
Available online at www.isr-publications.com/jnsa
J. Nonlinear Sci. Appl., 11 (2018), 1225–1234

Research Article

Journal Homepage: www.isr-publications.com/jnsa

A viscosity iterative algorithm for split common fixed-point
problems of demicontractive mappings

Di Gaoa, Tae Hwa Kima,∗, Yaqin Wangb

aDepartment of Applied Mathematics, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea.
bDepartment of Mathematics, Shaoxing University, Shaoxing 312000, China.

Communicated by R. Saadati

Abstract
In this paper, we firstly introduce a new viscosity cyclic iterative algorithm for the split common fixed-point problem (SCFP)

of demicontractive mappings. Next we prove the strong convergence of the sequence generated recursively by such a viscosity
cyclic algorithm to a solution of the SCFP, which improves and extends some recent corresponding results.
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1. Introduction

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2, respectively, and let
A : H1 → H2 be a bounded linear operator. The split feasibility problem (SFP) which originally introduced
in Censor and Elfving [1] is to find a point x∗ ∈ C with the property:

x∗ ∈ C and Ax∗ ∈ Q. (1.1)

It serves as a model for many inverse problems where constraints are imposed on the solutions in the
domain of a linear operator as well as in this operator’s ranges. There are a number of significant
applications of the SFP in intensity-modulated radiation therapy, signal processing, image reconstruction
and so on.

In the case where C and Q in the SFP (1.1) are the intersections of finitely many fixed-point sets of
nonlinear operators, the problem (1.1) is called by Censor and Segal [2] the split common fixed-point
problem (SCFP). More precisely, the SCFP requires to seek an element x∗ ∈ H1 satisfying

x∗ ∈ ∩pi=1Fix(Ui) and Ax∗ ∈ ∩qj=1Fix(Tj), (1.2)
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where p,q > 1 are integers, and Fix(Ui) and Fix(Tj) denote the fixed point sets of two classes of nonlinear
operators Ui : H1 → H1 (i = 1, 2, · · · ,p), Tj : H2 → H2 (j = 1, 2, · · · ,q). In particular, if p = q = 1, the
problem (1.2) is reduced to find a point x∗ with the property:

x∗ ∈ Fix(U) and Ax∗ ∈ Fix(T), (1.3)

which is usually called the two-set SCFP. To solve the two-set SCFP (1.3), Censor and Segal [2] proposed
the following iterative method: for any initial guess x1 ∈ H1, define {xn} recursively by

xn+1 = U(xn − λA∗(I− T)Axn),

where U and T are directed operators. The further generalization of this algorithm has been studied by
Moudafi [10] for demicontractive operators. Under suitable conditions he proved that the sequence {xn}

converges weakly to a point of the two-set SCFP (1.3).
Recall that, for a fixed positive integer p and each n > 0, the p-mod function [n] is defined by

[n] =

{
p, if r = 0,
r, if 0 < r < p,

whenever n = kp + r for some k > 0. Afterwards, the p-mod function will be sometimes written as
[n] = n (mod p) in case distinction of p is needed. Recently, Wang and Xu [14] proposed the following
cyclic algorithm:

xn+1 = U[n](xn − λA∗(I− T[n])Axn), (1.4)

where Ui and Ti are directed operators for i = 1, 2, . . . ,p. They proved that the sequence {xn} generated
by the algorithm (1.4) converges weakly to a solution of the problem (1.2) in a case when p = q.

Noticing that the existing algorithm for the SCFP (1.2) have only weak convergence in infinite dimen-
sional spaces (see [10, 14]), in 2013, Cui et al. [3] constricted the following cyclic iterative procedure,
motivated by Eicke’s damped projection algorithm [5], so that strong convergence is guaranteed: given
x1 ∈ H1 and a positive integer p, define a sequence {xn} by the iterative procedure

xn+1 = (1 −αn)xn +αnU[n][(1 −αn)(xn − λnA
∗(I− T[n])Axn)], n > 1, (1.5)

where Ui and Ti are directed operators for i = 1, 2, . . . ,p, {αn} ⊂ (0, 1) and {λn} ⊂ R+ are properly
chosen real sequences. Under some suitable conditions of parameters, they proved that the sequence {xn}

generated recursively by (1.5) converges strongly to a solution of the problem (1.2) provided p = q.
Very recently, He et al. [6] developed the following viscosity algorithm to approximate the solution of

the two-set SCFP (1.3) for demicontractive mappings

xn+1 = αnf(xn) + (1 −αn)Uλ(xn − ρnA
∗(I− T)Axn), n > 0 (1.6)

equipped with the step size

ρn =

{
(1−η)‖(I−T)Axn‖2

2‖A∗(I−T)Axn‖2 , Axn 6= T(Axn),
0, otherwise,

where U : H1 → H1 and T : H2 → H2 are µ and η-demicontractive mappings, respectively, Uλ = (1 −
λ)I+ λU for λ ∈ (0, 1 − µ), f denotes a fixed contraction in Fix(U) and {αn} ⊂ (0, 1) is a real sequence
satisfying limn→∞ αn = 0 and

∑∞
n=0 αn = ∞. Then they established that the sequence {xn} generated

recursively by (1.6) converges strongly to a solution x̂ of the two-set SCFP (1.3), and the x̂ solves the
following variational inequality:

〈x̂− f(x̂), x̂− z〉 6 0, ∀z ∈ Λ,

where Λ denotes the set of all solutions of the two-set SCFP (1.3).
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In this paper, inspired and motivated by [6, 14], we first consider the following cyclic algorithm of the
SCFP (1.2) for demicontractive mappings: given an initial guess x0 ∈ H1 and two positive integers p and
q, let a sequence {xn} generated recursively by

xn+1 = αnf(xn) + (1 −αn)Uλn(xn − ρnA
∗(I− T[n])Axn), ∀n > 0, (1.7)

where Ui is µi-demicontractive, Tj is ηj-demicontractive for i 6 i 6 p, 1 6 j 6 q, µ = max16i6p µi,
Uλn = (1 − λn)I + λnU[n] for λn ∈ (0, 1 − µ), U[n] = Un (mod p), and T[n] = Tn (mod q). Under the
conditions of {αn} in (1.6), we next prove that the sequence {xn} defined recursively by (1.7) converges
strongly to a solution x̂ of the SCFP (1.2), and the x̂ solves the following variational inequality:

〈x̂− f(x̂), x̂− z〉 6 0, ∀z ∈ Ω,

where
Ω := (∩pi=1Fix(Ui))∩A−1(∩qj=1Fix(Tj)) (1.8)

denotes the solution set of the SCFP (1.2).

2. Preliminaries

Let H be a real Hilbert space with the norm ‖ · ‖ induced by the inner product 〈·, ·〉. When {xn}

is a sequence in H, we denote the strong convergence and the weak convergence of {xn} to x ∈ H by
xn → x and xn ⇀ x, respectively. We also denote by Fix(T) the set of fixed points of T . We use
ωw(xn) = {x : ∃ xnk ⇀ x} to stand for weak ω-limit set of {xn}. Also we need the following inequality
which is very crucial for our argument:

‖x+ y‖2 6 ‖x‖2 + 2〈y, x+ y〉, ∀x,y ∈ H. (2.1)

Definition 2.1. An operator T : H→ H is said to be:

(i) nonexpansive if
‖Tx− Ty‖ 6 ‖x− y‖, ∀ x,y ∈ H;

(ii) quasi-nonexpansive if
‖Tx− z‖ 6 ‖x− z‖, ∀ (x, z) ∈ H× Fix(T);

(iii) directed if
〈z− Tx, x− Tx〉 6 0, ∀ (x, z) ∈ H× Fix(T),

equivalently,
‖Tx− z‖2 6 ‖x− z‖2 − ‖x− Tx‖2, ∀ (x, z) ∈ H× Fix(T);

(iv) µ-demicontractive if Fix(T) 6= ∅ and there exists a constant µ ∈ (−∞, 1) such that

‖Tx− z‖2 6 ‖x− z‖2 + µ‖x− Tx‖2, ∀ (x, z) ∈ H× Fix(T),

which is equivalent to

〈z− Tx, x− Tx〉 6 1 + µ

2
‖x− Tx‖2, ∀ (x, z) ∈ H× Fix(T).

It is worth noting that the class of demicontractive mappings contain important operators such as
quasi-nonexpansive mappings and directed mappings.

Remark 2.2. Notice that 0-demicontractive is exactly quasi-nonexpansive. In particular, we say that T : H→
H is quasi-strictly pseudo-contractive [9] if (iv) in Definition 2.1 is satisfied with 0 6 µ < 1. Moreover,
if µ 6 0, every µ-demicontractive mapping becomes quasi-nonexpansive. So, it seems to be sufficient to
only take µ ∈ (0, 1) in (iv) of Definition 2.1 in Hilbert spaces. However, as seen in (iii) of Definition 2.1,
every directed operator is (−1)-demicontractive.
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Definition 2.3. Let T : H → H be an operator, then I− T is said to be demiclosed at zero whenever, for
any sequence {xn} ⊂ H satisfying that xn ⇀ x ∈ H and (I− T)xn → 0, it results x = Tx.

Lemma 2.4 ([15, Lemma 2.1]). {βn} is a sequence of nonnegative real numbers such that

βn+1 6 (1 − γn)αn + δn, n > 0,

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞
n=1 γn =∞;

(ii) lim supn→∞ δn
γn

6 0 or
∑∞
n=1 |δn| 6∞.

Then limn→∞ αn = 0.

Lemma 2.5 ([4, Lemmas 2.5 and 2.6]). A : H1 → H2 be a bounded linear operator and T : H2 → H2 be a
η-demicontractive, η < 1, if A−1Fix(T) 6= ∅, then,

(a) (I− T)Ax = 0 ⇔ A∗(I− T)Ax = 0, ∀x ∈ H1;
(b) in addition, for z ∈ A−1Fix(T),

‖x− ρA∗(I− T)Ax− z‖2 6 ‖x− z‖2 −
(1 − η)2

4
‖(I− T)Ax‖4

‖A∗(I− T)Ax‖2 , (2.2)

where x ∈ H1, Ax 6= T(Ax) and

ρ :=
1 − η

2
‖(I− T)Ax‖2

‖A∗(I− T)Ax‖2 .

Lemma 2.6 ([10, (1.7)] or [4, Lemma 2.4]). Let U : H1 → H1 be a µ-demicontractive operator with µ < 1. Denote
Uλ := (1 − λ)I+ λU for λ ∈ (0, 1 − µ). Then for any x ∈ H1 and z ∈ Fix(U),

‖Uλx− z‖2 6 ‖x− z‖2 − λ(1 − µ− λ)‖(I−U)x‖2. (2.3)

Lemma 2.7 ([9, Proposition 2.1]). AssumeC is a nonempty closed convex subset of a Hilbert spaceH. If T : C→ C

is a µ-demicontractive mapping (which is also called µ-quasi-strict pseudo-contraction in [9]), then the fixed point
set F(T) is closed and convex.

Lemma 2.8 ([8, Lemma 3.1]). Let {Γn} be a sequence of real numbers that does not decrease at infinity in the
sense that there exists a subsequence {Γni} of {Γn} which satisfies Γni < Γni+1 for all i > 0. Define the sequence
{τ(n)}n>n0 of integers as follows:

τ(n) = max{k 6 n : Γk < Γk+1},

where n0 ∈N such that {k 6 n0 : Γk < Γk+1}} 6= ∅. Then the following properties hold

(i) τ(n0) 6 τ(n0 + 1) 6 · · · and τ(n)→∞;
(ii) Γτ(n) 6 Γτ(n)+1 and Γn 6 Γτ(n)+1, ∀ n > n0.

Recall that if C is a nonempty closed convex subset of a Hilbert space H, the metric (or nearest point)
projection from H onto C is the mapping P : H → C which assigns to each point x ∈ H the unique point
PCx ∈ C satisfying the property

‖x− PCx‖ = inf
y∈C
‖x− y‖.

Lemma 2.9 ([11, Lemma 3.1.3 and Theorem 3.1.4]). Let C be a nonempty closed convex subset of a Hilbert space
H. Then PC is a nonexpansive mapping from H onto C and PCx is characterized by the following inequality

〈y− PCx, x− PCx〉 6 0, ∀ y ∈ C. (2.4)

Lemma 2.10 ([7, Theorem 1.1.1]). Let X and Y be Banach spaces, A be a continuous linear operator from X to Y.
Then A is weakly continuous.
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Finally, we need the following result for proving our main theorem in section 3.

Lemma 2.11 ([13, Lemma 3.1]). Let {un} be a bounded sequence of a Hilbert space H. Let s be a positive integer
and I = {1, 2, . . . , s}. If limn→∞ ‖un+1 −un‖ = 0 and x∗ ∈ ωw(un), then for any i ∈ I, there exists a subsequence
{umk

} of {un}, depending on i, such that umk
⇀ x∗ and [mk] = i for all k, where [n] denotes the s-mod function

for each n > 1.

3. Main results

In this section, we establish the strong convergence of the viscosity iterative algorithm (1.7) to a solu-
tion of SCFP (1.2) for demicontractive mappings.

Assumption 3.1. Let H1,H2 be two real Hilbert spaces. We assume the following conditions:

(i) the solution set Ω of (1.8) is nonempty;
(ii) Ui : H1 → H1 (1 6 i 6 p) and Tj : H2 → H2 (1 6 j 6 q) are µi-demicontractive and ηj-

demicontractive, respectively;
(iii) I−Ui (1 6 i 6 p) and I− Tj (1 6 j 6 q) are demiclosed at origin.

Let µ = max16i6p µi and η = max16j6q ηi. Clearly Ui is µ-demicontractive for all 1 6 i 6 p and Tj is
η-demicontractive for all 1 6 j 6 q.

Algorithm 3.2. Let f be a fixed contraction on U := ∩pi=1Fix(Ui) 6= ∅ with coefficient α and λn ∈ (0, 1−µ).
Given arbitrary initial guess x0 and two positive integers p, q, on assuming that the nth iterate xn has
been constructed, we can define the (n+ 1)th iterate by the following formula

xn+1 = αnf(xn) + (1 −αn)Uλn(xn − ρnA
∗(I− T[n])Axn), n > 0, (3.1)

where Uλn = (1− λn)I+ λnU[n], U[n] = Un (mod p), T[n] = Tn (mod q), A∗ is the adjoint of a bounded linear
operator A, and the step size ρn is chosen in the following way

ρn =

{
(1−η)‖(I−T[n])Axn‖2

2‖A∗(I−T[n])Axn‖2 , Axn 6= T[n](Axn),
0, otherwise.

(3.2)

Lemma 3.3. Let Assumption 3.1 be satisfied. Given a bounded linear operator A : H1 → H2, let Ω 6= ∅ and
let {xn} ⊂ H1 be the sequence defined as in Algorithm 3.2. Assume that the sequence {xn} is bounded and all
the sequences {‖xn − yn‖}, {‖yn+1 − yn‖}, {‖(I − U[n])yn‖}, and {‖(I − T[n])Axn‖} converge to zero, where
yn := xn − ρnA

∗(I− T[n])Axn. Then ∅ 6= ωw(xn) ⊂ Ω.

Proof. Since {xn} is bounded, ωw(xn) 6= ∅ and it also follows from the assumption ‖xn − yn‖ → 0
that ωw(xn) = ωw(yn). Now let x∗ ∈ ωw(xn) = ωw(yn). In view of ‖yn+1 − yn‖ → 0, for any
fixed i ∈ {1, 2, . . . , s} with s = max{p,q}, use Lemma 2.11 with un = yn to get a subsequence {ymk

} of
{yn} (depending on i) such that ymk

⇀ x∗ and [mk] = i for all k. Based on ‖(I − Ui)ymk
‖ = ‖(I −

U[mk])ymk
‖ → 0 and the demiclosedness of I − Ui at the origin it results x∗ ∈ Fix(Ui) for any fixed

i ∈ {1, 2, . . . ,p}; hence x∗ ∈ ∩pi=1Fix(Ui). Observing that xmk
⇀ x∗, apply Lemma 2.10 to see that

Axmk
⇀ Ax∗. Based on ‖(I − Ti)Axmk

‖ = ‖(I − T[mk])Axmk
‖ → 0 and the demiclosedness property

of I− Ti at the origin, it follows that Ax∗ ∈ Fix(Ti) for any i ∈ {1, 2, . . . ,q} and so Ax∗ ∈ ∩qi=1Fix(Ti).
Therefore x∗ ∈ ∩pi=1Fix(Ui)∩A−1(∩qj=1Fix(Tj)) = Ω, completing the proof.

Theorem 3.4. Let Assumption 3.1 be satisfied. Given a bounded linear operators A : H1 → H2, assume the SCFP
(1.2) is consistent (Ω 6= ∅). If the sequences {αn} ⊂ (0, 1) and {λn} satisfy the following conditions:

(i) limn→∞ αn = 0 and
∑∞
n=0 αn =∞;

(ii) 0 < lim infn→∞ λn 6 lim supn→∞ λn < 1 − µ.
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The sequence {xn} generated by explicit algorithm (3.1) converges strongly to a point x̂ = PΩf(x̂), i.e., x̂ satisfies
the following variational inequality:

〈x̂− f(x̂), x̂− z〉 6 0, ∀z ∈ Ω. (3.3)

Proof. By Lemma 2.7, U = ∩pi=1Fix(Ui) is closed convex in H1. Further, by Lemma 2.9, PΩf : U → Ω is
a contraction and therefore admits a unique fixed point x̂ of PΩf, namely, x̂ = PΩf(x̂) is equivalent to
the variational inequality (3.3) by the immediate aid of (2.4). Now from now on the proof is divided into
three steps.

Step 1. We show that sequence {xn} is bounded. Let yn = xn − ρnA
∗(I− T[n])Axn, take z ∈ Ω, it follows

from (3.1) that

‖xn+1 − z‖ = ‖αn(f(xn) − z) + (1 −αn)(Uλnyn − z)‖
6 αn‖f(xn) − f(z)‖+ (1 −αn)‖Uλnyn − z‖+αn‖f(z) − z‖
6 ααn‖xn − z‖+ (1 −αn)‖Uλnyn − z‖+αn‖f(z) − z‖.

(3.4)

(a) If ρn 6= 0, from (2.2) and (2.3), we have

‖Uλnyn − z‖2 6 ‖yn − z‖2 − λn(1 − µ− λn)‖(I−U[n])yn‖2

= ‖xn − ρnA
∗(I− T[n])Axn − z‖2 − λn(1 − µ− λn)‖(I−U[n])yn‖2

6 ‖xn − z‖2 −
(1 − η)2

4
‖(I− T[n])Axn‖4

‖A∗(I− T[n])Axn‖2 − λn(1 − µ− λn)‖(I−U[n])yn‖2.

(3.5)

Thus, we get
‖Uλnyn − z‖ 6 ‖xn − z‖. (3.6)

By substituting (3.6) into (3.4), we have

‖xn+1 − z‖ 6 ααn‖xn − z‖+ (1 −αn)‖xn − z‖+αn‖f(z) − z‖

6 [1 − (1 −α)αn]‖xn − z‖+αn‖f(z) − z‖ 6 max{‖(xn − z)‖, 1
1 −α

‖f(z) − z‖}

for all sufficiently large n. By induction, we arrive at

‖xn − z‖ 6 max{‖x0 − z‖,
1

1 −α
‖f(z) − z‖}.

Thus the sequence {xn} is bounded, so is {f(xn)}.
(b) If ρn = 0, then yn = xn. In view of (2.3), we observe

‖Uλnxn − z‖ 6 ‖xn − z‖. (3.7)

By applying the inequality (3.7) to (3.4), we conclude that the sequence {xn} and {f(xn)} are also bounded
in a similar way as before.

Step 2. We show that the following inequality holds for x̂ = PΩf(x̂):

‖xn+1 − x̂‖2 6 (1 −αn)‖xn − x̂‖2 + 2αn〈f(xn) − x̂, xn+1 − x̂〉. (3.8)

(a) If ρn = 0, it follows from (2.1) and (2.3) that

‖xn+1 − x̂‖2 6 (1 −αn)‖Uλnxn − z‖2 + 2αn〈f(xn) − x̂, xn+1 − x̂〉
6 (1 −αn)[‖xn − z‖2 − λn(1 − λn − µ)‖(I−U[n])xn‖2] + 2αn〈f(xn) − x̂, xn+1 − x̂〉,

(3.9)

which immediately yields

‖xn+1 − x̂‖2 6 (1 −αn)‖xn − z‖2 + 2αn〈f(xn) − x̂, xn+1 − x̂〉.

Thus the inequality (3.8) is obtained.
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(b) If ρn 6= 0, by (2.1) and (3.5) replaced with z = x̂, we obtain

‖xn+1 − x̂‖2 6 (1 −αn)‖Uλnyn − x̂‖2 + 2αn〈f(xn) − x̂, xn+1 − x̂〉

6 (1 −αn)
[
‖xn − x̂‖2 −

(1 − η)2

4
‖(I− T[n])Axn‖4

‖A∗(I− T[n])Axn‖2

− λn(1 − λn − µ)‖(I−U[n])yn‖2
]
+ 2αn〈f(xn) − x̂, xn+1 − x̂〉,

(3.10)

which quickly gives the inequality (3.8).

Step 3. We show that xn → x̂. Setting sn := ‖xn − x̂‖2, the proof of this step is divided into two cases.

Case I. Assume that there is a positive integer n0 such that the sequence {sn} is decreasing for all n > n0,
then the sequence {sn} is obviously convergent. First, we claim that

lim sup
n→∞ 〈f(x̂) − x̂, xn − x̂〉 6 0. (3.11)

(a) If ρn = 0, i.e., xn = yn, by a simple inequality eliminating (1 − αn) in (3.9) and based on the
boundedness of {xn} and {f(xn)}, we obtain

λn(1 − λn − µ)‖(I−U[n])xn‖2 6 sn − sn+1 +αnK,

where K := supn∈N{2〈f(xn) − x̂, xn+1 − x̂〉}. By the aids of convergence of the sequence {sn} and the
conditions (i) and (ii), it follows that

‖(I−U[n])xn‖ → 0. (3.12)

Since Axn = T[n]Axn in (3.2), we also have

‖(I− T[n])Axn‖ → 0.

Next we claim that ‖xn+1 − xn‖ → 0. Indeed, since Uλnxn − xn = λn(U[n]xn − xn), an easy calculation
yields

‖xn+1 − xn‖ 6 αn‖f(xn) − xn‖+ (1 −αn)‖xn −Uλnxn‖
6 αn‖f(xn) − xn‖++λn‖(I−U[n])xn‖ → 0

by the help of (3.12) and αn → 0. Now choose a subsequence {xnk} ⊂ {xn} such that xnk ⇀ u ∈ H1 and

lim sup
n→∞ 〈f(x̂) − x̂, xn − x̂〉 = lim

k→∞〈f(x̂) − x̂, xnk − x̂〉 (3.13)

by boundedness of {xn}. Obviously, u ∈ ωw(xn) ⊂ Ω because all hypotheses of Lemma 3.3 are fulfilled
with xn = yn. Therefore, it follows from (3.13), (3.3), and xnk ⇀ u ∈ Ω that

lim sup
n→∞ 〈f(x̂) − x̂, xn − x̂〉 = 〈f(x̂) − x̂,u− x̂〉 6 0,

which proves the inequality (3.11).

(b) If ρn 6= 0, by using a simple inequality with no (1 − αn) in (3.10) and the boundedness of {xn} and
{f(xn)}, we have

λn(1 − λn − µ)‖(I−U[n])yn‖2 +
(1 − η)2

4

(
‖(I− T[n])Axn‖2

‖A∗(I− T[n])Axn‖

)2

6 sn − sn+1 +αnK.
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Using the convergence of {sn} and the conditions (i) and (ii) we obtain that

‖(I−U[n])yn‖ → 0 (3.14)

and
‖(I− T[n])Axn‖2

‖A∗(I− T[n])Axn‖
→ 0. (3.15)

Moreover,

1
‖A‖
‖(I− T[n])Axn‖ =

‖(I− T[n])Axn‖
‖A‖

= ‖(I− T[n])Axn‖
‖(I− T[n])Axn‖
‖A‖ ‖(I− T[n])Axn‖

6
‖(I− T[n])Axn‖2

‖A∗(I− T[n])Axn‖
,

and so
‖(I− T[n])Axn‖ → 0.

On one hand, since

‖xn − yn‖ = ρn‖A∗(I− T[n])Axn‖ =
(1 − η)

2
‖(I− T[n])Axn‖2

‖A∗(I− T[n])Axn‖
→ 0 (3.16)

by (3.15), it follows that

‖xn+1 − xn‖ 6 αn‖f(xn) − xn‖+ (1 −αn)‖xn −Uλnyn‖
6 αn‖f(xn) − xn‖+ ‖xn − yn‖+ ‖yn −Uλnyn‖
= αn‖f(xn) − xn‖+ ‖xn − yn‖+ λn‖(I−U[n])yn‖ → 0

by the aids of αn → 0, (3.14), and (3.16). Then we also have

‖yn+1 − yn‖ 6 ‖yn+1 − xn+1‖+ ‖xn+1 − xn‖+ ‖xn − yn‖ → 0.

For employing the proof in Case I, choose the subsequence {xnk} ⊂ {xn} which satisfies (3.13) and xnk ⇀
u ∈ H1. Since all the assumptions of Lemma 3.3 are fulfilled, we conclude that u ∈ ωw(xn) = ωw(yn) ⊂
Ω, which immediately gives the required inequality (3.11). Now we prove that xn → x̂. In fact, use
‖xn+1 − xn‖ → 0 and (3.11) to induce that

lim sup
n→∞ 〈f(x̂) − x̂, xn+1 − x̂〉 6 0.

Then since all the assumptions of Lemma 2.4 are fulfilled, we conclude that xn → x̂.

Case II. Suppose that there exists a subsequence {sni} of {sn} such that sni < sni+1 for all i > 0. By
applying Lemma 2.8, we can take a nondecreasing sequence {τ(n)}n>n0 of integers such that τ(n) → ∞
and

sτ(n) 6 sτ(n)+1, sn 6 sτ(n)+1, ∀n > n0. (3.17)

First, we show that
lim sup
n→∞ 〈f(x̂) − x̂, xτ(n) − x̂〉 6 0. (3.18)

(a) If ρτ(n) = 0, by using a simple inequality with no (1 − αn) in (3.9), (3.17), and the boundedness of
{xn} and {f(xn)}, we have

λτ(n)(1 − µ− λτ(n))‖(I−U[τ(n)])xτ(n)‖2 6 sτ(n) − sτ(n)+1 +ατ(n)K0 6 ατ(n)K0,

where K0 := supn>n0
{2〈f(xτ(n)) − x̂, xτ(n)+1 − x̂〉}. So,

‖(I−U[τ(n)])xτ(n)‖ → 0.
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Since Axτ(n) = T[τ(n)]Axτ(n) in (3.2), it is obvious that

‖(I− T[τ(n)])Axτ(n)‖ → 0.

By slightly modifying the proof of (a) in Case I we could prove

‖xτ(n)+1 − xτ(n)‖ → 0.

Now use Lemma 3.3, after equipped with {xτ(n)} in place of {xn}, to establish (3.18).

(b) If ρτ(n) 6= 0, it follows from (3.10) and (3.17) that

λτ(n)(1 − λτ(n) − µ)‖(I−U[τ(n)])yτ(n)‖2 +
(1 − η)2

4
‖(I− T[τ(n)])Axτ(n)‖4

‖A∗(I− T[τ(n)])Axτ(n)‖2

6 sτ(n) − sτ(n)+1 +ατ(n)K0 6 ατ(n)K0 → 0

by the boundedness of {xτ(n)} and {f(xτ(n))} and ατ(n) → 0. In view of two conditions (i) and (ii), the
above inequality yields

‖(I−U[τ(n)])yτ(n)‖ → 0 and
‖(I− T[τ(n)])Axτ(n)‖2

‖A∗(I− T[τ(n)])Axτ(n)‖
→ 0.

Now mimicking the proof of (b) in Case 1 we easily prove that all the sequences {‖(I− T[τ(n)])Axτ(n))‖},
{‖xτ(n) − yτ(n)‖}, {‖xτ(n)+1 − xτ(n)‖}, and {‖yτ(n) − yτ(n)+1‖} converge to zero. Since all the hypotheses
of Lemma 3.3 are fulfilled, if we choose a subsequence {τ(kn)} of {τ(n)}n>n0 such that xτ(kn) ⇀ v ∈ H1
and

lim sup
n→∞ 〈f(x̂) − x̂, xτ(n) − x̂〉 = lim

n→∞〈f(x̂) − x̂, xτ(kn) − x̂〉,

then v ∈ ωw(xτ(n)) = ωw(yτ(n)) ⊂ Ω; so this equality becomes

lim sup
n→∞ 〈f(x̂) − x̂, xτ(n) − x̂〉 = 〈f(x̂) − x̂, v− x̂〉 6 0

for x̂ = PΩ(f(x̂)); (3.18) is thus obtained. Since ‖xτ(n)+1 − xτ(n)‖ → 0, it follows from (3.18) that

lim sup
n→∞ 〈f(x̂) − x̂, xτ(n)+1 − x̂〉 6 0. (3.19)

Secondly we show that xn → 0. Indeed, since sτ(n) 6 sτ(n)+1 for all n > n0, a slight transformation
of (3.8) yields

ατ(n)sτ(n)+1 + (1 −ατ(n))(sτ(n)+1 − sτ(n)) 6 2ατ(n)〈f(xτ(n)) − x̂, xτ(n)+1 − x̂〉

and so

ατ(n)sτ(n)+1 6 2ατ(n)〈f(xτ(n)) − x̂, xτ(n)+1 − x̂〉 ⇒ 0 6 sτ(n)+1 6 2〈f(xτ(n)) − x̂, xτ(n)+1 − x̂〉

because αn ∈ (0, 1). Now taking the limit superior on both sides as n → ∞ and using (3.19), we obtain
sτ(n)+1 → 0; hence sn → 0 because of sn 6 sτ(n)+1 for all n > n0 in (3.17), completing the proof.

Remark 3.5. The main result of Theorem 3.4 is a cyclic explicit version of Theorem 3.2 in [6]. If we take
p = q = 1, the algorithm (3.1) equipped with λn = λ for all n reduces to (1.6).

Finally we shall give an example which satisfies all the conditions of the solution set Ω of the MCFP
(1.2), the mappings {Ui}

p
i=1, and {Tj}

q
j=1 in Assumption 3.1.
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Example 3.6. Let H1 = H2 = H3 = `2 and let i ∈ {1, 2, . . . ,p} and j ∈ {1, 2, . . . ,q} be arbitrarily fixed. Let
Ui, Tj : `2 → `2 be defined by Uix = −2ix and Tjx = −(2j+ 1)x for all x ∈ `2. Then it is easy to see that
∩pi=1Fix(Ui) = {0} = ∩qj=1Fix(Tj) and A0 = 0. Thus Ω = {0} 6= ∅. Also Ui is µi-demicontractive and Tj is
ηj-demicontractive by Example 2.5 in [12], where µi = 2i−1

2i+1 , µ = max16i6p, 2i−1
2i+1 , µi =

2p−1
2p+1 , ηj =

j
j+1 ,

and η = max16j6q ηj =
q
q+1 ; then I−Ui and I− Tj are demiclosed at 0 by Remark 2.12 in [12].

Next we give an example which satisfies the conditions (i) and (ii) in Theorem 3.4.

Example 3.7. We can take αn = 1
n and λn = k

k+1(1 − µ) + (−1)n 1
n for all n, where k ∈ N is arbitrarily

fixed. Then limn→∞ λn = k
k+1(1 − µ) < 1 − µ, which satisfies the condition (ii) of Theorem 3.4.
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