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Abstract
In this manuscript, we will introduce a new double transform called double Elzaki transform (modification of Smudu

transform), where we will study this transform and their theorems on convergence. Also, we will discuss the double new
transform and it is convergent. After that, we study the combination of this double transforms and the new method in order to
solve the singular system of hyperbolic equations of anomalies in through the examples in this paper. We found that this method
is very effective in solving these equations compared to other methods as they need only one step to get the exact solution, while
the other methods need more steps.
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1. Introduction

Nonlinear equations are of great importance to our contemporary world. Nonlinear phenomena have
important applications in applied mathematics, physics, and issues related to engineering. Despite the
importance of obtaining the exact solution of nonlinear partial differential equations in physics and ap-
plied mathematics there is still the daunting problem of finding new methods to discover new exact or
approximate solutions. In the recent years, many authors have devoted their attention to study solutions
of nonlinear partial differential equations using various methods. Among these attempts are the Adomian
decomposition method, homotopy perturbation method, variational iteration method [1, 8–10], Laplace
variational iteration method [12, 13, 22] differential transform method, Elzaki transform [2, 3, 6], Laplace,
double Laplace transforms [2, 4] and projected differential transform method. Many analytical and nu-
merical methods have been proposed to obtain solutions for nonlinear PDEs with fractional derivatives,
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such as local fractional variational iteration method [11], local fractional Fourier method, Yang-Fourier
transform and Yang-Laplace transform and other methods [14–18]. Two Laplace variational iteration
methods are currently suggested by Wu in [19–21, 23]. In this paper, we will introduce the new method
depends on double new integral transform (double Elzaki transform) [7], and it will be employed in a
straightforward manner. Also, we study in this paper the combination of this new transform and the new
method to solve the singular system of hyperbolic equations. This approach can be taken functions with
discontinuities as well as impulse functions effectively.

Elzaki transform, henceforth designated by the operator E [.] , is defined by the integral equation,

E [Ω(t)] = T(β) = β2
∫∞

0
Ω(βt)e−tdt. (1.1)

By analogy with the double Laplace transform, we shall denote the double Elzaki transform.

2. New double integral transform

In this section and analogy with the double Laplace transform, we will denote the new double trans-
form. Also, in this paper, we will see the importance of this new double transform and its effectiveness
in solving some differential equations.

Definition 2.1. Let Ω(x, t), t, x ∈ R+, be a function which can be expressed as a convergent infinite series,
then its new double integral transform given by

E2 [Ω(x, t),α,β] = T(α,β) = αβ
∫∞

0

∫∞
0
Ω(x, t)e−( xα+

t
β )dxdt, x, t > 0, (2.1)

where α,β are complex values.

To find the solution of the singular system of hyperbolic equations by the combination of new double
transform and the new method, first we must find the new double transform of partial derivatives as
follows:

E2

[
∂Ω

∂x

]
=

1
α
T(α,β) −αT(0,β), E2

[
∂2Ω

∂x2

]
=

1
α2 T(α,β) − T(0,β) −α

∂T(0,β)
∂x

,

E2

[
∂Ω

∂t

]
=

1
β
T(α,β) −βT(α, 0), E2

[
∂2Ω

∂t2

]
=

1
β2 T(α,β) − T(α, 0) −β

∂T(α, 0)
∂t

, (2.2)

E2

[
∂2Ω

∂x∂t

]
=

1
αβ
T(α,β) −

β

α
T(α, 0) −

α

β
T(0,β) +αβT(0, 0).

Proof.

E2

[
∂Ω

∂x

]
= αβ

∫∞
0

∫∞
0
e−( xα+

t
β )
∂

∂x
Ω(x, t)dxdt = β

∫∞
0
e−

t
β

{
α

∫∞
0
e−

x
α
∂

∂x
Ω(x, t)dx

}
dt.

The inner integral gives 1
αT(α, t) −αΩ(0, t), and then:

E2

[
∂Ω

∂x

]
=
α

β

∫∞
0
e−

t
β T(α, t)dt−αβ

∫∞
0
e−

t
βΩ(0, t)dt =

1
α
T(α,β) −αT(0,β).

Also,

E2

[
∂Ω

∂t

]
=

1
β
T(α,β) −βT(α, 0).

We can prove the formulas mentioned in (2.2) easily by using the same method.
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3. Theorems of convergence of double new integral transform

Here we need to discuss some theorems of convergence of double new integral transform.

Theorem 3.1. Suppose that β
∫∞

0 e
− t
βΩ(x, t)dt, converges at β = β0, then the integral converges at β < β0.

Proof. Let

p(x, t) = β0

∫t
0
e
− u
β0Ω(x,u)du, 0 < t <∞,

then we have

(i) p(x, 0) = 0,

(ii)limt→∞ p(x, t)exist,

(iii)pt(x, t) = β0e
− t
β0Ω(x, t).

Choosing ε1,R1, such that 0 < ε1 < R1 , then we have

β

∫R1

ε1

e−
t
βΩ(x, t)dt = β

∫R1

ε1

1
β0
e−

t
βPt(x, t)e

t
β0 dt =

β

β0

∫R1

ε1

e
−
(
β0−β
ββ0

)
Pt(x, t)dt.

Integrating the last integral by parts to gives

β

β0

∫R1

ε1

e
−
(
β0−β
ββ0

)
t
Pt(x, t)dt =

β

β0

{
e
−
(
β0−β
ββ0

)
R1p(x,R1) − e

−
(
β0−β
ββ0

)
ε1p(x, ε1)

+

(
β0 −β

ββ0

) ∫R1

ε1

e
−
(
β0−β
ββ0

)
p(x, t)dt

}
.

Now take, ε1 → 0,R1 →∞, and if β < β0, then we have

β

∫∞
0
Ω(x, t)dt =

β0 −β

ββ0

∫∞
0
e
−
(
β0−β
ββ0

)
p(x, t)dt, β < β0.

Theorem 3.1 is proved if the last integral is converges.
By using the limits test for convergence we get

lim
t→∞ t2e

−
(
β0−β
ββ0

)
t
p(x, t) = 0,

finite. Therefore
β

∫∞
0
e−

t
βΩ(x, t)dt,

is converges for β < β0.

Theorem 3.2. Let the integral Q(x,β) = β
∫∞

0 e
− t
βΩ(x, t)dt converges for β < β0 and the integral

α

∫∞
0
e−

x
αΩ(x,β)dx,

converges at α = α0. Then the integral α
∫∞

0 e
− x
αQ(x,β)dx converges for α < α0.

Proof. The prove of this theorem is same as the method in Theorem 3.1

Theorem 3.3. Let the functionΩ(x, t) is continuous in the xy-plane, if the integral converges for β = β0, α = α0.
Then the integral

αβ

∫∞
0

∫∞
0
e−

x
α−

t
βΩ(x, t)dxdt,

is converges for α < α0, β < β0.
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Proof.

αβ

∫∞
0

∫∞
0
e−

x
α−

t
βΩ(x, t)dxdt = α

∫∞
0
e−

x
α

{
β

∫∞
0
e−

t
βΩ(x, t)dt

}
dx = α

∫∞
0
e−

x
αQ(x,β)dx,

where Q(x,β) = β
∫∞

0 e
− t
βΩ(x, t)dt. By using Theorems 3.1 and 3.2 we see that

αβ

∫∞
0

∫∞
0
e−

x
α−

t
βΩ(x, t)dxdt,

is converges for α < α0, β < β0.

4. The new method with new double integral transform

To explain this method we will display the singular system of hyperbolic equations,

∂2P

∂t2
−

1
x

∂

∂x

(
x
∂P

∂x

)
−Q = k(x, t),

∂2Q

∂t2
−

1
x

∂

∂x

(
x
∂Q

∂x

)
− P = h(x, t).

(4.1)

With the initial conditions

P(x, 0) = k1(x), Pt(x, 0) = k2(x),
Q(x, 0) = h1(x), Qt(x, 0) = h2(x).

(4.2)

To find the solution of the system (4.1), (4.2), firstly we take double new integral transform of (4.1),
and single new integral transform of (4.2), we obtain

1
β2E2(P(x, t)) −K1(α) −βK2(α) = E2

[
k(x, t) +

1
x

∂

∂x

(
x
∂P

∂x

)
+Q

]
,

1
β2E2(Q(x, t)) −H1(α) −βH2(α) = E2

[
h(x, t) +

1
x

∂

∂x

(
x
∂Q

∂x

)
+ P

]
,

(4.3)

where K1(α),K2(α),H1(α),H2(α), are single new integral transform of k1(x), k2(x), h1(x), h2(x), respec-
tively.

We assume that the solution of a system (4.1) can be written in the series form

P(x, t) =
∞∑
n=0

Pn(x, t), Q(x, t) =
∞∑
n=0

Qn(x, t). (4.4)

Now, we take the inverse of double new integral transform of (4.3), and making use of (4.4) to get

∞∑
n=0

Pn(x, t) = k1(x) + tk2(x) + E
−1
2

{
β2E2

[
k(x, t) +

1
x

∂

∂x

(
x
∂Pn

∂x

)
+Qn

]}
,

∞∑
n=0

Qn(x, t) = h1(x) + th2(x) + E
−1
2

{
β2E2

[
h(x, t) +

1
x

∂

∂x

(
x
∂Qn

∂x

)
+ Pn

]}
.

(4.5)

This method depends on how to choose the initial iterations, P0(x, t), Q0(x, t), that leads to the exact
solutions in a few steps. For example if we choose

P0(x, t) = k1(x) + tk2(x), Q0(x, t) = h1(x) + th2(x).
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Then the solutions P(x, t), Q(x, t) can be recursively determined by using the relations

Pn+1(x, t) = k1(x) + tk2(x) + E
−1
2

{
β2E2

[
k(x, t) +

1
x

∂

∂x

(
x
∂Pn

∂x

)
+Qn

]}
,

Po(x, t) = k1(x) + tk2(x),

Qn+1(x, t) = h1(x) + th2(x) + E
−1
2

{
β2E2

[
h(x, t) +

1
x

∂

∂x

(
x
∂Qn

∂x

)
+ Pn

]}
,

Q0(x, t) = h1(x) + th2(x).

From these equations we can find

P0(x, t),P1(x, t),P2(x, t), · · · , Q0(x, t),Q1(x, t),Q2(x, t), · · · ,

and then we can obtain the solutions in a series form (4.4).

5. Application

To illustrate the efficiency and effectiveness of this method in solving the singular system of linear and
nonlinear hyperbolic equations by taking only one step, we look at the following examples.

Example 5.1. Let us consider the singular system of linear hyperbolic equations

−
∂2P

∂t2
+

1
x

∂

∂x

(
x
∂P

∂x

)
+Q = x2 sin t+ 4 sin t+ x2 cos t,

−
∂2Q

∂t2
+

1
x

∂

∂x

(
x
∂Q

∂x

)
+ P = x2 sin t+ 4 cos t+ x2 cos t,

(5.1)

with the initial conditions

P(x, 0) = 0, Pt(x,o) = x2, Q(x, 0) = x2, Qt(x, 0) = 0. (5.2)

Using the same steps in Section 3 to get

1
β2E2(P(x, t)) −K1(α) −βK2(α) = −E2[x

2 sin t] + E2

[
1
x

∂

∂x

(
x
∂P

∂x

)
+Q− 4 sin t− x2 cos t

]
,

1
β2E2(Q(x, t)) −H1(α) −βH2(α) = −E2[x

2 cos t] + E2

[
1
x

∂

∂x

(
x
∂Q

∂x

)
+ P− x2 sin t− 4 cos t

]
,

(5.3)

where, K1(α) = 0, K2(α) = 2α4, H1(α) = 2α4, H2(α) = 0. Then, (5.3) becomes

E2(P(x, t)) = 2β3α4 −
2β5α4

1 +β2 +β2E2

[
1
x

∂

∂x

(
x
∂P

∂x

)
+Q− 4 sin t− x2 cos t

]
,

E2(Q(x, t)) = 2β2α4 −
2β4α4

1 +β2 +β2E2

[
1
x

∂

∂x

(
x
∂Q

∂x

)
+ P− x2 sin t− 4 cos t

]
.

(5.4)

Applying the inverse double new transform to (5.4), to obtain

P(x, t) = x2 sin t+ E−1
2

{
β2E2

[
1
x

∂

∂x

(
x
∂P

∂x

)
+Q− 4 sin t− x2 cos t

]}
,

Q(x, t) = x2 cos t+ E−1
2

{
β2E2

[
1
x

∂

∂x

(
x
∂Q

∂x

)
+ P− 4 cos t− x2 sin t

]}
.

(5.5)
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Then the recursive relations are

Pn+1(x, t) = E−1
2

{
β2E2

[
1
x

∂

∂x

(
x
∂Pn

∂x

)
+Qn − 4 sin t− x2 cos t

]}
,

P0(x, t) = x2 sin t,

Qn+1(x, t) = E−1
2

{
β2E2

[
1
x

∂

∂x

(
x
∂Qn

∂x

)
+ Pn − 4 cos t− x2 sin t

]}
,

Q0(x, t) = x2 cos t.

(5.6)

The first few components are given by

P0(x, t) = x2 sin t,

P1(x, t) = E−1 {β2E2[0]
}
= 0,

Q0(x, t) = x2 cos t,

Q1(x, t) = E−1 {β2E2[0]
}
= 0,

...

Then the exact solutions of a system (5.1) are

P(x, t) =
∞∑
n=0

Pn(x, t) = x2 sin t, Q(x, t) =
∞∑
n=0

Qn(x, t) = x2 cos t.

Example 5.2. Here we look at the singular system of nonlinear hyperbolic equations,

−
∂2P

∂t2
+

1
x

∂

∂x

(
x
∂P

∂x

)
+Q

∂P

∂x
= 2xetP+ 4t,

−
∂2Q

∂t2
+

1
x

∂

∂x

(
x
∂Q

∂x

)
+ P

∂Q

∂x
= 2xtQ− x2et + 4et,

(5.7)

with the initial conditions

P(x, 0) = 0, Pt(x, 0) = x2, Q(x, 0) = x2, Qt(x, 0) = x2. (5.8)

Here we use the same steps which we used as before in Example 5.1, to obtain

E2(P(x, t)) = 2β3α4 +β2E2

[
1
x

∂

∂x

(
x
∂P

∂x

)
+Q

∂P

∂x
− 2xetP− 4t

]
,

E2(Q(x, t)) = 2β2α4 + 2β3α4 +β2E2[x
2et] +β2E2

[
1
x

∂

∂x

(
x
∂Q

∂x

)
+ P

∂Q

∂x
− 2xtQ− 4et

]
.

(5.9)

Taking the inverse double new transform of (5.9), to find

P(x, t) = x2t+ E−1
2

{
β2E2

[
1
x

∂

∂x

(
x
∂P

∂x

)
+Q

∂P

∂x
− 2xetP− 4t

]}
,

Q(x, t) = x2et + E−1
2

{
β2E2

[
1
x

∂

∂x

(
x
∂Q

∂x

)
+ P

∂Q

∂x
− 2xtQ− 4et

]}
.

Therefore, we can write the recursive relations as

Pn+1(x, t) = E−1
2

{
β2E2

[
1
x

∂

∂x

(
x
∂Pn

∂x

)
+Qn

∂Pn

∂x
− 2xetPn − 4t

]}
,

P0(x, t) = x2t,

Qn+1(x, t) = E−1
n

{
β2E2

[
1
x

∂

∂x

(
x
∂Qn

∂x

)
+ Pn

∂Qn

∂x
− 2xtQn − 4et

]}
,

Q0(x, t) = x2et.
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Then from as before we can find the first few components in the form

P0(x, t) = x2t,

P1(x, t) = E−1 {β2E2[0]
}
= 0,

Q0(x, t) = x2et,

Q1(x, t) = E−1 {β2E2[0]
}
= 0,

...

Then the exact solutions of a system (5.7) are

P(x, t) =
∞∑
n=0

Pn(x, t) = x2t, Q(x, t) =
∞∑
n=o

Qn(x, t) = x2et.

6. Conclusion

This paper examines the convergence of the new double transform, and explain the effectiveness and
ease of the method used to solve the singular system of linear and nonlinear hyperbolic equations, as we
obtained the exact solutions using only one step. Comparing this method with other methods, such as
the Adomian method and the homotopy method, we find that this method is faster and easier for them
to reach for exact solutions.
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