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Abstract
In this paper, we will prove some new nonlinear retarded dynamic inequalities of Gronwall-Bellman type on time scales.

These inequalities are of new forms compared with the existing results so far in the literature, which can be used as effective tools
in the study of certain nonlinear retarded dynamic equations. Some special cases of our results contain continuous Gronwall-type
inequalities and their discrete analogues. We also indicate some application examples to illustrate our results at the end.
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1. Introduction

The Gronwall inequality [12] states that if f and υ are real-valued nonnegative continuous functions
defined on R+ = [0,∞) with a positive constant υ0, then

υ(t) 6 υ0 +

∫t
0
f(s)υ(s)ds,∀t ∈ R+, (1.1)

implies

υ(t) 6 υ0 exp
(∫t

0
f(s)ds

)
,∀t ∈ R+.

As a generalization of (1.1), Bellman [7] proved that: If υ, f, a, ∈ C(R+, R+) and a is nondecreasing,
then the inequality

υ(t) 6 a(t) +
∫t

0
f(s)υ(s)ds,∀t ∈ R+, (1.2)
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implies

υ(t) 6 a(t) exp
(∫t

0
f(s)ds

)
,∀t ∈ R+.

In [26], Pachpatte established the discrete version of (1.2) and in particular he proved that if u(n), a(n),
b(n) are nonnegative sequences defined for n ∈N0 and a(n) is nondecreasing for n ∈N0, and if

u(n) 6 a(n) +
n−1∑
s=0

f(n)u(n),n ∈N0, (1.3)

then

u(n) 6 a(n)
n−1∏
s=0

[1 + f(n)],n ∈N0.

Since the discovery of these inequalities, many inequalities which deal with new proofs, various gener-
alizations and extensions have presented in the literature. Such inequalities are important handy tools
to obtain various estimates in the theory of differential and difference equations; see for example [1–
4, 8, 11, 20, 22–24].

In [10], Bohner and Peterson introduced a dynamic inequality on a time scale T which unifies the
continuous version inequality (1.2) and the discrete version inequality (1.3) as follows: If χ, δ are right
dense continuous functions and γ > 0 is regressive and right dense continuous function, then

χ(t) 6 δ(t) +
∫t
t0

χ(η)γ(s)∆η,∀t ∈ T,

implies

χ(t) 6 δ(t) +
∫t
t0

eγ(t,σ(η))δ(η)γ(s)∆η,∀t ∈ T.

Pachpatte [25] established explicit bounds to the solution of the following integral inequality:

up(t) 6 a(t) + b(t)
∫t

0
[g(s)up(s) + h(s)u(s)]ds, t ∈ R+, (1.4)

where u, a, b, g, h are real-valued nonnegative continuous functions defined on R+ and p > 1 is a real
constant.

Also in the same paper [25], for a real-valued positive continuous and nondecreasing function c de-
fined on R+, Pachpatte studied the following inequalities:

up(t) 6 cp(t) + b(t)
∫t

0
[g(s)up(s) + h(s)u(s)]ds, t ∈ R+, (1.5)

up(t) 6 a(t) + b(t)
∫t

0
k(t, s)[g(s)up(s) + h(s)u(s)]ds, t ∈ R+, (1.6)

and

up(t) 6 a(t) + b(t)
∫t

0
f(s,u(s))ds, t ∈ R+, (1.7)

where k(t, s) and its derivative ∂
∂tk(t, s) are real-valued nonnegative continuous functions for 0 6 s 6 t 6∞, and f : R2

+ → R+ is a continuous function.
On the other hand, Pachpatte [25] also investigated the following discrete analogues of (1.4), (1.5),

(1.6), and (1.7).

up(n) 6 a(n) + b(n)
n−1∑
s=n0

[g(n)up(n) + h(n)u(n)],n ∈N0,
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up(n) 6 cp(n) + b(n)
n−1∑
s=n0

[g(n)up(n) + h(n)u(n)],n ∈N0,

up(n) 6 a(n) + b(n)
n−1∑
s=n0

k(n, s)[g(n)up(n) + h(n)u(n)],n ∈N0,

up(n) 6 a(n) + b(n)
n−1∑
s=n0

F(s,u(s)),n ∈N0,

where u(n), a(n), b(n), g(n), h(n), and c(n) are real-valued nonnegative sequences, and F : N0 ×R+ →
R+, and k(n, s), ∆1k(n, s) are real-valued nonnegative functions for n 6 s 6 n, n ∈N0.

In [16], Li studied the following nonlinear delay integral inequalities of (1.4) and (1.7):

up(t) 6 a(t) + b(t)
∫t

0
[f(s)up(s− τ) + g(s)u(s) + h(s)]ds, t ∈ R+, (1.8)

and

up(t) 6 a(t) + b(t)
∫t

0
L(s,u(s− τ))ds, t ∈ R+, (1.9)

with the initial condition: {
u(t) = φ(t), t ∈ [−τ, 0],
φ(t− τ) 6 (a(t))

1
p , ∀t ∈ R+, t− τ 6 0,

where p > 1 and τ ∈ R+ are constants, φ(t) ∈ C([−τ, 0], R+), and L ∈ C(R2
+, R+).

On the other hand, in the same paper [16], the author also investigated the following discrete ana-
logues of (1.8) and (1.9):

up(n) 6 a(n) + b(n)
n−1∑
s=0

[f(s)up(s− σ) + g(s)u(s) + h(s)],n ∈N0,

and

up(n) 6 a(n) + b(n)
n−1∑
s=0

V(s,u(s− σ)),n ∈N0,

with the initial condition: {
u(n) = ψ(n), n ∈ {−σ, . . . ,−1, 0},
ψ(n− σ) 6 (a(n))

1
p , ∀n ∈N0, n− σ 6 0,

where p > 1 and σ ∈N0 are constants, ψ(n) ∈ R+, and V : N0 ×R+ → R+.
In recent years, the study of dynamic inequalities of one variable of Gronwall–type on time scales

has received a lot of attention, we refer the reader to the papers [5, 6, 10, 14, 15, 17–19, 27–29] and the
references cited therein.

The general idea is to prove a result for a dynamic inequality where the domain of the unknown
function is a time scale T, which may be an arbitrary closed subset of the real numbers R. The cases
when the time scale is equal to the reals or to the integers represent the classical theories of integral
and of discrete inequalities. The calculus on time scales has been introduced by Hilger [13] in order to
unify discrete and continuous analysis. The three most popular examples of calculus on time scales are
differential calculus, difference calculus, and quantum calculus, when T = R, T = N, and T = qN0 = {qt :
t ∈ N0}, where q > 1. For the general basic ideas and background, we refer to [9, 10] which summarize
and organize much of the time scale calculus.
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The main objective of this paper is to prove new delta dynamic inequalities on an arbitrary time scale
T with several retardation that resemble both the discrete and the continuous inequalities presented in
[16, 25]. We also provide a more useful and explicit bound than in [16, 25]. The paper is organized in
the following way. In Section 2, we give some basic concepts of the calculus on time scales. In Section 3,
we state and prove the main results, which can be used as effective tools in the study of certain nonlinear
retarded dynamic equations. In Section 4, we include some applications to illustrate the usefulness of our
results.

2. Preliminaries and lemmas on time scales

In this section, we will give some preliminaries on calculus of time scales and the basic lemmas that
we will apply to obtain the main results in this paper. We assume throughout that T has the topology
inherited from the standard topology on the real numbers R. For t ∈ T, first we define the forward jump
operator σ : T→ T by:

σ(t) := inf{s ∈ T : s > t},

and second, the backward jump operator ρ : T :→ T by:

ρ(t) := sup{s ∈ T : s < t}.

In this definition, we put inf ∅ = sup T, where ∅ is the empty set (i.e., σ(t) = t if T has a maximum m)
and sup ∅ = inf T (i.e., T has a maximum l). A point t ∈ T with inf T < t < sup T is said to be left-dense
if ρ(t) = t and is right-dense if σ(t) = t, points that are simultaneously right-dense and left-dense are
said to be dense, is left-scattered if ρ(t) < t and right-scattered if σ(t) > t, points that are simultaneously
right-scattered and left-scattered are said to be isolated. A function g : T → R is said to be right-dense
continuous (rd-continuous) provided g is continuous at right-dense points and at left-dense points in T,
left hand limits exist and are finite. The set of all such rd-continuous functions is denoted by Crd(T).
A function f : T → R is said to be left-dense continuous (ld-continuous) provided f is continuous at
left-dense points and at right-dense points in T, right-hand limits exist and are finite. The set of all such
ld-continuous functions is denoted by Cld(T).

The forward and backward graininess functions µ and ν for a time scale T are defined by µ(t) :=
σ(t) − t and ν(t) = t− ρ(t), respectively.

Given a time scale T, we introduce the sets Tκ, Tκ, and Tκκ as follows. If T has a left-scattered
maximum t1, then Tκ = T − {t1}, otherwise Tκ = T. If T has a right-scattered minimum t2, then
Tκ = T − {t2}, otherwise Tκ = T. Finally Tkκ = Tκ ∩Tκ.

Let f : T → R be a real valued function on a time scale T, then for all t ∈ Tκ, we define f∆(t) to be
the number (if it exists) with the property that given any ε > 0 there is a neighborhood U of t such that
∀s ∈ U,

|[f(σ(t)) − f(s)] − f∆(t)[σ(t) − s]| 6 ε|σ(t) − s|, ∀s ∈ U.

For f : T → R, we define the function fσ : T → R by fσ(t) = f(σ) for all t ∈ T, that is fσ(t) = f ◦ σ.
Similarly, we define the function fρ : T → R by fρ(t) = f(σ), for all t ∈ T, that is fρ(t) = f ◦ σ. A time
scale T is said to be regular if the following two conditions are satisfied simultaneously: (1) σ(ρ(t)) = t,
and (2) ρ(σ(t)) = t, ∀t ∈ T. The product and quotient rules for the derivative of the product fg and the
quotient f/g (where ggσ 6= 0, here gσ = g ◦ σ ) of two differentiable function f and g, are given as the
following:

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)),

and (
f

g

)∆
(t) =

f∆(t)g(t) − f(t)g∆(t)
g(t)g(σ(t))

.
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A function F : T → R, is called a delta antiderivative of f : T → R provided that F∆ = f(t) holds for
all t ∈ Tκ, and the delta integral of f is defined by∫b

a

f(t)∆t = F(b) − F(a).

We will frequently use the following useful relations between calculus on time scales T and differential
calculus on R, difference calculus on Z, and quantum calculus on qN

0 :

(i) if T = R, then

σ(t) = t,µ(t) = 0, f∆t = f ′(t),
∫b
a

f(t)∆t =

∫b
a

f(t)dt; (2.1)

(ii) if T = Z, then

σ(t) = t+ 1,µ(t) = 1, f∆t = ∆f(t),
∫b
a

f(t)∆t =

b−1∑
t=a

f(t); (2.2)

(iii) and if T = qN0 = {t : t = qk,k ∈N0,q > 1}, then

σ(t) = qt,µ(t) = (q− 1)t,
∫b
a

f(t)∆t = (q− 1)
logq(b)−1∑
k=logq(a)

qkf(qk), ∀a,b ∈ qN0 .

It can be shown (see [10]) that if g ∈ Crd(T), then the Cauchy integral G(t) :=
∫t
t0

g(s)∆s exists, t0 ∈ T,
and satisfies G∆(t) = g(t), t ∈ T. An infinite integral is defined as∫∞

a

f(t)∆(t) = lim
b→∞

∫b
a

f(t)∆t.

Now, we will give the definition of the generalized exponential functions and its derivatives. We say
that p : Tκ → R is regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ Tκ. We define < as the set of all
regressive and rd-continuous functions, and define the set <+ the set of all positive elements of <, that
is <+ = {p ∈ < : 1 + µ(t)p(t) > 0,∀t ∈ T}. The set of all regressive functions on a time scale T forms an
Abelian group under the addition ⊕ defined by p⊕ q = p+ q+ µpq. If p ∈ <+, then we can define the
exponential function by

ep(t, s) = exp
( ∫t

s

ξµ(τ)(p(τ))∆τ

)
,∀t ∈ T, s ∈ Tκ,

where ξh(z) is the cylinder transformation, which is defined by

ξh(z) =

{
log(1+hz)

h , h 6= 0,
z, h=0.

If p ∈ <, then ep(t, s) is real-valued and nonzero on T. If p ∈ <+, then ep(t, t0) is always positive.
Note that

• if T = R, then,

ea(t, t0) = exp
(∫t
t0

a(s)ds

)
;

• if T = Z, then,

ea(t, t0) =

t−1∏
s=t0

(
1 + a(s)

)
; (2.3)
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• if T = qN0 , then,

ea(t, t0) =

t−1∏
s=t0

(
1 + (q− 1)sa(s)

)
.

In the following we present the basic lemmas that will be needed in the proof of our main results.

Lemma 2.1 ([10]). If p,q ∈ < and t0 ∈ T, then

1. ep(t, t) = 1 = e0(t, s);
2. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
3. if p ∈ <+, then ep(t, t0) > 0, ∀t ∈ T;

4.
∫b
a p(t)ep(c,σ(t))∆t = −

∫b
a(e

∆
p (c, ·)∆) = ep(c,a) − ep(c,b).

Lemma 2.2 ([10]). If p ∈ <, and fix t ∈ T, then the exponential function ep(t, t0) is the unique solution of the
following initial value problem: {

y∆(t) = p(t)y(t),
y(t0) = 1.

Lemma 2.3 ([10]). Let t0 ∈ Tκ and k : T×Tκ → R be continuous at (t, t), where t > t0, t ∈ Tκ. Assume that
k∆(t, .) is rd-continuous on [t0,σ(t)]. Suppose for any ε > 0, there exists a neighborhood U of t, independent of
τ ∈ [t0,σ(t)], such that

|[k(σ(t), τ) − k(s, τ)] − k∆(t, τ)[σ(t) − s]| 6 ε|σ(t) − s|, ∀s ∈ U.

If k∆ denotes the derivative of k with respect to the first variable, then

f(t) =

∫t
t0

k(t, τ)∆τ,

implies

f∆(t) =

∫t
t0

k∆(t, τ)∆τ+ k(σ(t), t).

Lemma 2.4 ([10]). Suppose u,b ∈ Crd,a ∈ <+, then

u∆(t) 6 a(t)u(t) + b(t), t > t0, t ∈ Tκ,

implies

u(t) 6 u(t0)ea(t, t0) +

∫t
t0

ea(t,σ(τ))b(τ)∆τ, t > t0, t ∈ Tκ.

Lemma 2.5 ([10, p.28, Theorem 1.76]). If f∆(t) > 0, then f(t) is nondecreasing.

Lemma 2.6 ([10, p.5, Theorem 1.16]). Assume that f : T→ R is delta differentiable at t ∈ Tκ. Then

fσ(x) = f(x) + µ(x)f∆(x).

Lemma 2.7 ([21, Young’s inequality]). If x > 0, y > 0 and 1
p + 1

q = 1 with p > 1, then

x
1
py

1
q 6

x

p
+
y

q
.

Now, we are ready to state and prove the main results in this paper.
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3. Main results

In this section, we will prove the main results. For convenience of notation, in the rest of this paper
we always assume that T0 = [t0,∞) ∩T, where t0 ∈ T, and always assume T0 ⊂ Tκ, and Z denotes the
set of integers.

Theorem 3.1. Let u, a, g, h, b, ξ, f ∈ Crd(T0, R+), k(t, s), k∆(t, s) ∈ Crd(T0×T0, R+), and p 6= 0, p > q > 0,
p > r > 0, p > m > 0, p, q, r, m be constants. If

up(t) 6 a(t) + b(t)
∫t
t0

[
g(ϕ1(s))u

q(ϕ1(s)) + h(ϕ2(s))u
r(ϕ2(s)) + k(t, s)

+

∫s
0
[f(ϕ3(τ))u

m(ϕ3(τ)) + ξ(τ)]∆τ

]
∆s,

with the initial condition {
u(t) = φ(t), if t ∈ [α, t0]∩T,
φ(ϕi(t)) 6 (a(t))

1/p, if ϕi(t) 6 t0, ∀t ∈ T0, i = 1, 2, 3,
(3.1)

where ϕi(t) ∈ (T0, T), ϕi(t) < t, −∞ < α = inf{ϕi(t), t ∈ T0} 6 t0, φ ∈ Crd([α, t0]∩T, R+), then

u(t) 6

{
a(t) + b(t)

∫t
t0

ζ1(s)eη1(t,σ(s))∆s
}1/p

(3.2)

for all t ∈ T0, where

η1(t) = b(t)

(
q

p
g(ϕ1(t)) +

r

p
h(ϕ2(t))

)
+
m

p

∫t
t0

f(ϕ3(τ))b(t, τ)∆τ, (3.3)

and

ζ1(t) = g(ϕ1(t))

(
p− q

p
+
q

p
a(t)

)
+h(ϕ2(t))

(
p− r

p
+
r

p
a(t)

)
+

∫t
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
∆τ+

∫t
t0

ξ(τ)∆τ+ k(σ(t), t) +
∫t
t0

k∆(t, τ)∆τ
(3.4)

for all t ∈ T0.

Proof. Fixing an arbitrary number T∗ ∈ T0, we define a function ω(t) by:

ω(t) =

[
a(T∗) + b(t)

∫t
t0

[
g(ϕ1(s))u

q(ϕ1(s)) + h(ϕ2(s))u
r(ϕ2(s)) + k(t, s)

+

∫s
0
[f(ϕ3(τ))u

m(ϕ3(τ)) + ξ(τ)]∆τ

]
∆s

]1/p

,

(3.5)

clearly, ω(t) is a nonnegative and nondecreasing function, and we have

u(t) 6 ω(t), t ∈ [t0, T∗]∩T. (3.6)

If ϕi(t) > t0 for t ∈ [t0, T∗]∩T, since ϕi(t) 6 t, we have ϕi(t) ∈ [t, T∗]∩T, and from (3.6), we have

u(ϕi(t)) 6 ω(ϕi(t)) 6 ω(t), i = 1, 2, 3.

If ϕi(t) 6 t0, from (3.1), we get

u(ϕi(t)) 6 ϕ(ϕi(t)) 6 ω(t)(t), i = 1, 2, 3. (3.7)
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So from (3.6) and (3.7), we always have

u(ϕi(t)) 6 ω(t), i = 1, 2, 3, ∀t ∈ [t0, T∗]∩T. (3.8)

It follows from (3.5), (3.6), and (3.8) that

ωp(t) 6 a(T∗) + b(t)
∫t
t0

[
g(ϕ1(s))ω

q(ϕ1(s)) + h(ϕ2(s))ω
r(ϕ2(s)) + k(t, s)

+

∫s
0
[f(ϕ3(τ))ω

m(ϕ3(τ)) + ξ(τ)]∆τ

]
∆s

6 a(T∗) + b(t)
∫t
t0

[
g(ϕ1(s))ω

q(s) + h(ϕ2(s))ω
r(s) + k(t, s)

+

∫s
0
[f(ϕ3(τ))ω

m(τ) + ξ(τ)]∆τ

]
∆s

(3.9)

for all t ∈ [t0, T∗]∩T. By taking t = T∗, we get

ωp(T∗) 6 a(T∗) + b(T∗)
∫T∗
t0

[
g(ϕ1(s))ω

q(s) + h(ϕ2(s))ω
r(s) + k(T∗, s)

+

∫s
0
[f(ϕ3(τ))ω

m(τ) + ξ(τ)]∆τ

]
∆s

for all t ∈ [t0, T∗]∩T. But we know that T∗ ∈ T0 is arbitrary, from (3.9), we have

ωp(t) 6 a(t) + b(t)
∫t
t0

[
g(ϕ1(s))ω

q(s) + h(ϕ2(s))ω
r(s) + k(t, s)

+

∫s
t0

[f(ϕ3(τ))ω
m(τ) + ξ(τ)]∆τ

]
∆s

(3.10)

for all t ∈ T0. Similarly to (3.8), we have

u(t) 6 ω(t), ∀t ∈ T0. (3.11)

Define a function z(t) by

z(t) =

∫t
t0

[
g(ϕ1(s))ω

q(s) + h(ϕ2(s))ω
r(s) + k(t, s) +

∫s
t0

[f(ϕ3(τ))ω
m(τ) + ξ(τ)]∆τ

]
∆s (3.12)

for all t ∈ T0. Clearly z(t) > 0 nondecreasing function with z(t0) = 0. We can write (3.10) as the following:

ωp(t) 6 a(t) + b(t)z(t), ∀t ∈ T0. (3.13)

From (3.13) and using Lemma 2.7, we get

ωq(t) 6

(
a(t) + b(t)z(t)

)q/p(
1
)(p−q)/p

6
p− q

p
+
q

p
a(t) +

q

p
b(t)z(t), ∀t ∈ T0, (3.14)

ωr(t) 6

(
a(t) + b(t)z(t)

)r/p(
1
)p−r/p

6
p− r

p
+
r

p
a(t) +

r

p
b(t)z(t), ∀t ∈ T0, (3.15)

ωm(t) 6

(
a(t) + b(t)z(t)

)m/p(
1
)p−m/p

6
p−m

p
+
m

p
a(t) +

m

p
b(t)z(t), ∀t ∈ T0. (3.16)
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By differentiating (3.12), and Lemma 2.3, we obtain

z∆(t) =

[
g(ϕ1(t))ω

q(t) + h(ϕ2(t))ω
r(t) +

∫t
t0

[f(ϕ3(τ))ω
m(τ) + ξ(τ)]∆τ

+ k(σ(t), t) +
∫t
t0

k∆(t, s)∆s
] (3.17)

for all t ∈ T0. From (3.17) and using (3.14), (3.15), (3.16), and using Lemma 2.3, we get

z∆(t) 6

[
g(ϕ1(t))

(
p− q

p
+
q

p
a(t) +

q

p
b(t)z(t)

)
+ h(ϕ2(t))

(
p− r

p
+
r

p
a(t) +

r

p
b(t)z(t)

)
+

∫t
t0

[f(ϕ1(τ))

(
p−m

p
+
m

p
a(τ) +

m

p
b(τ)z(τ)

)
+ξ(τ)]∆τ+ k(σ(t), t) +

∫t
t0

k∆(t, τ)∆τ
]

6

[
b(t)

(
q

p
g(ϕ1(t)) +

r

p
h(ϕ2(t))

)
+
m

p

∫t
t0

f(ϕ3(τ))b(τ)dτ

]
z(t)

+

[
g(ϕ1(t))

(
p− q

p
+
q

p
a(t)

)
+h(ϕ2(t))

(
p− r

p
+
r

p
a(t)

)
+

∫t
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
∆τ+

∫t
t0

ξ(τ)∆τ+ k(σ(t), t) +
∫t
t0

k∆(t, τ)∆τ
]

= η1(t)z(t) + ζ1(t)

(3.18)

for all t ∈ T0, where η1 and ζ1 are defined as in (3.3) and (3.4), respectively. Now by a suitable application
of Lemma 2.4 with z(t0) = 0, the inequality (3.18) gives us the following estimation

z(t) 6
∫t
t0

ζ1(s)ζ1(s)eη1(t,σ(s))∆s (3.19)

for all t ∈ T0, we get the required inequality (3.2) from (3.11), (3.13), and (3.19). This completes the
proof.

Theorem 3.2. In Theorem 3.1, let â ∈ Crd(T0, R+) be a nondecreasing function. If

up(t) 6 âp(t) + b(t)
∫t
t0

[
g(ϕ1(s))u

q(ϕ1(s)) + h(ϕ2(s))u
r(ϕ2(s)) + k(t, s)

+

∫s
t0

[f(ϕ3(τ))u
m(ϕ3(τ)) + ξ(τ)]∆τ

]
∆s,

(3.20)

with the initial condition {
u(t) = φ(t), if t ∈ [α, t0]∩T,
φ(ϕi(t)) 6 â(t), if ϕi(t) 6 t0, ∀t ∈ T0, i = 1, 2, 3,

where ϕi(t) ∈ (T0, T), ϕi(t) < t, −∞ < α = inf{ϕi(t), t ∈ T0} 6 t0, φ ∈ Crd([α, t0]∩T, R+), then

u(t) 6 â(t)

{
1 + b(t)

∫t
t0

ζ̂1(s)eη̂1(t,σ(s))∆s
}1/p

(3.21)

for all t ∈ T0, where

η̂1(t) = b(t)

(
q

p
g(ϕ1(t))â

q−p(t) +
r

p
h(ϕ2(t))a

r−p(t)

)
+
m

p

∫t
t0

f(ϕ3(τ))â
m−p(t)b(τ)∆τ,



A. A. El-Deeb, W.-S. Cheung, J. Nonlinear Sci. Appl., 11 (2018), 1185–1206 1194

and

ζ̂1(t) = g(ϕ1(t))â
q−p(t) + h(ϕ2(t))â

r−p(t) +

∫t
t0

f(ϕ3(τ))â
m−p(τ)∆τ

+

∫t
t0

ξ(τ)â−p(τ)∆τ+ k(σ(t)â−p(t), t) +
∫t
t0

k∆(t, τ)â−p(τ)∆τ

for all t ∈ T0.

Proof. Since c(t) > 0 and nondecreasing, by the previous discussion in Theorem 3.1, we can write (3.20)
in the following form(

ω(t)

â(t)

)p
6 1 + b(t)

∫t)
t0

[
g(ϕ1(s))â

q−p(s)

(
ω(s)

â(s)

)q
+h(ϕ2(s))â

r−p(s)

(
ω(s)

â(s)

)r
+ â−p(t)k(t, s) +

∫s
t0

[f(ϕ3(τ))â
m−p(τ)

(
ω(τ)

â(τ)

)m
+â−p(t)ξ(s)∆τ

]
∆s.

By using the inequality proved in Theorem 3.1, we get the desired inequality in (3.21). This completes the
proof.

As a special case of Theorem 3.1 when T = R, we have the relation (2.1) and then we get the following
result.

Corollary 3.3. Let u, a, g, h, b, ξ, f ∈ C(I, R+), k(t, s), k∆(t, s) ∈ C(I× I, R+), and p 6= 0, p > q > 0,
p > r > 0, p > m > 0, p, q, r, m be constants. If

up(t) 6 a(t) + b(t)
∫t
t0

[
g(ϕ1(s))u

q(ϕ1(s)) + h(ϕ2(s))u
r(ϕ2(s)) + k(t, s)

+

∫s
0
[f(ϕ3(τ))u

m(ϕ3(τ)) + ξ(τ)]dτ

]
ds,

with the initial condition {
u(t) = φ(t), if t ∈ [α, t0]∩T,
φ(ϕi(t)) 6 (a(t))

1/p, if ϕi(t) 6 t0,∀t ∈ T0, i = 1, 2, 3,

where ϕi(t) ∈ (I, I), ϕi(t) < t, −∞ < α = inf{ϕi(t), t ∈ I} 6 t0, φ ∈ C(I, R+), then

u(t) 6

{
a(t) + b(t)

∫t
t0

exp
(∫s
t0

ζ̃1(s)η̃1(λ)dλ

)
ds

}1/p

for all t ∈ I, where

η̃1(t) = b(t)

(
q

p
g(ϕ1(t)) +

r

p
h(ϕ2(t))

)
+
m

p

∫t
t0

f(ϕ3(τ))b(τ)dτ,

and

ζ̃1(t) = g(ϕ1(t))

(
p− q

p
+
q

p
a(t)

)
+h(ϕ2(t))

(
p− r

p
+
r

p
a(t)

)
+

∫t
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
dτ+

∫t
t0

ξ(τ)dτ+ k(t, t) +
∫t
t0

∂

∂t
k(t, τ)dτ

for all t ∈ I.
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Remark 3.4. It is interesting to note that as a special case, if we put k(t, s) = 0, f(t) = 0, ξ(t) = 0, r = 1,
and ϕ1(t) = ϕ2(t) = t, then the inequality given in Corollary 3.3 reduces to the inequality given in [25,
Theorem 1 (a1)].

Remark 3.5. It is interesting to note that as a special case, if T = R, k(t, s) = 0, f(t) = 0, ξ(t) = 0, r = 1
and ϕ1(t) = ϕ2(t) = t, then the inequality given in Theorem 3.2 reduces to the inequality given in [25,
Theorem 1 (a2)].

Remark 3.6. It is interesting to note that as a special case, if we put t0 = 0 , k(t, s) = ĥ(s), f(t) = 0, ξ(t) = 0,
and ϕ1(t) = t− τ, with τ > 0, ϕ2(t) = t, then Corollary 3.3 reduces to [16, Theorem 1].

As a special case of Theorem 3.1, if T = Z and using the relations (2.2) and (2.3), we obtain the
following discrete result.

Corollary 3.7. Assume that u(n), g(n), h(n), f(n), a(n), b(n) are nonnegative sequences defined on N0, and
k(n, s), ∆1k(n, s) are nonnegative sequences defined on E = {(m,n) ∈ N2

0 : 0 6 n 6 m < ∞}. If u(n) satisfies
the following delay discrete inequality

up(n) 6 a(n) + b(n)
n−1∑
s=0

[
g(s− λ1))u

q(s− λ1)) + h(s− λ2)u
r(s− λ2) + k(n, s)

+

s−1∑
τ=0

[f(τ− λ3)u
m(τ− λ3) + ξ(τ)]

]
, ∀n ∈N0,

with the initial condition{
u(n) = φ(n), if n ∈ {−λi, . . . ,−1, 0}, i = 1, 2, 3,
φ(n− λi) 6 (a(t))

1/p, if n ∈N0, n− λi 6 0, i = 1, 2, 3,

where p, q, r, m and λi are constants, p 6= 0, p > q > 0, p > r > 0, p > m > 0, λi ∈ N0, ϕ(n) ∈ R+,
n ∈ {−λi, . . . ,−1, 0}, then

u(n) 6

{
a(n) + b(n)

n−1∑
s=0

ζ̄1(s)

s−1∏
τ=0

[1 + η̄1(τ)]

}1/p

for all n ∈N0, where

η̄1(n) = b(n)

(
q

p
g(n− λ1) +

r

p
h(n− λ2)

)
+
m

p

n−1∑
s=0

f(s− λ3)b(n),

and

ζ̄1(n) = g(n− λ1)

(
p− q

p
+
q

p
a(n)

)
+h(n− λ2)

(
p− r

p
+
r

p
a(n)

)
+

n−1∑
s=0

f(s− λ1)

(
p−m

p
+
m

p
a(s)

)
+k(n+ 1,n) +

n−1∑
s=0

∆k(n, s) +
n−1∑
s=0

ξ(s)

for all n ∈N0.

Remark 3.8. It is interesting to note that as a special case, if we put k(n, s) = 0, f(n) = 0, ξ(n) = 0, r = 1
and λ1 = λ2 = 0, then the inequality given in Corollary 3.7 reduces to the inequality given in [25, Theorem
3(c1)].

Remark 3.9. It is interesting to note that as a special case, if T = Z and using the relations (2.2) and (2.3),
if we put k(n, s) = 0, f(n) = 0, ξ(n) = 0, r = 1 and λ1 = λ2 = 0, then the inequality given in Theorem 3.2
reduces to the inequality given in [25, Theorem 3(c2)].
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Remark 3.10. It is interesting to note that as a special case, if we put k(n, s) = ĥ(n), f(n) = 0, ξ(n) = 0,
and ϕ1(n) = n− τ, with τ > 0, ϕ2(n) = n, then Corollary 3.7 reduces to [16, Theorem 3].

Theorem 3.11. Let u, a, g, h, ξ, b, f ∈ Crd(T0, R+), and k(t, s), k∆(t, s) ∈ Crd(T0 ×T0, R+), and p 6= 0,
p > q > 0, p > r > 0, p > m > 0, p, q, r, m be constants. If

up(t) 6 a(t) + b(t)
∫t
t0

k(t, s)
[
g(ϕ1(s))u

q(ϕ1(s)) + h(ϕ2(s))u
r(ϕ2(s))

+

∫s
0
[f(ϕ3(τ))u

m(ϕ3(τ)) + ξ(τ)]∆τ

]
∆s,

with the initial condition {
u(t) = φ(t), if t ∈ [α, t0]∩T,
φ(ϕi(t)) 6 (a(t))

1/p, if ϕi(t) 6 t0,∀t ∈ T0, i = 1, 2, 3,

where ϕi(t) ∈ (T0, T), ϕi(t) < t, −∞ < α = inf{ϕi(t), t ∈ T0} 6 t0, φ ∈ Crd([α, t0]∩T, R+), then

ω(t) 6
{
a(t) + b(t)

∫t
t0

eη2(t,σ(s))ζ2(s)∆s
}1/p

(3.22)

for all t ∈ T0, where

η2(t) = k(σ(t), t)
[
b(t)

(
q

p
g(ϕ1(t)) +

r

p
h(ϕ2(t))

)
+
m

p

∫t
t0

f(ϕ3(τ))b(τ)∆τ

]
+

∫t
t0

k∆(t, s)
(
b(t)

(
q

p
g(ϕ1(s)) +

r

p
h(ϕ2(s))

)
+
m

p

∫s
t0

f(ϕ3(τ))b(τ)∆τ

)
∆s,

(3.23)

and

ζ2(t) = k(σ(t), t)
[
g(ϕ1(t))

(
p− q

p
+
q

p
a(t)

)
+h(ϕ2(t))

(
p− r

p
+
r

p
a(t)

)
+

∫t
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
∆τ+

∫t
t0

ξ(τ)∆τ

]
+

∫t
t0

k∆(t, s)
[
g(ϕ1(s))

(
p− q

p
+
q

p
a(s)

)
+h(ϕ2(s))

(
p− r

p
+
r

p
a(s)

)
+

∫s
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
+

∫t
t0

ξ(τ)∆τ

]
∆s.

(3.24)

Proof. Fixing an arbitrary number T∗ ∈ T0, we define a function ω(t) by:

ω(t) =

[
a(T∗) + b(t)

∫t
t0

k(t, s)
[
g(ϕ1(s))u

q(ϕ1(s)) + h(ϕ2(s))u
r(ϕ2(s))

+

∫s
0
[f(ϕ3(τ))u

m(ϕ3(τ)) + ξ(τ)]∆τ

]
∆s

]1/p

.

Similar to the proof of Theorem 3.1, we easily obtain that ω(t) is a nonnegative and nondecreasing
function, and we have

u(t) 6 ω(t), t ∈ T0,
u(ϕi(t)) 6 ω(t), t ∈ T0, i = 1, 2, 3,

(3.25)
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and

ωp(t) 6 a(t) + b(t)
∫t
t0

k(t, s)
[
g(ϕ1(s))ω

q(s) + h(ϕ2(s))ω
r(s)

+

∫s
t0

[f(ϕ3(τ))ω
m(τ) + ξ(τ)]∆τ

]
∆s.

(3.26)

Define a function z(t) by

z(t) =

∫t
t0

k(t, s)
[
g(ϕ1(s))ω

q(s) + h(ϕ2(s))ω
r(s) +

∫s
t0

[f(ϕ3(τ))ω
m(τ) + ξ(τ)]∆τ

]
∆s, (3.27)

then z(t) > 0, and is nondecreasing with z(t0) = 0. As in the proof of Theorem 3.1, from (3.26), we see
that the inequalities (3.14), (3.15), and (3.16) hold. By differentiating (3.27), and by using Lemma 2.3, we
obtain

z∆(t) =

∫t
t0

k∆(t, s)
[
g(ϕ1(s))ω

q(s) + h(ϕ2(s))ω
r(s)

+

∫s
t0

[f(ϕ3(τ))ω
m(τ) + ξ(τ)]∆τ

]
∆s

+ k(σ(t), t)
[
g(ϕ1(t))ω

q(t) + h(ϕ2(t))ω
r(t) +

∫t
t0

[f(ϕ3(τ))ω
m(τ) + ξ(τ)]∆τ

] (3.28)

for all t ∈ T0. From (3.28), and using (3.14), (3.15), and (3.16), we get

z∆(t) 6

[
k(σ(t), t)

[
b(t)

(
q

p
g(ϕ1(t)) +

r

p
h(ϕ2(t))

)
+
m

p

∫t
t0

f(ϕ3(τ))b(τ)∆τ

]
+

∫t
t0

k∆(t, s)
(
b(t)

(
q

p
g(ϕ1(s)) +

r

p
h(ϕ(s))

)
+
m

p

∫s
t0

f(ϕ3(τ))b(τ)∆τ

)
∆s

]
z(t)

+ k(σ(t), t)
[
g(ϕ1(t))

(
p− q

p
+
q

p
a(t)

)
+h(ϕ2(t))

(
p− r

p
+
r

p
a(t)

)
+

∫t
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
∆τ+

∫t
t0

ξ(τ)∆τ

]
+

∫t
t0

k∆(t, s)
[
g(ϕ1(s))

(
p− q

p
+
q

p
a(s)

)
+h(ϕ2(s))

(
p− r

p
+
r

p
a(s)

)
+

∫s
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
∆τ+

∫t
t0

ξ(τ)∆τ

]
∆s

= η2(t)z(t) + ζ2(t), ∀t ∈ T0,

(3.29)

where η2(t) and ζ2(t) are defined in (3.23) and (3.24), respectively. From the inequality (3.29) and by using
Lemma 2.4 with z(t0) = 0, the inequality (3.29) gives us the following estimation

z(t) 6
∫t
t0

eη2(t,σ(s))ζ2(s)∆s, ∀t ∈ T0. (3.30)

By using (3.30) in ωp(t) 6 a(t) + b(t)z(t), we get the required inequality in (3.22). This completes the
proof.



A. A. El-Deeb, W.-S. Cheung, J. Nonlinear Sci. Appl., 11 (2018), 1185–1206 1198

Theorem 3.12. In Theorem 3.11, let â ∈ Crd(T0, R+) be a nondecreasing function. If

up(t) 6 âp(t) + b(t)
∫t
t0

k(t, s)
[
g(ϕ1(s))u

q(ϕ1(s)) + h(ϕ2(s))u
r(ϕ2(s))

+

∫s
t0

[f(ϕ3(τ))u
m(ϕ3(τ)) + ξ(τ)]∆τ

]
∆s

(3.31)

for all t ∈ T0, with the initial condition{
u(t) = φ(t), if t ∈ [α, t0]∩T,
φ(ϕi(t)) 6 â(t), if ϕi(t) 6 t0,∀t ∈ T0, i = 1, 2, 3,

where ϕi(t) ∈ (T0, T), ϕi(t) < t, −∞ < α = inf{ϕi(t), t ∈ T0} 6 t0, φ ∈ Crd([α, t0]∩T, R+), then

u(t) 6 â(t)

{
1 + b(t)

∫t
t0

eη̂2(t,σ(s))ζ̂2(s)∆s

}1/p

(3.32)

for all t ∈ T0, where

η̂2(t) = k(σ(t), t)
[
b(t)

(
q

p
g(ϕ1(t))â

q−p(t) +
r

p
h(ϕ2(t))â

r−p(t)

)
+
m

p

∫t
t0

f(ϕ3(τ))â
m−p(τ)b(τ)∆τ

]
+

∫t
t0

k∆(t, s)
(
b(t)

(
q

p
g(ϕ1(s))â

q−p(s) +
r

p
h(ϕ2(s))â

r−p(s)

)
+
m

p

∫s
t0

f(ϕ3(τ))â
m−p(τ)b(τ)∆τ

)
∆s,

and

ζ̂2(t) = k(σ(t), t)
[
g(ϕ1(t))â

q−p(t) + h(ϕ2(t))â
r−p(t)

+

∫t
t0

f(ϕ3(τ))â
m−p(τ)dτ+

∫t
t0

â−pξ(τ)∆τ

]
+

∫t
t0

k∆(t, s)
[
g(ϕ1(s))â

q−p(s) + h(ϕ2(s))â
r−p(s)

+

∫s
t0

f(ϕ3(τ))â
m−p(τ)∆τ

]
∆s+

∫t
t0

â−pξ(τ)∆τ

for all t ∈ T0.

Proof. Since â(t) > 0 and nondecreasing, as the previous discussion in Theorem (3.11), we can write (3.31)
as in the following form(

ω(t)

â(t)

)p
6 1 + b(t)

∫t
t0

k(t, s)
[
g(ϕ1(s))â

q−p(s)

(
ω(s)

a(s)

)q
+h(ϕ2(s))â

r−p(s)

(
ω(s)

â(s)

)r
+

∫s
0
[f(ϕ3(τ))â

m−p(τ)

(
ω(τ)

â(τ)

)m
+â−pξ(τ)]∆τ

]
ds

for all t ∈ T0. Applying the inequality given in Theorem 3.11 yields the desired result in (3.32). This
completes the proof.
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As a special case of Theorem 3.11 when T = R we have the relation (2.1) and then we get the following
result.

Corollary 3.13. Let u, a, g, h, ξ, b, f ∈ C(I, R+), k(t, s), k∆(t, s) ∈ C(I× I, R+), and p 6= 0, p > q > 0,
p > r > 0, p > m > 0, p, q, r, m be constants. If

up(t) 6 a(t) + b(t)
∫t
t0

k(t, s)
[
g(ϕ1(s))u

q(ϕ1(s)) + h(ϕ2(s))u
r(ϕ2(s))

+

∫s
0
[f(ϕ3(τ))u

m(ϕ3(τ)) + ξ(τ)]dτ

]
ds,

with the initial condition {
u(t) = φ(t), if t ∈ [α, t0]∩T,
φ(ϕi(t)) 6 (a(t))

1/p, if ϕi(t) 6 t0,∀t ∈ T0, i = 1, 2, 3,

where ϕi(t) ∈ (I, I), ϕi(t) < t, −∞ < α = inf{ϕi(t), t ∈ I 6 t0, φ ∈ C(I, R+), then

ω(t) 6 a(t) + b(t)
∫t
t0

ζ̃2(s) exp
(∫s
t0

η̃2(τ)dτ

)
ds

for all t ∈ I, where

η̃2(t) = k(t, t)
[
b(t)

(
q

p
g(ϕ1(t)) +

r

p
h(ϕ2(t))

)
+
m

p

∫t
t0

f(ϕ3(τ))b(τ)dτ

]
+

∫t
t0

∂

∂t
k(t, s)

(
b(t)

(
q

p
g(ϕ1(s)) +

r

p
h(ϕ2(s))

)
+
m

p

∫s
t0

f(ϕ3(τ))b(τ)dτ

)
ds,

and

ζ̃2(t) = k(t, t)
[
g(ϕ1(t))

(
p− q

p
+
q

p
a(t)

)
+h(ϕ2(t))

(
p− r

p
+
r

p
a(t)

)
+

∫t
t0

(
f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
dτ+ ξ(τ)

)
dτ

]
+

∫t
t0

k∆(t, s)
[
g(ϕ1(s))

(
p− q

p
+
q

p
a(s)

)
+h(ϕ2(s))

(
p− r

p
+
r

p
a(s)

)
+

∫s
t0

(
f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
+ξ(τ)

)
dτ

]
ds.

Remark 3.14. It is interesting to note that as a special case, if we put f(t) = 0, ξ(t) = 0, r = 1, b(t) = b(t),
and ϕ1(t) = ϕ2(t) = t, then the inequality given in Corollary 3.13 reduces to the inequality given in [25,
Theorem 1 (a3)].

As a special case of Theorem 3.11, if T = Z and using the relations (2.2) and (2.3), we obtain the
following discrete result.

Corollary 3.15. Assume that u(n), g(n), h(n), b(n), f(n), a(n) are nonnegative sequences defined on N0, and
k(n, s), ∆1k(n, s) are nonnegative sequences defined on E = {(m,n) ∈ N2

0 : 0 6 n 6 m < ∞1}. If u(n) satisfies
the following delay discrete inequality

up(n) 6 a(n) + b(n)
n−1∑
s=0

k(n, s)
[
g(s− λ1))u

q(s− λ1)) + h(s− λ2)u
r(s− λ2)
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+

s−1∑
τ=0

[f(τ− λ3)u
m(τ− λ3) + ξ(τ)]

]
, ∀n ∈N0,

with the initial condition{
u(n) = φ(n), if n ∈ {−λi, . . . ,−1, 0}, i = 1, 2, 3,
φ(n− λi) 6 (a(t))

1/p, if n ∈N0, n− λi 6 0, i = 1, 2, 3,

where p, q, r, m and λi are constants, p 6= 0, p > q > 0, p > r > 0, p > m > 0, λi ∈ N0, ϕ(n) ∈ R+,
n ∈ {−λi, . . . ,−1, 0}, then

u(n) 6

{
a(n) + b(n)

n−1∑
s=0

ζ̄2(s)

s−1∏
τ=0

[1 + η̄2(τ)]

}1/p

for all n ∈N0, where

η̄2(t) = k(n+ 1,n)
[
b(n)

(
q

p
g(n− λ1) +

r

p
h(n− λ2)

)
+
m

p

n−1∑
s=0

f(s− λ3)b(n)

]

+

n∑
s=1

∆k(n, s)
(
b(n)

(
q

p
g(s− λ1) +

r

p
h(s− λ2)

)
+
m

p

s−1∑
τ=0

f(τ− λ3)b(τ)

)
,

and

ζ̄2(t) = k(n+ 1,n)
[
g(n− λ1)

(
p− q

p
+
q

p
a(n)

)
+h(n− λ2)

(
p− r

p
+
r

p
a(n)

)
+

n−1∑
s=0

(
f(s− λ3)

(
p−m

p
+
m

p
a(s)

)
+ξ(s)

)]

+

n−1∑
s=0

∆k(n, s)
[
g(s− λ1)

(
p− q

p
+
q

p
a(s)

)
+h(s− λ2)

(
p− r

p
+
r

p
a(s)

)

+

s−1∑
τ=0

(
f(τ− λ3)

(
p−m

p
+
m

p
a(τ)

)
+ξ(τ)dτ

)]
.

Remark 3.16. It is interesting to note that as a special case, if we put f(n) = 0, ξ(n) = 0, r = 1, and
λ1 = λ2 = 0, then the inequality given in Corollary 3.15 reduces to the inequality given in [25, Theorem 3
(c3)].

Theorem 3.17. Let u, a, g, ξ, b, f ∈ Crd(T0, R+), and k(t, s), k∆(t, s) ∈ Crd(T0, R+) p 6= 0, p > q > 0,
p > r > 0, p > m > 0, p, q, r, m be constants, and L ∈ Crd(T0 ×R+, R+) such that

0 6 L(t, x) − L(t,y) 6M(t,y)(x− y), ∀t ∈ T0, (3.33)

where n ∈ Crd(T0 ×R+, R+), and x > 0, y > 0. If

u(t) 6 a(t) + b(t)
∫t
t0

[
g(ϕ1(s))u

q(ϕ1(s)) + L(s,ur(ϕ2(s))) + k(t, s)

+

∫s
t0

[f(ϕ3(τ))u
m(ϕ3(τ)) + ξ(τ)]∆τ

]
∆s,

(3.34)

with the initial condition {
u(t) = φ(t), if t ∈ [α, t0]∩T,
φ(ϕi(t)) 6 a(t), if ϕi(t) 6 t0,∀t ∈ T0, i = 1, 2, 3, (3.35)
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where ϕi(t) ∈ (T0, T), ϕi(t) < t, −∞ < α = inf{ϕi(t), t ∈ T0} 6 t0, φ ∈ Crd([α, t0]∩T, R+), then

u(t) 6 a(t) + b(t)
∫t
t0

ζ4(s)eη4(t,σ(s))ζ4(s)∆s (3.36)

for all t ∈ T0, where

η4(t) =
q

p
g(ϕ1(t))b(t) +

r

p
n

(
t,
p− r

p
+
r

p
a(t)

)
b(t) +

m

p

∫t
t0

f(ϕ3(τ))b(t, τ)∆τ, (3.37)

and

ζ4(t) = g(ϕ1(t))

(
p− q

p
+
q

p
a(t)

)
+L

(
t,
p− r

p
+
r

p
a(t)

)
+

∫t
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
∆τ

+

∫t
t0

ξ(τ)∆τ+ k(σ(t), t) +
∫t
t0

k∆(t, τ)∆τ
(3.38)

for all t ∈ T0.

Proof. Fixing an arbitrary number T∗ ∈ T0, we define a function ω(t) by:

ω(t) =

[
a(T∗) + b(t)

∫t
t0

[
g(ϕ1(s))u

q(ϕ1(s)) + L(s,ur(ϕ2(s))) + k(t, s)

+

∫s
t0

[f(ϕ3(τ))u
m(ϕ3(τ)) + ξ(τ)]∆τ

]
∆s

]1/p

.

Similar to the proof of Theorem 3.1 with the initial condition (3.35), we easily obtain that ω(t) is a
nonnegative and nondecreasing function, and we have

u(t) 6 ω(t), t ∈ T0,
u(ϕi(t)) 6 ω(t), t ∈ T0, i = 1, 2, 3,

and

ω(t) 6 a(t) + b(t)
∫t
t0

[
g(ϕ1(s))ω

q(s) + h(s,ωr(s)) + k(t, s) +
∫s
t0

[f(ϕ3(τ))ω
m(τ) + ξ(τ)]∆τ

]
∆s.

Define a function z(t) by

z(t) =

∫t
t0

[
g(ϕ1(s))ω

q(s) + L(s,ωr(s)) + k(t, s)

+

∫s
t0

[f(ϕ3(τ))ω
m(τ) + ξ(τ)]∆τ

]
∆s.

(3.39)

Then z(t) > 0, and is a nondecreasing function with z(t0) = 0. As in the proof of Theorem 3.1 from (3.34),
we see that the inequalities (3.14), (3.15), and (3.16) hold. By differentiating (3.39), and using Lemma 2.3,
we obtain

z∆(t) =

[
g(ϕ1(t))ω

q(t) + L(t,ωr(t)) +
∫t
t0

[f(ϕ3(τ))ω
m(τ) + ξ(τ)]∆τ+ k(σ(t), t) +

∫t
t0

k∆(t, τ)∆τ
]

(3.40)
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for all t ∈ T0. From (3.40) and using (3.14), (3.15), (3.16), and (3.33), we have

z∆(t) 6

[
g(ϕ1(t))

(
p− q

p
+
q

p
a(t) +

q

p
b(t)z(t)

)
+L

(
t,
p− r

p
+
r

p
a(t) +

r

p
b(t)z(t)

)
− L

(
t,
p− r

p
+
r

p
a(t)

)
+L

(
t,
p− r

p
+
r

p
a(t)

)
+

∫t
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ) +

m

p
b(τ)z(τ)

)
∆τ

+

∫t
t0

ξ(τ)∆τ+ k(σ(t), t) +
∫t
t0

k∆(t, τ)∆τ
]

6

[
q

p
g(t)b(t) +

r

p
n

(
t,
p− r

p
+
r

p
a(t)

)
b(t)

+
m

p

∫t
t0

f(τ)b(τ)∆τ

]
z(t)+

[
g(ϕ1(t))

(
p− q

p
+
q

p
a(t)

)
+ L

(
t,
p− r

p
+
r

p
a(t)

)
+

∫t
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
∆τ

+

∫t
t0

ξ(τ)∆τ+ k(σ(t), t) +
∫t
t0

k∆(t, τ)∆τ
]

= η4(t)z(t) + ζ4(t), ∀t ∈ T0,

(3.41)

where η4(t) and ζ4(t) are defined in (3.37) and (3.38), respectively. From the inequality (3.41) and by using
Lemma 2.4 with z(t0) = 0 we get,

z(t) 6
∫t
t0

ζ4(s)eη4(t,σ(s))ζ4(s)∆s (3.42)

for all t ∈ T0. By using (3.42) in ωp(t) 6 a(t) + b(t)z(t), the required inequality in (3.36) follows. This
completes the proof.

As a special case of Theorem 3.1, when T = R we have the relation (2.1) and we get the following
result.

Corollary 3.18. Let u, a, g, h, b, ξ, f ∈ C(I, R+), and k(t, s), k∆(t, s) ∈ C(I× I, R+), p 6= 0, p > q > 0,
p > r > 0, p > m > 0, p, q, r, m be constants, and L ∈ C(I×R+, R+) such that

0 6 L(t, x) − L(t,y) 6M(t,y)(x− y),∀t ∈ I,

where M ∈ C(I×R+, R+), and x > 0, y > 0. If

u(t) 6 a(t) + b(t)
∫t
t0

[
g(ϕ1(s))u

q(ϕ1(s)) + L(t,ur(ϕ2(s))) + k(t, s)

+

∫s
t0

[f(ϕ3(τ))u
m(ϕ3(τ)) + ξ(τ)]dτ

]
ds,

with the initial condition {
u(t) = φ(t), if t ∈ [α, t0]∩T,
φ(ϕi(t)) 6 a(t), if ϕi(t) 6 t0,∀t ∈ T0, i = 1, 2, 3,

where ϕi(t) ∈ (I, I), ϕi(t) < t, −∞ < α = inf{ϕi(t), t ∈ I 6 t0, φ ∈ C(I, R+), then

u(t) 6

{
a(t) + b(t)

∫t
t0

η̃4 exp
(∫s
t0

(λ)dλ

)
ζ̃4(s)ds

}1/p
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for all t ∈ I, where

η̃4(t) =
q

p
g(ϕ1(t))b(t) +

r

p
M

(
t,
p− r

p
+
r

p
a(t)

)
b(t) +

m

p

∫t
t0

f(ϕ3(τ))b(τ)dτ,

and

ζ̃4(t) = g(ϕ1(t))

(
p− q

p
+
q

p
a(t)

)
+L

(
t,
p− r

p
+
r

p
a(t)

)
+

∫t
t0

f(ϕ3(τ))

(
p−m

p
+
m

p
a(τ)

)
dτ

+

∫t
t0

ξ(τ)∆τ+ k(σ(t), t) +
∫t
t0

∂

∂t
k(t, τ)dτ

for all t ∈ I.

Remark 3.19. It is interesting to note that as a special case, if we put k(t, s) = 0, f(t) = 0, ξ(t) = 0, g(t) = 0,
ϕ2(t) = t, and r = 1 then Corollary 3.18 reduces to [25, Theorem 2 (b1)].

Remark 3.20. It is interesting to note that as a special case, if we put t0 = 0, k(t, s) = 0, f(t) = 0, ξ(t) = 0,
g(t) = 0, ϕ2(t) = t− s with τ > 0, and r = 1 then Corollary 3.18 reduces to [16, Theorem 2].

As a special case of Theorem 3.1, if T = Z and using the relations (2.2) and (2.3), we obtain the
following discrete result.

Corollary 3.21. Assume that u(n), g(n), h(n), f(n), b(t), a(n) are nonnegative sequences defined on N0 and
k(n, s), ∆1k(n, s) are nonnegative sequences defined on E = {(m,n) ∈ N2

0 : 0 6 n 6 m < ∞}. Suppose
L : N0 ×R+ → R+ be a function such that

0 6 L(n, x) − L(n,y) 6M(n,y)(x− y),

for n ∈N0, x > y > 0, where M(n,y) is a real-valued nonnegative function defined for n ∈N0, y ∈ R+. If u(n)
satisfies the following delay discrete inequality

up(n) 6 a(n) + b(n)
n−1∑
s=0

[
g(s− λ1))u

q(s− λ1)) + L(s,ur(s− λ2)) + k(n, s)

+

s−1∑
τ=0

[f(τ− λ3)u
m(τ− λ3) + ξ(τ)]

]
,

for n ∈N0, with the initial condition{
u(n) = φ(n), if n ∈ {−λi, . . . ,−1, 0}, i = 1, 2, 3,
φ(n− λi) 6 a(t), if n ∈N0, n− λi 6 0, i = 1, 2, 3,

where p, q, r, m and λi are constants, p 6= 0, p > q > 0, p > r > 0, p > m > 0, λi ∈ N0, ϕ(n) ∈ R+,
n ∈ {−λi, . . . ,−1, 0}, then

u(n) 6

{
a(n) + b(n)

n−1∑
s=0

ζ̄4(s)

s−1∏
τ=0

[1 + η̄4(τ)

]
}

1/p

for all n ∈N0, where

η̄4(t) =
q

p
g(s− λ1)b(t) +

r

p
M

(
t,
p− r

p
+
r

p
a(t)

)
b(t) +

m

p

n−1∑
s=0

f(s− λ3)b(τ),
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and

ζ̄4(t) = g(n− λ1)

(
p− q

p
+
q

p
a(n)

)
+L

(
n,
p− r

p
+
r

p
a(n)

)
+

n−1∑
s=0

f(s− λ3)

(
p−m

p
+
m

p
a(s)

)

+

n−1∑
s=0

ξ(s) + k(n+ 1,n) +
n−1∑
s=0

∆1k(n, s)

for all n ∈N0.

Remark 3.22. It is interesting to note that as a special case, if we put k(n, s) = 0, f(n) = 0, ξ(n) = 0,
g(n) = 0, λ2 = n, and r = 1 then Corollary 3.21 reduces to [25, Theorem 4 (d1)].

Remark 3.23. It is interesting to note that as a special case, if we put t0 = 0 and put k(n, s) = 0, f(n) = 0,
ξ(n) = 0, b(n) = b(n), g(n) = 0, ϕ2(n) = n− τ, with τ > 0 and r = 1 then Corollary 3.21 reduces to [16,
Theorem 4].

4. Some applications

In this section, we will present some applications for the results which we have established above and
apply them to qualitative and quantitative analysis of solutions of certain delay dynamic equations on
time scales to which the inequalities available in the literature do not apply directly.

Example 4.1. Consider the following delay dynamic integral equation on time scales:

(up)∆(t) = Λ

(
t,u(t),u(ϕ(t),

∫t
t0

Ξ(ϕ(s),u(ϕ(s))∆s)
)

, t ∈ T0, (4.1)

with the initial condition {
u(t) = φ(t), t ∈ [α, t0]∩T,
φ(ϕ(t)) 6 |C|

1/p, ϕ(t) 6 t0,∀t ∈ T0,
(4.2)

where ϕ(t) ∈ (T0, T), ϕ(t) < t, −∞ < α = inf{ϕ(t), t ∈ T0} 6 t0, φ ∈ Crd([α, t0] ∩ T, R+), and
u ∈ C(T0, R+), Λ ∈ Crd(T0 ×R3, R), Ξ ∈ [α,∞]∩T×R, R) and C = up(t0).

Theorem 4.2. Assume that∣∣∣∣Λ(t,u(t),u(ϕ(t), ∫t
t0

Ξ(ϕ(s),u(ϕ(s)))∆s)
)∣∣∣∣ 6 g(ϕ(t))up(ϕ(t)) + h(ϕ(t))up(ϕ(t))

+ k(t, s) + Ξ(ϕ(t),u(ϕ(t))),
(4.3)

and
Ξ(ϕ(t),u(ϕ(t))) 6 f(ϕ(t))up(ϕ(t)) + ξ(t), (4.4)

where u, a, g, h, ξ, f ∈ Crd(T0, R+), k(t, s), k∆(t, s) ∈ Crd(T0 ×T0, R+), and p 6= 0, p > q > 0, p > r > 0,
p > m > 0, p, q, r, m are constants. If u is a solution of the retarded dynamic equation (4.1) satisfying the initial
condition (4.2), then

u(t) 6

{
C+

∫t
t0

δ(s)eγ(t,σ(s))∆s
}1/p

(4.5)

for all t ∈ T0, where

γ(t) =

(
q

p
g(ϕ(t)) +

r

p
h(ϕ(t))

)
+
m

p

∫t
t0

f(ϕ(τ))∆τ,
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and

δ(t) = g(ϕ(t))

(
p− q

p
+
qC

p

)
+h(ϕ(t))

(
p− r

p
+
rC

p

)
+

∫t
t0

f(ϕ(τ))

(
p−m

p
+
mC

p

)
∆τ

+

∫t
t0

ξ(τ)∆τ+ k(σ(t), t) +
∫t
t0

k∆(t, τ)∆τ

for all t ∈ T0.

Proof. Clearly, the solution u of Equation (2.7) with the initial Condition (4.2) satisfies the equivalent delay
dynamic equation on time scales

up(t) = C+

∫t
t0

Λ

(
s,u(s),u(ϕ(s),

∫s
t0

Ξ(ϕ(τ),u(ϕ(τ)))∆τ)
)
∆s (4.6)

for all t ∈ T0 with the initial Condition (4.2). In fact, from (4.6) and by using the assumptions (4.3) and
(4.4), we have

|up(t)| =

∣∣∣∣C+

∫t
t0

Λ

(
s,u(s),u(ϕ(s),

∫s
t0

Ξ(ϕ(τ)),u(ϕ(τ)))∆τ)
)
∆s

∣∣∣∣
6 |C|+

∫t
t0

∣∣∣∣Λ(s,u(s),u(ϕ(s), ∫s
t0

Ξ(ϕ(τ)),u(ϕ(τ)))∆τ)
)
∆s

∣∣∣∣
6 |C|+

∫t
t0

[
g(ϕ(s))|uq(ϕ(s))|+ h(ϕ(s))|ur(ϕ(s))|+ k(t, s)

+

∫s
t0

[f(ϕ(τ))|um(ϕ(τ))|+ ξ(τ)]∆τ

]
∆s,

(4.7)

with the initial condition (4.2). Then a suitable application of Theorem 3.1 (with ϕ1 = ϕ2 = ϕ3 = ϕ,
ap(t) = C and b(t) = 1) to (4.7), yields the desired Estimate (4.5) for solutions of Equation (4.1). We
note that, the right hand side of (4.5) gives us the bound on the solution of (4.1) in terms of the known
quantities. This completes the proof.
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[10] M. Bohner, A. Peterson, Dynamic equations on time scales, Birkhäuser Boston, Boston, (2001). 1, 1, 2, 2.1, 2.2, 2.3,
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