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Abstract

In this paper, we first prove the existence and uniqueness for a fractional differential equation with time delay and finite
impulses on a compact interval. Secondly, Ulam-Hyers stability of the equation is established by Picard operator and abstract
Gronwall’s inequality.
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1. Introduction and Preliminaries

In the past decades, the fractional order differential systems have been extensively studied due to its
wide applications to science and engineering. The Ulam-Hyers stability of fractional differential equations
has become one of most active areas, and has attracted many researchers, see [2, 3, 5, 6, 10, 11, 13-17]. For
the stability theory of impulsive dynamical systems and its applications, Wang et al. [9] considered Ulam
type stability of impulsive ordinary differential equation. And many impulsive differential equations are
also studied by mathematicians, see [8, 12] and the references therein. In [1], S. Abbas and M. Benchohra
reported the Ulam stability result for partial fractional differential equations with not instantaneous im-
pulses. However, there are few results about the Ulam stability of impulsive fractional equation with

finite delay.

Recently, I. A. Rus [7] proposed a unified framework for studying the Ulam-Hyers stability problems,
using Picard and weakly Picard operators. In the present paper, we generalize the results of [18] to
fractional impulsive delay differential equations. Motivated by [4, 7, 14], we will investigate existence,
uniqueness, Ulam-Hyers stability results for some problems associated with impulsive delay differential
equations

CD(txZ(t) = F(tr Z(t)/Z(g(t)))r te ] = [Or tf] \{tlltZr e /tm}r
z(t) = h(t), t e [—A,0], (1.1)
Az(t) = z(t)) —z(ty) = L(z(t)), k=12, ,m,

where A > 0,tf > 0,F: [0,t¢]] x R? - R,Ix : R - R, and h : [-A,0] — R are continuous. z(t]f) =
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im0+ z(tx +7) and z(t, ) = lim,_,o+ z(tx — T) are, respectively, the right and left side limits of z(t) at
tx, where ty satisfy 0 < t; < tp < -+ < tyn < tmy1 = tf < +0o. Moreover, g : [0, t¢] — [—A, t¢] satisfies
g(t) <t

Let PC!([-A, tf],R) denotes the Banach space of all piecewise right continuous derivative functions
from [—A, t¢] into R which have left continuous derivative on [—A, t¢] with the norm

IIX|l = sup {Ix(t)[ : t € [=A, t¢]}.

Definition 1.1. Let (X, d) be a metric space. An A : X — X is a Picard operator if there exists x* € X such
that (i) FA = x* where FA = {x € X: A(x) = x} is the fixed point set of A; (ii) the sequence (A™(x))neN
converges to x* for all x € X.

Lemma 1.2. Let (X, d, <) be an ordered metric space and let A\ : X — X be an increasing Picard operator with fixed
point x*. Then for any x € X,x < A(x) implies x < x* and x > A(x) implies x > x*.

Lemma 1.3 ([7]). If for t > tg > 0 we have

v+ Y Bty Jb(s)x(sms,

to<trp<t

where x, a,b € PC([tp, 00),R), a is nondecreasing and b(t), & > 0. Then for t > to the following inequality
works:

x(t)<alt) J] (+&x)exp <Jt b(s)ds) :

to<tp<t to

For problem (1.1), we focus on the following inequalities

1CD{y(t) —Ft,y(t),y(g(t)| <e te],
|Ay(t) — Iy ()] < e, k=12 ,m.

Remark 1.4. A functiony € PC!([0,t¢], R) satisfies (1.2) if and only if there is a function f € PC([—A, t¢], R)
and a sequence fy such that [f(t)| < e forall t € [\, t¢], [fy| < e forall k=1,2,---,m, and

{CDf‘y(tJ = F(t,y(t),y(g(t)) +f(t), te],

(1.2)

Ay(tk)zlk(y(ti))—i_fkl k:]-/zl"'/m

Lemma 1.5. Everyy € PCY([0, t¢],R) that satisfies (1.2) also comes out perfect on the following inequality:

Y(0—y(0) = 3 1090 — o | (1= 5% Fis,uls), lgls))as] < <r(;‘;1) +m> ]

0

fort € (ti, tip1] C [0, tel.
Proof. Ify € PCL([0, t¢], R) satisfies (1.2), then by Remark 1.4 we have

{CD;"y(J F(t,y(t),y(g(t) +f(t), te],

Ay(te) = Te(y(t0) + fio k=12 ,m
Then
Kk Kk 1t
Z Z“r(«)L (t— )% TF(s, y(s),y(g(s)))ds
i=1

1
FJ (t—s)*M(s)ds, t € (ti, tir1)-
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From this, it follows that

k 1 t
—Zl(y(tj))—j (t—5)*F(s,y(s), y(g(s)))ds

() Jo
1 x—1
< r((x)J (t— )% [f(s |ds+;|f|
e t
s (F(oc+1)+k> €< (r(cx+1)+m) &t € el )

2. Main Results

In this section, we will prove existence, uniqueness and Ulam-Hyers stability for Eq. (1.1).

Theorem 2.1. If

(@) F: [0, t¢] x R? — R is continuous with the Lipschitz condition:

2
[F(t,x1,%2) = F(t, y1,y2)l < ) Lhxi —yil,
i=1

where L > 0, forall t € [0,t¢] and x4,y1 € R,i €{1,2};

(b) Ik : R — R satisfies |Iic(x1) — Ik (x2)| < Milx1 —xa|, Mk >0, forall k € {1,2,--- ,m}and x1,x2 € R;
(c) Z) 1M+ rzgjﬁ < 1, then the Eq. (1.1) has

(i) a unigue solution on PC([—A, t¢],R;) N PCL([0, t¢], R4);

(ii) Ulam-Hyers stability on [—A, t¢].

Proof.

(i) Define an operator A by

-
’5»—\
—
o+
—
—+
7]
=
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—_
-
—
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/—\
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(Az)(t) =

+

)
+T(2(t) + i St s)“ 1F(s 2(s), 2(g(s)))ds, te [ty 1],
N ] 2.1)

+ s Jo(t—)*TF(s,2(s),2(g(s)))ds, te€ [to, 3],

0)+ 355 I(z(ty fo )% 1F(s,2(s),2(g(s)))ds, t€ [tm, te].

We see that for any z;,z, € PC([—A, t¢],R) and for all t € [-A, 0] we have |[(Az1)(t) — (Azz)(t)| = 0. For
t € [ty, txr1], we consider

- t
< ];M] lll(t] ) ZZ(t] )‘+ X )Jo(t_s)oc 1|Zl(5)—zz( )/ ds
t
+r(Loc)L“_s)“ Hza(g(s)) —za(g(s))l ds
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[—At¢]

k t
< ZM-+2LJ (t—s)* 1ds sup |zq(t) —zp(t)]
— )T () te

k X
< (Z M+ r(zoifn) () = 220

Following (c), the operator is strictly contractive on (ty,tx41],k = 0,1,2,---,m, and hence A is a
Picard operator on PC([—A, t¢], Ry ). From (2.1), it follows that the unique fixed point of this operator is
in fact the unique solution of (1.1) on PC([-A, t¢], R;.) N PCY([0, t¢], R ).

(ii) Let y € PC([—A, t¢], Ry) NPCY([0, t¢],R ) be a solution to (1.2). The unique solution

z € PC([—A, t¢], RL) NPCYH([0, t¢], Ry)

of the differential equation

Dz(t) = F(t, z(t), z(g(t))), te],
z(t) = y(t), t € [-A,0],
Az(ty) = z(t)) —z(ty) = L(z(ty)), k=1,2,---,m

is given by
y(t), te [-A,0],
Y(0) + iy Jo(t— )% TF(s, 2(s), z(g(s)))ds, te 0t
y(O) + Laz(t) + iy So(t— )% TF (s, 2(5), 2(g(s)))ds, te fty, ta,
20 =400+ X2, T (2(6) + oy [t — )% 1F(s,2(5), 2(g(s))ds, ¢ € [, 1],
Y(0) + X1 T2t )) + iy Jot— )% TF(s, 2(s),2(g(s)))ds,  t € [tm, tmoa):

We observe that for all t € [A,0], z(t) = y(t), so we have [y(t) —z(t)| = 0. For t € (ty, tx+1l, using

Lemma 1.5, we have

t
Y0 = u(0) = 3 Gyl ) s | (£ MRS yls) y(g(s))as

t
+1J (t— s)° 1 [F(s,y(s),y(g(s))ds — F(s, z(s), z(g(s))ds]
M) Jo

k
+Y |5 -5
j=1

t* L t ax—1
< (r()+m)e+J (t— )= ly(s) — z(s)| s

a+1 Ma)

0

L o[t o - _ _
e ) (=) y(g(s))—z(g(s)ndwilej [yl —=(t)].

Next, we show that the operator ¥ : PC([—A, t¢], R) — PC([—A, t¢], R;) given below is an increasing
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Picard operator on PC([—A, t¢], R ):

0, t e [—A,0],
cx+1 €
+1 j;(tfs u(s)ds +f0 o 1u(g(s))) ds, te€l[0,t],
(r(“+1)+1)e+1 (u(t])
+ e (J"S(tfs)“ "ufs)ds + folt—s)*" lu(g(S))) ds, te lty, b,
(Yu)(t) = (r(;i)+2)e+Z] () (2.2)
+re (Ig(t_s)“ 1u(5)d5+f0 —s)! (9(5))) ds, telt,ts],
(rray + ™) €+Z] 11 u(t;))
+% (Io s)ds +f0 t—s)""lu(g(s))) ds, te€ [tm, tmy1l

For any uj, up € PC([—A, 0], R4), [(Wuq)(t) — (Wuz)(t) = 0 for all t € [—A,0]. For t € (ty, tx41] consider

e

t
(301) () = (Yr2) (0 < 3 My a4 = a6+ g | (=90
=1

(hua (s) —ua(s)lds + hua(g(s)) —uz(g(s))ll ds

3

t

L
<Y M oswp (t)—uz(t)w—j(t—sr‘*l
S e ! o) Jo

l sup  Jug(t) —up(t)[+  sup ul(g(t))—uz(g(tm] ds
te[—At¢] te[—Atf]

= 2L (t4)*
< (Z M; + r(o((fr)l)) [lur —ua|l.

j=1

Since (Z] M+ IZ"L((xtﬂl)> < 1, the operator is contractive on PC([—A, t¢], Ry ) for t € (ty, tx + 1], where

k=0,1,--- ,m. Applying Banach contraction principle to ¥, we derive that ¥ is a Picard operator with a
unique fixed point u* € PC([—A, t¢], R ), that is,

N t* L t a—1. *
u(t):(w+k>€+ZM )))+W<J (t—S) 1u (S)ds

=1

+Jgt—ﬂ“*uWMQkk>ﬂe(uﬂkuL

It remains to verify that the solution u* is increasing. Indeed, for 0 < t; < t» < tf and denote
p: —mgl[ *(s) +u*(g(s))] € Ry, we have

* * o téx . tix
1Luﬂ—u(uy—<”a+1) Na+n>e
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pL r -
+ = (tp—s)* 'ds
r((x) t 2

= téx - tix L X 4
_<F(oc+1) F(oc—|—1)>€+r(cx+1)(tz t7)

> 0.

Then, we obtain that u*(t) is increasing. So, u*(g(t)) < u*(t) due to g(t) < t and

k t
* t% S * (4 2L oo —1 ok
w(t) < (r(“+1)+k>e+;M](u )+ s | (6= T (s)as
Using Lemma 1.3, we get
e 2Lt
)< | w—— +k 1+M — .
Wiy (r(a+1)+ )€0<1;[<t( MiJexp <F(oc+1)>

If we set u(t) = [y(t) —z(t)|, for t € [—A, t¢], then from (2.2), u(t) < (WYu)(t) and applying Lemma 1.2 we
obtain u(t) < u*(t), thus

t& 2Lt
y(t) —z(t)| < (F(octi-l) +m> e0<1:1[<t(1 + M, )exp (F(oc—:l)> . O]

3. Example

Without loss of generality, we only consider the following impulsive fractional differential equation
with time delay

1
CP2 _ 1 lz(t)] lz(g(t))I 1
Diz(t) = mremop ((mz(tm T (1+\z(g(t))|)) , teloUN{3},
z(t) =0, te[-1,0], (3.1)

F(t, z(t), z(g(t))) =

1 ( |z(t)] N lz(g(t))| )
20(t+10)2 \ (1 +1Iz(t))  (1+Iz(gt)) /)’

obviously, one has [F(t,x1,%2) — F(t,y1,y2)l < Y54 soo01xi — yil with L= 555, Ii(xa (3 ) —hi(xa(3 ) <
b = 2L
ol (3 ) —x(3 )l with Ma = g, and M+ iy = 1t + ggegy < 1

Thus all the assumptions in Theorem 2.1 are satisfied, Eq. (3.1) is Ulam-Hyers stable.
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