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Abstract
New oscillation criteria for third order noncanonical differential equations of the form(

r2(t)
(
r1(t)y

′(t)
) ′) ′

+ p(t)y(τ(t)) = 0

are established. Our technique employs an equivalent canonical representation of the studied equation, which essentially sim-
plifies the examination of noncanonical equations. The results obtained are supported by several illustrative examples.
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1. Introduction

We consider third order linear delay differential equations of the form(
r2(t)

(
r1(t)y

′(t)
) ′) ′

+ p(t)y(τ(t)) = 0, (E)

where

(H1) ri ∈ C(3−i)(t0,∞), ri(t) > 0, i = 1, 2;
(H2) p ∈ C(t0,∞), p(t) > 0;
(H3) τ ∈ C1([t0,∞)), τ ′(t) > 0, τ(t) 6 t, lim

t→∞ τ(t) =∞.

In the sequel, we assume that (E) is strongly noncanonical, that is,∫∞ 1
ri(s)

ds <∞, i = 1, 2. (1.1)

By a solution of Eq. (E) we mean a function y(t) ∈ C3([Tx,∞)), Tx > t0, which satisfies Eq. (E) on
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[Tx,∞). We consider only those solutions y(t) of (E), which satisfy sup{|y(t)| : t > T } > 0 for all T > Tx.
We assume that (E) possesses such a solution. A solution of (E) is called oscillatory if it has arbitrarily
large zeros on [Tx,∞), and otherwise it is called to be nonoscillatory. Equation (E) is said to be oscillatory
if all its solutions are oscillatory.

There are numerous papers dealing with oscillatory properties of (E) (see, e.g., [1–8, 10]). Most papers
are devoted to canonical equations, where conditions opposite to (1.1) are assumed to hold, that is,∫∞ 1

ri(s)
ds =∞, i = 1, 2.

The reason is that the examination of canonical equation is much simpler. In this paper, we connect theory
of noncanonical equations with that of canonical equations.

When considering nonoscillatory solutions of (E), we can restrict our attention to positive ones. It
follows from a generalization of lemma of Kiguradze (see, e.g., [1, 4, 5]) that the set of positive solutions
of (E) has the following structure.

Lemma 1.1. Assume that y(t) is a positive solution of (E), then y(t) satisfies one of the following conditions

r1(t)y
′(t) < 0, r2(t)

(
r1(t)y

′(t)
) ′
> 0,

(
r2(t)

(
r1(t)y

′(t)
) ′) ′

< 0,

r1(t)y
′(t) < 0, r2(t)

(
r1(t)y

′(t)
) ′
< 0,

(
r2(t)

(
r1(t)y

′(t)
) ′) ′

< 0,

r1(t)y
′(t) > 0, r2(t)

(
r1(t)y

′(t)
) ′
< 0,

(
r2(t)

(
r1(t)y

′(t)
) ′) ′

< 0,

r1(t)y
′(t) > 0, r2(t)

(
r1(t)y

′(t)
) ′
> 0,

(
r2(t)

(
r1(t)y

′(t)
) ′) ′

< 0.

So, if we are about to establish oscillatory criterion for strongly noncanonical equation, we have to
eliminate four above mentioned classes which may lead to four independent conditions. To avoid this,
we present a simple condition that yields to a canonical representation of (E), which essentially simplifies
examination of (E) .

2. Main results

Throughout the paper, we assume that (1.1) holds and so we can employ the notation

π1(t) =

∫∞
t

1
r1(s)

ds, π2(t) =

∫∞
t

1
r2(s)

ds, π(t) =

∫∞
t

1
r1(s)

∫∞
s

1
r2(u)

duds.

Theorem 2.1. Assume that
r1(t)π1(t)

r2(t)π2(t)
= k, k > 0. (2.1)

Then strongly noncanonical differential equation (E) can be written in canonical form as

1
π(t)

(
r2(t)π(t)

(
r1(t)π(t)

(
y(t)

π(t)

) ′) ′) ′
+ p(t)y(τ(t)) = 0. (E∗)

Proof. Direct computation reveals that

r2(t)π(t)

(
r1(t)π(t)

(
y(t)

π(t)

) ′) ′
= r2(t)

(
r1(t)y

′(t)
) ′
π(t) + r2(t)y

′(t)π2(t) − y(t) + y(t)
r2(t)π

2
2(t)

r1(t)π(t)
. (2.2)

It follows from (2.1) that
π1(t)π2(t)

π(t)
= 1 + k.
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Setting into (2.2) one gets

r2(t)π(t)

(
r1(t)π(t)

(
y(t)

π(t)

) ′) ′
= r2(t)

(
r1(t)y

′(t)
) ′
π(t) +

1
k
r1(t)y

′(t)π1(t) +
1
k
y(t).

Therefore,
1
π(t)

(
r2(t)π(t)

(
r1(t)π(t)

(
y(t)

π(t)

) ′) ′) ′
=
(
r2(t)

(
r1(t)y

′(t)
) ′) ′ ,

which yields that equations (E) and (E∗) are equivalent.
Now we shall show that (E∗) is canonical, that is,∫∞ 1

r1(s)π(s)
ds =

∫∞ 1
r2(s)π(s)

ds =∞.

It is easy to see that∫∞
t0

1
r1(s)π(s)

ds =
∫∞
t0

π2(s)

r1(s)π(s)

1
π2(s)

ds >
1

π2(t0)

∫∞
t0

−π ′(s)

π(s)
ds =∞.

The second integral can be evaluated similarly and the proof is complete.

Corollary 2.2. Let (2.1) holds. If y(t) is a positive solution of (E), then z(t) = y(t)/π(t) is a positive solution of(
r2(t)π(t)

(
r1(t)π(t)z

′(t)
) ′) ′

+ π(t)π(τ(t))p(t)z(τ(t)) = 0 (Ec)

and z(t) satisfies one of the following conditions

z ′(t) < 0,
(
r1(t)π(t)z

′(t)
) ′
> 0,

(
r2(t)π(t)

(
r1(t)π(t)z

′(t)
) ′) ′

< 0, (N0)

z ′(t) > 0,
(
r1(t)π(t)z

′(t)
) ′
> 0,

(
r2(t)π(t)

(
r1(t)π(t)z

′(t)
) ′) ′

< 0. (N2)

Corollary 2.2 simplifies structure of possible positive solutions of (E). To establish oscillatory criterion
for (E) it is sufficient to eliminate the classes (N0) and (N2) instead of four classes presented in Lemma
1.1.

Theorem 2.3. Let (2.1) holds. Assume that y(t) is a positive solution of (E). If

lim sup
t→∞

∫t
τ(t)

1
r1(v)π(v)

∫t
v

1
r2(u)π(u)

∫t
u

π(x)π(τ(x))p(x)dxdudv > 1, (C0)

then the corresponding z(t) = y(t)/π(t) does not satisfy (N0).

Proof. Assume to the contrary that z(t) satisfies (N0). To simplify our notation, let us denote

P(t) = π(t)π(τ(t))p(t). (2.3)

An integration of (Ec) from s to t yields

r2(s)π(s)
(
r1(s)π(s)z

′(s)
) ′

>
∫t
s

P(x)z(τ(x))dx > z(τ(t))
∫t
s

P(x)dx.

Integrating twice from s to t, one gets

z(s) > z(τ(t))
∫t
s

1
r1(v)π(v)

∫t
v

1
r2(v)π(v)

∫t
x

P(x)dvdudx,

which setting s = τ(t) contradicts to (C0).
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Theorem 2.4. Let (2.1) holds. Assume that y(t) is a positive solution of (E). If

lim inf
t→∞

∫t
τ(t)

π(x)π(τ(x))p(x)

∫x
t1

1
r1(v)π(v)

∫v
t1

1
r2(s)π(s)

dsdvdx >
1
e

, (C2)

then the corresponding z(t) = y(t)/π(t) does not satisfy (N2).

Proof. Assume to the contrary that z(t) satisfies (N2). Since r2(t)π(t) (r1(t)π(t)z
′(t)) ′ is positive and

decreasing, one can verify that

r1(t)π(t)z
′(t) >

∫t
t1

r2(s)π(s)
(
r1(s)π(t)z

′(s)
) ′ 1
r2(s)π(s)

ds > r2(t)π(t)
(
r1(t)π(t)z

′(t)
) ′ ∫t

t1

1
r2(s)π(s)

ds.

An integration from t1 to t provides

z(t) > r2(t)π(t)
(
r1(t)π(t)z

′(t)
) ′ ∫t

t1

1
r1(v)π(v)

∫v
t1

1
r2(s)π(s)

dvds.

Setting into (Ec), we see that w(t) = r2(t)π(t) (r1(t)π(t)z
′(t)) ′ is a positive solution of differential inequal-

ity

w ′(t) +

(
P(t)

∫τ(t)
t1

1
r1(v)π(v)

∫v
t1

1
r2(s)π(s)

dvds

)
w(τ(t)) 6 0, (2.4)

where we employed (2.3). On the other hand, by Theorem 2.1.1 in [7], inequality (2.4) has no eventually
positive solution. This is a contradiction and the proof is complete.

Now we are prepared to introduce our main result, which is a simple consequence of Theorems 2.3
and 2.4.

Theorem 2.5. Let (2.1) holds. Assume that (C0) and (C2) hold. Then (E) is oscillatory.

3. Examples

We support our results by couple of illustrative examples.

Example 3.1. Consider the strongly noncanonical differential equation(
tβ
(
tαy ′(t)

) ′) ′
+

a

t3−α−β y(λt) = 0, (E1)

where a > 0, α > 1, β > 1, and λ ∈ (0, 1). Simple computation shows that (2.1) holds true. Conditions
(C0) and (C2) reduce to

aλ2−α−β

(β− 1)(α+β− 2)

{
ln

1
λ
−

1
β− 1

[
1 − λβ−1]− 1

α− 1
[
1 − λβ−1]+ β− 1

(α− 1)(α+β− 2)
[
1 − λα+β−1]} > 1

and
aλ2−α−β

(α− 1)(α+β− 2)
ln

1
λ
>

1
e

,

respectively. By Theorem 2.5, equation (E1) is oscillatory provided that both above conditions are satisfied.

Example 3.2. Consider the third order differential equation(
tα
(
tαy ′(t)

) ′) ′
+

a

t1−2α y(λt) = 0, (E2)

where a > 0, α > 1, and λ ∈ (0, 1). It is easy to verify that now both conditions (C0) and (C2) can be
replaced by one condition

aλ2−2α

2(α− 1)2

{
ln

1
λ
−

2
α− 1

[
1 − λα−1]+ 1

2(α− 1)

[
1 − λ2(α−1)

]}
> 1,

which guarantees oscillation of (E2).
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4. Summary

In this paper, we provided easily verifiable oscillatory criterion for noncanonical differential equation.
Our criterion is based on a canonical representation of considered equation and essentially simplifies
examination of noncanonical equations.
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