1) −Π(t, x;X1)|dx

6M
∫z(t)

0
b(ϕ−1(0; t, x);X1)

∫t
0
|X1(s) −X2(s)|dsdx

+

∫z(t)
0

|b(ϕ−1(0; t, x);X1) − b(ϕ
−1(0; t, x);X2)|dx+Mǔ

∫ l
0

∫t
0
|X1(s) −X2(s)|dsdx

6M
∫t

0
b(σ;X1)

∫t
0
|X1(s) −X2(s)|dsdσ+

∫t
0
|b(s;X1) − b(s;X2)|ds+Mǔl

∫t
0
|X1(s) −X2(s)|ds

6MM1T

∫t
0
|X1(s) −X2(s)|ds+M3T

∫t
0
|X1(s) −X2(s)|ds+Mǔl

∫t
0
|X1(s) −X2(s)|ds

,M5

∫t
0
|X1(s) −X2(s)|ds

6M5

∫t
0
‖v1(·, s) − v2(·, s)|L1[0,l) ds,
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where M5 =MM1T +M3T +Mǔl. Then

d(Bv1,Bv2) = Ess sup
t∈[0,T ]

{
e−λt

∫ l
0
|(Bv1)(x, t) − (Bv2)(x, t)|dx

}

6M5Ess sup
t∈[0,T ]

{
e−λt

∫t
0

∫ l
0
|v1(x, s) − v2(x, s)|dxds

}
=
M5

λ
d(v1, v2).

Choose λ such that λ > M5. Then B becomes a contraction on the complete metric space (Y,d).
Thus, by Banach fixed point theorem the mapping B has a unique fixed point, which is the solution

of system (1.2).
We summarize the above analysis as follows.

Theorem 3.2. Let assumptions (A1)-(A5) hold. Then system (1.2) has a unique solution u ∈ L∞(Q), which is
non-negative and bounded.

By the analysis as that in Lemma 2.3 and Theorem 3.2, we can get the following result.

Theorem 3.3. Let assumptions (A1)-(A5) hold. Then system (1.3) admits at most two non-negative solutions one
of them being the trivial one.

Note that Φ(r) > 0 for any r ∈ [0,∞). It is easy to get the following result.

Theorem 3.4. If u and ū are solutions of (1.2) and (2.10), respectively, then we have u(x, t) 6 ū(x, t), a.e. in Q.

4. Large time behavior of the solution

In this section, we discuss the large time behavior of the solution to system (1.2). It is clear that system
(1.2) can be equivalently written as

∂u
∂t +

∂(g(x)u)
∂x + µ(x, t)u(x, t) +α∗u(x, t) + (Φ(I(t)) −α∗)u(x, t) = 0, (x, t) ∈ Q,

g(0)u(0, t) =
∫ l

0
β(x, t)u(x, t)dx, t ∈ [0,+∞),

u(x, 0) = u0(x), x ∈ [0, l),

I(t) =

∫ l
0
u(x, t)dx, t ∈ [0,+∞).

Denote by ũ, the solution to
∂ũ(x,t)
∂t +

∂(g(x)ũ(x,t))
∂x + µ(x, t)ũ(x, t) +α∗ũ(x, t) = 0, (x, t) ∈ Q,

g(0)ũ(0, t) =
∫ l

0
β(x, t)ũ(x, t)dx, t ∈ [0,+∞),

ũ(x, 0) = u0(x), x ∈ [0, l),

(4.1)

for the existence and uniqueness of the solution we refer to Lemma 2.4.
By Theorem 3.2, we know that system (1.2) has a unique non-negative solution and the solution u(x, t)

to (1.2) has the form (see [24]) u(x, t) = y(t)ũ(x, t), where y(t) is the Carathéodory solution to{
y ′(t) +Φ(Ĩ(t)y(t))y(t) −α∗y(t) = 0, t ∈ R+,
y(0) = 1. (4.2)

Here

Ĩ(t) =

∫ l
0
ũ(x, t)dx, t ∈ R+.
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Theorem 4.1. Let assumptions (A1)-(A5) hold. If α∗ < 0, then lim
t→∞ ‖u(·, t)‖L∞[0,l) = 0, where u(x, t) is a

solution to system (1.2).

Proof. By assumption (A5), we know that Φ : R+ → R+. Then using Theorem 3.4 we get that

0 6 u(x, t) 6 ū(x, t), ∀ t > 0, a.e. x ∈ [0, l),

where ū is a solution to (2.10). Since α∗ < 0, by (2.13), we can conclude that lim
t→∞ ‖ū(·, t)‖L∞[0,l) = 0 and

we get the conclusion. The proof is therefore complete.

Next, we consider the case α∗ > 0. We will see that the logistic term play an important role in the
large-time behavior of the solution to (1.2). It is easy for us to show that

ũ(x, t) = e−α
∗tū(x, t), ∀ t ∈ R+, a.e. x ∈ [0, l),

where ũ(x, t) is a solution to system (4.1) and ū(x, t) is a solution to system (2.10). Then by (2.13) in
Lemma 2.6, we may infer that

lim
t→+∞ ‖ũ(·, t) − c0u

∗(·, t)‖L∞[0,l) = 0, (4.3)

and consequently

lim
t→+∞

∣∣∣∣∣Ĩ(t) − c0

∫ l
0
u∗(x, t)dx

∣∣∣∣∣ = 0.

Denote

g(t) = c0

∫ l
0
u∗(x, t)dx, t > 0.

Therefore, by Lemma 2.3, we can conclude that g is a T -periodic and continuous function. First, we
consider system (1.3), which can be equivalently written as

∂u(x,t)
∂t +

∂(g(x)u(x,t))
∂x + µ(x, t)u(x, t) +α∗u(x, t) + (Φ(I(t)) −α∗)u(x, t) = 0, (x, t) ∈ Q,

g(0)u(0, t) =
∫ l

0
β(x, t)u(x, t)dx, t ∈ [0,+∞),

u(x, t) = u(x, t+ T), (x, t) ∈ Q,

I(t) =

∫ l
0
u(x, t)dx, t ∈ [0,+∞).

(4.4)

By Theorem 3.3, system (4.4) admits at most two non-negative solutions one of them being the trivial one.
Moreover, the solution û to system (4.4) has the form

û(x, t) = h∗(t)u1(x, t), ∀ t ∈ R+, a.e. x ∈ [0, l),

where u1(x, t) is a solution to (2.1) corresponding to α , α∗. Moreover, u1(x, t) = cu∗(x, t), where c is a
positive constant. And h∗(t) is a solution to the following system{

(h∗) ′(t) = −Φ
(
ch∗(t)

∫l
0 u
∗(x, t)dx

)
h∗(t) +α∗h∗(t), t ∈ R+,

h∗(t) = h∗(t+ T), t ∈ R+.
(4.5)

By [7, Lemma 3.1], we know that system (4.2) has one and only one non-negative solution y ∈ C1(R+).
Moreover, we have the following result.
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Lemma 4.2.

lim
t→∞ |y(t) − h(t)| = 0,

where h is the unique nontrivial and non-negative solution to{
h ′(t) = −Φ(g(t)h(t))h(t) +α∗h(t), t ∈ R+,

h(t) = h(t+ T), t ∈ R+.
(4.6)

Proof. See the proof of the Lemma 3.1 in [7, P371].

Theorem 4.3. Let assumptions (A1)-(A5) hold. If c0 > 0 and α∗ > 0, then

lim
t→∞ ‖u(·, t) − û(·, t)‖L∞[0,l) = 0,

where u(x, t) is the solution to system (1.2) and û(x, t) is the nontrivial nonnegative solution to system (4.3).

Proof. Note that u(x, t) = y(t)ũ(x, t) is the solution to system (1.2) and

|y(t)ũ(x, t) − c0h(t)u
∗(x, t)| = |y(t)ũ(x, t) − c0y(t)u

∗(x, t) + c0y(t)u
∗(x, t) − c0h(t)u

∗(x, t)|
6 |y(t)| |ũ(x, t) − c0u

∗(x, t)|+ |c0u
∗(x, t)| |y(t) − h(t)| ,

(4.7)

where u∗ is a solution to system (2.1) corresponding to α , α∗. Then, by Lemma 2.6, we have

lim
t→∞ ‖ũ(·, t) − c0u

∗(·, t)‖L∞[0,l) = 0, (4.8)

which, together with Lemma 4.2, yields

lim
t→∞ |y(t) − h(t)| = 0. (4.9)

Thus, from (4.7)-(4.9), yields

lim
t→∞ ‖u(·, t) − c0h(t)u

∗(·, t)‖L∞[0,l) = lim
t→∞ ‖y(t)ũ(·, t) − c0h(t)u

∗(·, t)‖L∞[0,l) = 0. (4.10)

Next, we show that c0h(t)u
∗(x, t) is the solution to system (1.3). Note that û(x, t) = h∗(t)u1(x, t) and

u1(x, t) = cu∗(x, t). Now we show that

h∗(t) =
c0

c
h(t),

where h∗ is a solution to system (4.5) and h is a solution to system (4.6).
If h∗(t) is a solution to system (4.5), then we have

c0

c
· h ′(t) = −Φ

(
c · c0

c
· h(t)

∫ l
0
u∗(x, t)dx

)c0

c
· h(t) +α∗ · c0

c
· h(t),

which means h is a solution to system (4.6).
If h(t) is a solution to system (4.6), then we have

c

c0
· (h∗) ′(t) = −Φ

(
c0 ·

c

c0
· h∗(t)

∫ l
0
u∗(x, t)dx

) c
c0
· h∗(t) +α∗ · c

c0
· h∗(t),

which means h is a solution to system (4.5).
Therefore, û(x, t) = h∗(t)u1(x, t) = c0h(t)u

∗(x, t). From (4.10), we get the result. The proof is therefore
complete.
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5. Numerical tests

In this section, we give the numerical tests, which are used to demonstrate the effectiveness of the
theoretical results in our paper.

Example 5.1. Consider the problem (1.2) with{
β(x, t) = 20x2(1 − x)(1 + sinπt), µ(x, t) = e−4x(1 − x)−1.4(2 + cosπt),
g(x) = e−5x, Φ(I(t)) = 0.5I(t), u0(x) = 5(1 − x).

By the algorithm, we take t ∈ [0, 5T ], the graphics of β and µ are given in Figure 1. The graphic of u(x, t)
and the comparison of the shape of population size I(t) are given in Figure 2.
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Figure 1: Left: the fertility of individuals of size x at time t, Right: the mortality of individuals of size x at time t.

0

5

10

0

0.5

1
0

10

20

30

40

50

60

Time tBody Size x

P
o

p
u

la
ti

o
n

 D
en

si
ty

 u
(x

,t
)

0 2 4 6 8 10
2

4

6

8

10

12

14

Time t

T
o

ta
l 

P
o

p
u

la
ti

o
n

 I
(t

)   
Φ=0.5*I(t)

Figure 2: Left: the population density with Φ(I(t)) = 0.5I(t), Right: the population size with Φ(I(t)) = 0.5I(t).

It can be seen from Example 5.1 that the fertility and mortality of individuals are 2-time periodic. As
can be seen from Fig. 2, when the time increases to a certain moment, the solution of model (1.2) will
show a periodic change.

Example 5.2. This paper consider the large time behavior of the system. Next we give the numerical tests
for t ∈ [0, 10T ]. Consider the problem (1.2) with the parameters are exact to Example 5.1. The left and
right in Figure 3 are the population density curves for the system (1.2) corresponding to Φ(I(t)) = 0.5I(t)
and Φ(I(t)) = 2I(t), respectively. Figure 4 shows the comparison of the shape of population size I(t) for
Φ(I(t)) = 0.5I(t) and Φ(I(t)) = 2I(t).
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Figure 3: Left: the population density with Φ(I(t)) = 0.5I(t), Right: the population density with Φ(I(t)) = 2I(t).
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Figure 4: the representation of I(t) for different values of Φ.

Comparing the left figure and right figure of Figure 3, we know that population density u is mono-
tonically decreasing with respect to Φ, which is consistent with the comparison principle in Theorem 3.4.
Furthermore, with the increase of time, the population size changed periodically.

Example 5.3. Consider the problem (1.2) with
β(x, t) = 20x2(1 − x)(1 + sinπt),
µ(x, t) = e−4x(1 − x)−1.4(2 + cosπt),
g(x) = e−5x,
Φ(I(t)) = 1.5I(t).

The graphics of population density u corresponding to u0(x) = 5(1 − x), u0(x) = 3, and u0(x) = 5e−0.5x2

are given in Figures 5 and 6. The graphics of population size I are given in Figure 7.
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Figure 5: Left: the population density with u0(x) = 5(1 − x), Right: the population density with u0(x) = 3.
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Figure 6: the population density with u0(x) = 5e−0.5x2
.
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Figure 7: Left: the population size with Φ(I(t)) = 1.5I(t), Right: the population size with Φ(I(t)) = 0.5I(t).

From Figures 5, 6 and the left figure of 7, with the evolution of time, the solutions of system (1.2) tend
to the same period solution for different initial datum u0. From the Figure 7, the larger the value of Φ,
the shorter time of solution of system (1.2) tends to the solution of system (1.3).

6. Conclusion

This paper investigates the behavior analysis for a nonlinear size-structured population model with
logistic term and T -periodic vital rates. In the previous sections, the existence of a unique non-negative
solution of (1.2) is proved by means of frozen coefficients and fixed point reasoning. At the same time,
we prove that there exists at most two T -periodic non-negative solutions (one of them being the trivial
one) of the periodic model (1.3). Moreover, the large-time behavior of the solution of (1.2) is investigated.
The study show that for any initial distribution of population the solution of (1.2) tends to the nontrivial
non-negative T -periodic solution of the associated model (1.3).

From [11], we know that fractional derivatives provide more accurate models of realism problems than
integer-order derivatives. And fractional derivatives are actually found to be a suitable tool to describe
certain physical, engineering and biological problems including reaction diffusion models, dynamical
mathematical models, and so on. As done in [11], one can introduce time-fractional derivatives into sys-
tems (1.2) and (1.3) and get time-fractional partial differential equations. We think that this is a significant
problem and leave it to future consideration.
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