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Abstract
In this paper, the definition of m-skew complex symmetric operators is introduced. Firstly, we prove that ∆−

m(T) is complex
symmetric with the conjugation C and give some properties of ∆−

m(T). Secondly, let T be m-skew complex symmetric with
conjugation C, if n is odd, then Tn is m-skew complex symmetric with conjugation C; if n is even, with the assumption
T∗CTC = CTCT∗, then Tn is m-complex symmetric with conjugation C. Finally, we give some properties of m-skew complex
symmetric operators.
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1. Introduction

Throughout this paper, we denote by H a complex separable Hilbert space endowed with the inner
product 〈., .〉 and by L(H) the algebra of all bounded linear operators on a separable complex Hilbert
space H. If T ∈ L(H), we write σ(T), σp(T), σa(T), σsu(T), σcomp(T), σr(T), σc(T), σe(T), σle(T), and
σre(T) for the spectrum, the point spectrum, the approximate point spectrum, the surjective spectrum,
the compression spectrum, the residual spectrum, the continuous spectrum, the essential spectrum, the
left essential spectrum, and the right essential spectrum of T , respectively.

An operator C on H is called a conjugation, if C is conjugate-linear, 〈Cx,Cy〉 = 〈y, x〉 for all x,y ∈ H

and C2 = I. An operator T ∈ L(H) is said to be skew complex symmetric if there exists a conjugation
C on H such that CTC = −T∗. An operator T is said to be complex symmetric if CTC = T∗ for some
conjugation C on H. This terminology is due to the fact that T is a complex symmetric operator if and
only if it is unitary equivalent of a symmetric matrix with complex entries, regarded as an operator acting
on an l2-space of the appropriate dimension ([7]). All normal operators, Hankel matrices, finite Toeplitz
matrices, all truncated Toeplitz operators and some Volterra integration operators are included in the
class of complex symmetric operators ([8, 14]). A lot of authors have studied the complex symmetric
operators, however, less attention has been paid to skew complex symmetric operators. There are several

∗Corresponding author
Email addresses: haiyingli2012@yahoo.com (Haiying Li), 2695527694@qq.com (Yaru Wang)

doi: 10.22436/jnsa.011.06.01

Received: 2017-05-20 Revised: 2017-06-29 Accepted: 2018-03-13

http://dx.doi.org/10.22436/jnsa.011.06.01
http://crossmark.crossref.org/dialog/?doi=10.22436/jnsa.011.06.01&domain=pdf


H. Li, Y. Wang, J. Nonlinear Sci. Appl., 11 (2018), 734–745 735

motivations for such operators. We remark that T ∈ L(H) is skew symmetric if and only if T admits
a skew symmetric matrix representation with respect to some orthonormal basis of H. In particular,
skew symmetric matrices have many applications in pure mathematics, applied mathematics and even
in engineering disciplines. Real skew symmetric matrices play an important role in function theory, the
solution to linear quadratic optional control problems, robust control problems, model reduction, crack
following in anisotropic materials and so on. In view of these applications, it is natural to study skew
symmetric operators on the Hilbert space H. Recently there has been growing interest in skew symmetric,
which is closely related to the study of complex symmetric operators. Muneo Chō, Eungil Ko and Ji Eun
Lee [2–4] have studied m-complex symmetric operators.

In [10], Helton initiated the study of operators T ∈ L(H) which satisfy the form

m∑
j=0

(−1)m−j(mj )T∗jTm−j = 0.

In [2], Chō et al. defined m-complex symmetric operators as follows: An operator T ∈ L(H) is said to
be an m-complex symmetric operator if there exists some conjugation C such that

m∑
j=0

(−1)m−j(mj )T∗jCTm−jC = 0

for some positive integer m. In this case, we say that T is m-complex symmetric with conjugation C. Let
∆m(T) :=

∑m
j=0(−1)m−j(mj )T∗jCTm−jC, then T is an m-complex symmetric operator with conjugation C,

if and only if ∆m(T) = 0. Note that

T∗∆m(T) −∆m(T)(CTC) = ∆m+1(T).

In contrast to the m-complex symmetric operators, we define m-skew complex symmetric operators
as follows: an operator T ∈ L(H) is said to be an m-skew complex symmetric operator if there exists
some conjugation C such that

m∑
j=0

(mj )T∗jCTm−jC = 0

for some positive integer m. In this case, we say that T is m-skew complex symmetric with conjugation C.
Let ∆−

m(T) :=
∑m
j=0(

m
j )T∗jCTm−jC, then T is an m-skew complex symmetric operator with conjugation C

if and only if ∆−
m(T) = 0. For an m-skew complex symmetric operator with conjugation C, we have

T∗∆−
m(T) +∆−

m(T)(CTC) = ∆−
m+1(T). (1.1)

In fact,

T∗∆−
m(T) +∆−

m(T)(CTC) = T∗
m∑
j=0

(mj )T∗jCTm−jC+

m∑
j=0

(mj )T∗jCTm−jC(CTC)

= T∗
{
(m0 )T∗0CTmC+ (m1 )T∗CTm−1C+ · · ·+ (mm)T∗mCT 0C

}
+

{
(m0 )T∗0CTmC+ (m1 )T∗CTm−1C+ · · ·+ (mm)T∗mCT 0C

}
CTC

=

{
[(m0 ) + (m1 )]T∗CTmC+ · · ·+ [(mm−1) + (mm)]T∗mCT 1C

}
+

{
(m0 )T∗0CTm+1C+ (mm)T∗m+1CT 0C

}
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= (m+1
0 )T∗0CTm+1C+ (m+1

1 )T∗CTmC+ (m+1
2 )T∗2CTmC+ · · ·

+ (m+1
m )T∗mCT 1C+ (m+1

m+1)T
∗m+1CT 0C

=

m+1∑
j=0

(m+1
j )T∗jCTm+1−jC = ∆−

m+1(T).

Hence, if T is m-skew complex symmetric with conjugation C, then T is n-skew complex symmetric with
conjugation C for all n > m. It is obvious that 1-skew complex symmetric is skew complex symmetric.

An operator T ∈ L(H) is said to have the single-valued extension property, if for every open subset G
of C and any H-valued analytic function f on G such that (T − λ)f(λ) ≡ 0 on G, we have f(λ) ≡ 0 on G.
For an operator T ∈ L(H) and a vector x ∈ H, the local resolvent set ρT (x) of T at x is defined as the union
of every open subset G of C on which there is an analytic function f : G → H such that (T − λ)f(λ) ≡ x
on G. The local spectrum of T at x is given by σT (x) = C\ρT (x). We define the local spectral subspace
of T ∈ L(H) by HT (F) = {x ∈ H : σT (x) ⊂ F} for a subset F of C. An operator T ∈ L(H) is said to have
Dunford’s property (C), if HT (F) is closed for each closed subset F of C. An operator T ∈ L(H) is said to
have Bishop’s property (β), if for every open subset G of C and every sequence {fn} of H -valued analytic
functions on G such that (T − λ)fn(λ) converges uniformly to 0 in norm on compact subsets of G, we get
that fn(λ) converges uniformly to 0 in norm on compact subsets of G. An operator T ∈ L(H) is said to
be decomposable, if for every open cover {U,V} of C, there are T -invariant subspaces X and Y such that
H = X+ Y, σ(T | x) ⊂ U and σ(T | y) ⊂ V . It is well-known that

Decomposable⇒ Bishop’s property(β); Decomposable⇒ Dunford’s property(C)⇒ SVEP.

In this paper, the definition of m-skew complex symmetric operators is introduced. Firstly, we prove
that ∆−

m(T) is complex symmetric with the conjugation C and give some properties of ∆−
m(T). Secondly, let

T be m-skew complex symmetric with conjugation C, if n is odd, then Tn is m-skew complex symmetric
with conjugation C; if n is even, with the assumption T∗CTC = CTCT∗, then Tn is m-complex symmetric
with conjugation C. Finally, we give some properties of m-skew complex symmetric operators.

2. Some Properties of ∆−
m(T)

Let T be an operator on H and C be a conjugation on H. In [3], the following statements hold.

(i) if m is even, then ∆m(T) is complex symmetric with the conjugation C;
(ii) if m is odd, then ∆m(T) is skew complex symmetric with the conjugation C.

For ∆−
m(T), we have the following theorem.

Theorem 2.1. Let T be an operator on H and C be a conjugation on H. Then ∆−
m(T) is complex symmetric with

the conjugation C.

Proof. Since (mj ) = (mm−j), we obtain

C(∆−
m(T))∗C = C

( m∑
j=0

(mj )T∗jCTm−jC

)∗
C = C

( m∑
j=0

(mj )CT∗m−jCT j
)
C =

m∑
j=0

(mj )CCT∗m−jCT jC

=

m∑
j=0

(mj )T∗m−jCT jC =

m∑
j=0

(mm−j)T
∗m−jCT jC

=

m∑
i=0

(mi )T∗iCTm−iC = ∆−
m(T).

Hence, ∆−
m(T) is complex symmetric with conjugation C.
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Corollary 2.2. Let T be an operator on H and C be a conjugation on H. If ∆−
m(T) is p-hyponormal, then it is

normal.

Proof. By Theorem 2.1, then ∆−
m(T) is a complex symmetric operator with the conjugation C. Since ∆−

m(T)
is p-hyponormal, then ∆−

m(T) is normal by [15, Lemma 3.1].

Corollary 2.3. Let T be an operator on H and C be a conjugation on H, then σ(∆−
m(T)) = σa(∆

−
m(T)).

Proof. By Theorem 2.1, then ∆−
m(T) is a complex symmetric operator with the conjugation C. Thus

σ(∆−
m(T)) = σa(∆

−
m(T)) by [11, Lemma 3.22].

By (1.1), we know if T ism-skew complex symmetric with the conjugation C, then T is n-skew complex
symmetric with the conjugation C for all n > m. In the following corollary, we state the conditions that
(m+ 1)-skew complex symmetric operators become m-skew complex symmetric operators. Let us recall
that an operator T ∈ L(H) is said a normaloid operator if ‖T‖ = r(T), where r(T) is the spectral radius of
T . A vector x ∈ L(H) is said isotropic if 〈x,Cx〉 = 0 ([6]).

Corollary 2.4. Let T ∈ L(H) be an operator and C be a conjugation on H. Suppose ∆−
m+1(T) = 0, ∆−

m(T)
is normaloid and an eigenvector corresponding to every eigenvalue in σp(∆−

m(T)) is not isotropic. For every
µ ∈ σa(∆−

m(T)), there exists a sequence {xn} of unit vectors and λ ∈ σ(∆−
1 (T)), such that |λ|m = |µ| and

lim
n→∞ ‖(∆−

m(T) − µ)xn‖ = lim
n→∞ ‖(∆−

1 (T) − λ)xn‖ = 0,

then ∆−
m(T) = 0.

Proof. By Theorem 2.1, then ∆−
m(T) is complex symmetric with conjugation C. Since ∆−

m(T) is normaloid,
then there exists µ ∈ σ(∆−

m(T)) such that |µ| = ‖∆−
m(T)‖. For every µ ∈ σa(∆−

m(T)), there exist a sequence
{xn} of unit vectors and λ ∈ σ(∆−

1 (T)), such that |λ|m = |µ| and

lim
n→∞ ‖(∆−

m(T) − µ)xn‖ = lim
n→∞ ‖(∆−

1 (T) − λ)xn‖ = 0,

then ∆−
m(T)xn = µxn,∆−

1 (T)xn = λxn. By [12, Lemma 2.5], then ∆−
m(T)∗xn = µxn. Moreover, since

∆−
m+1(T) = 0, by (1.1), we have

0 = 〈∆−
m+1(T)xn,Cxn〉 = 〈T∗∆−

m(T) +∆−
m(T)CTC,Cxn〉

= 〈∆−
m(T)xn, TCxn〉+ 〈CTCxn,∆−

m(T)∗Cxn〉
= 〈µxn, TCxn〉+ 〈CTCxn,µCxn〉
= µ〈(T∗ +CTC)xn,Cxn〉
= µ〈∆−

1 (T)xn,Cxn〉
= µλ〈xn,Cxn〉.

Since 〈x,Cx〉 6= 0 by the hypothesis, so 〈xn,Cxn〉 6= 0. Hence ∆−
m(T) = 0.

3. m-skew complex symmetric operators

In this section, we give some properties of m-skew complex symmetric operators. In [2, Theorem
4.5], if T ∈ L(H) is an m-complex symmetric operator with conjugation C, then Tn (for some n ∈ N) is
also m-complex symmetric with conjugation C. For m-skew complex symmetric operators, we have the
following result.

Theorem 3.1. Let T ∈ L(H) be m-skew complex symmetric with conjugation C. If n is odd, then Tn is m-skew
complex symmetric with conjugation C.
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Proof. Since T is an m-skew complex symmetric operator with conjugation C, then

∆−
m(T) =

m∑
j=0

(mj )T∗jCTm−jC = (T∗ +CTC)m = 0.

If n is odd, we have

(an + bn)m = ω0a
m(n−1)(a+ b)m +ω1a

m(n−1)−1(a+ b)m(−b) + · · ·+ωm(n−1)(a+ b)
m(n−1),

where ωi are constants for i = 0, 1, 2, . . . ,m(n− 1).
For m-skew complex symmetric operators with conjugation C,

∆−
m(Tn) =

m(n−1)∑
i=0

ωiT
∗m(n−1)−i∆−

m(T)(−CTC)i. (3.1)

By (3.1), if ∆−
m(T) = 0, then ∆−

m(Tn) = 0. Hence, if n is odd, Tn is m-skew complex symmetric with
conjugation C.

However, when n is even, this result is not true. Let C be a conjugation given by C(z1, z2, z3) =
(z3, z2, z1), if

T =

 1 1 0
1 0 −1
0 −1 −1


on C3. By [1], we know that T is a skew complex symmetric operator with conjugation C. It is easy to
obtain that ∆−

1 (T 2) 6= 0, so T 2 is not skew complex symmetric.
We all know that if T is skew complex symmetric with conjugation C, then T 2n is complex symmetric

with conjugation C. For m-skew complex symmetric operators, with the assumption T∗CTC = CTCT∗,
we have the following result.

Theorem 3.2. Let T ∈ L(H) be anm-skew complex symmetric operator with conjugation C. If T∗CTC = CTCT∗,
then T 2n is an m-complex symmetric operator with conjugation C.

Proof. Since T is an m-skew complex symmetric operator with conjugation C, then

∆−
m(T) =

m∑
j=0

(mj )T∗jCTm−jC = (T∗ +CTC)m = 0 and T∗CTC = CTCT∗.

(1) If n is odd,

∆m(T 2n) =

m∑
j=0

(−1)m−j(mj )(T 2n)∗jC(T 2n)m−jC = (T 2n∗ −CT 2nC)m =

[
(Tn∗ −CTnC)(Tn∗ +CTnC)

]m
.

Since n is odd, by Theorem 3.1, then (Tn∗ +CTnC)m = 0, so ∆m(T 2n) = 0.

(2) If n is even,

∆m(T 2n) =

m∑
j=0

(−1)m−j(mj )(T 2n)∗jC(T 2n)m−jC

= (T 2n∗ −CT 2nC)m =

[
(T∗ −CTC)(T∗ +CTC) · · · (Tn∗ +CTnC)

]m
= (T∗ −CTC)m∆−

m(T)(T 2∗ +CT 2C)m · · · (Tn∗ +CTnC)m = 0,

so ∆m(T 2n) = 0. Hence T 2n is an m-complex symmetric operator with conjugation C.
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Corollary 3.3. Let T ∈ L(H) be an m-skew complex symmetric operator with conjugation C. If n is odd and
limn→∞ ‖Tnx‖ 1

n = 0, then limn→∞ ‖T∗mnCx‖ 1
n = 0.

Proof. Since n is odd and T is an m-skew complex symmetric operator with conjugation C, then by
Theorem 3.1, we obtain that Tn is an m-skew complex symmetric operator with conjugation C. So
∆−
m(Tn) = 0, we obtain that

∆−
m(Tn) =

m∑
j=0

(mj )(Tn)∗jC(Tn)m−jC

= (m0 )(Tn)∗0C(Tn)mC

+ (m1 )(Tn)∗C(Tn)m−1C+ · · ·+ (mm−1)(T
n)∗m−1CTnC+ (mm)(Tn)∗mC(Tn)0C.

So

(m0 )(Tn)∗0C(Tn)mC+ (m1 )(Tn)∗C(Tn)m−1C+ · · ·+ (mm−1)(T
n)∗m−1CTnC = −(mm)(Tn)∗mC(Tn)0C.

This ensures that [m−1∑
j=0

(m−1
j )C(Tn∗)jC(Tn)m−j−1

]
Tnx = −CT∗mnCx.

Moreover, we have

‖T∗mnCx‖ = ‖−CT∗mnCx‖ = ‖
[m−1∑
j=0

(m−1
j )C(Tn∗)jC(Tn)m−j−1

]
Tnx‖

6 ‖
m−1∑
j=0

(m−1
j )C(Tn∗)jC(Tn)m−j−1‖‖Tnx‖ 6 2m‖T‖n(m−1)‖‖Tnx‖.

Since limn→∞ ‖Tnx‖ 1
n = 0, hence limn→∞ ‖T∗mnCx‖ 1

n = 0.

Theorem 3.4. If {Tk} is a sequence of m-skew complex symmetric operators with conjugation C such that
limk→∞ ‖Tk − T‖ = 0, then T is m-skew complex symmetric with conjugation C.

Proof. Let {Tk} be a sequence of m-skew complex symmetric operators with conjugation C such that
limk→∞ ‖Tk − T‖ = 0. Since C is conjugation, then ‖C‖ = 1. So

‖∆−
m(Tk) −∆

−
m(T)‖ = ‖

m∑
j=0

(mj )T∗jk CT
m−j
k C−

m∑
j=0

(mj )T∗jCTm−jC‖

= ‖
m∑
j=0

(mj )T∗jk CT
m−j
k C−

m∑
j=0

(mj )T∗jk CT
m−jC

+

m∑
j=0

(mj )T∗jk CT
m−jC−

m∑
j=0

(mj )T∗jCTm−jC‖

6
m∑
j=0

(mj )‖T∗jk ‖‖CT
m−j
k C−CTm−jC‖+

m∑
j=0

(mj )‖T∗jk − T∗j‖‖CTC‖m−j (3.2)

6
m∑
j=0

‖T∗k‖‖CTkC−CTC‖‖
m−j−1∑
i=0

(CTkC)
m−j−1−i(CTC)i‖



H. Li, Y. Wang, J. Nonlinear Sci. Appl., 11 (2018), 734–745 740

+

m∑
j=0

‖T∗k − T∗‖‖CTm−jC‖‖
j−1∑
i=0

(T∗k)
j−i−1 − (T∗)i‖

6
m∑
j=0

‖T∗k‖
m−j−1∑
i=0

‖(CTkC)m−j−1−i(CTC)i‖‖Tk − T‖

+

m∑
j=0

‖CTm−jC‖
j−1∑
i=0

‖(T∗k)j−i−1 − (T∗)i‖‖Tk − T‖.

Since limk→∞ ‖Tk − T‖ = 0, it is obvious that the right side of (3.2) tends to zero. Moreover, since Tk is
m-skew complex symmetric, then ∆−

m(Tk) = 0. Hence T is also m-skew complex symmetric.

Theorem 3.5. Let T ∈ L(H) be invertible and C be a conjugation on H, then the following assertions hold.

(i) If T∗jCTm−jC = CTm−jCT∗j for j = 0, 1, . . . ,m, then T is m-skew complex symmetric with conjugation C
if and only if CT∗−1C is m-skew complex symmetric with conjugation C.

(ii) T is m-skew complex symmetric with conjugation C if and only if T−1 is m-skew complex symmetric with
conjugation C.

Proof.

(i) Suppose that T∗jCTm−jC = CTm−jCT∗j for j = 0, 1, . . . ,m. If T is an m-skew complex symmetric
operator with conjugation C, then we have

0 = ∆−
m(T) = CT−mC

[ m∑
j=0

(mj )T∗jCTm−jC

]
T∗−m

=

m∑
j=0

(mj )CT−mCT∗jCTm−jCT∗−m

=

m∑
j=0

(mj )(CT−1C)j(T∗−1)m−j

=

m∑
j=0

(mj )(CT∗−1C)∗jC(CT∗−1C)m−jC.

Thus CT∗−1C is m-skew complex symmetric with conjugation C. We can obtain the converse implication
in a similar way.

(ii) Since T is an m-skew complex symmetric operator, then

∆−
m(T) =

m∑
j=0

(mj )T∗jCTm−jC = C

[ m∑
j=0

(mj )CT∗jCTm−j

]
C = 0,

thus
∑m
j=0(

m
j )CT∗jCTm−j = 0. Since

∆−
m(CTC) =

m∑
j=0

(mj )CT∗jCC[CTm−jC]C =

m∑
j=0

(mj )CT∗jCTm−j = 0,

then ∆−
m(CTC) = 0. It ensures that T is m-skew complex symmetric with conjugation C if and only if

CTC is m-skew complex symmetric with conjugation C.
Let T−1 be an m-skew complex symmetric operator. Then CT−1C is an m-skew complex symmetric
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operator. Since

∆−
m(T−1) =

m∑
j=0

(mj )(T−1)∗jC(T−1)m−jC =

m∑
j=0

(mj )(T∗)−jC(T j−m)C = 0,

then

(T∗)m
[ m∑
j=0

(mj )(T∗)−jC(T j−m)C

]
CTmC = 0,

m∑
j=0

(mj )(T∗)m−jCT jC = 0.

Let m− j = i, then
m∑
i=0

(mm−i)(T
∗)iCTm−iC =

m∑
i=0

(mi )(T∗)m−iCT iC = 0.

Hence ∆−
m(T) = 0. The reverse implication is similar.

4. Some spectral properties of m-skew complex symmetric operators

In this section, we will give some spectral properties of m-skew complex symmetric operators.

Theorem 4.1. Let T ∈ L(H) be m-skew complex symmetric with conjugation C. If λ is an eigenvalue of T , then
−λ is an eigenvalue of T∗.

Proof. Let {xn} be a sequence of unit vectors such that limn→∞(T − λ)xn = 0. Since Tx = λx, we can
easily obtain (CTC)Cx = λCx. So limn→∞(CTC− λ)Cxn = 0. Since T is m-skew complex symmetric with
conjugation C, it ensures that

0 = lim
n→∞∆−

m(T)Cxn = lim
n→∞

( m∑
j=0

(mj )T∗jCTm−jC
)
Cxn

= lim
n→∞

( m∑
j=0

(mj )T∗jλ
m−j)

Cxn = lim
n→∞(T∗ + λ)mCxn.

Hence −λ is an eigenvalue of T∗.

Theorem 4.2. Let T ∈ L(H) be an m-skew complex symmetric operator with conjugation C. Then ∆−
m(T)∗ =

∆−
m(T∗) = 0.

Proof. Using the mathematical induction, let m = 2, we have

∆−
2 (T)∗ =

[ 2∑
j=0

(2
j)T
∗jCT2−jC

]∗
=
[
(T∗ +CTC)2]∗

= [(T∗ +CTC)(T∗ +CTC)
]∗

=
[
(T∗)2 + T∗CTC+CTCT∗ +CT2C

]∗
= T2 +CT∗CT + TCT∗C+C(T∗)2C = (T +CT∗C)2 = ∆−

2 (T∗).

We assume the result is true when k = m− 1, then

∆−
m−1(T)

∗ = [(T∗ +CTC)m−1]∗ = (T +CT∗C)m−1 = ∆−
m−1(T

∗).

When k = m, we have

∆−
m(T)∗ = [(T∗ +CTC)m]∗

= [(T∗ +CTC)m−1(T∗ +CTC)]∗

= (T∗ +CTC)∗[(T∗ +CTC)m−1]∗ = (CT∗C+ T)(T +CT∗C)m−1 = (CT∗C+ T)m = ∆−
m(T∗).

Hence ∆−
m(T)∗ = ∆−

m(T∗) = 0.
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Theorem 4.3. Let T ∈ L(H) be an m-skew complex symmetric operator with conjugation C. Then the following
relations are true.

(i) σ(T)∗ = −σ(T∗), σa(T)∗ = −σa(T
∗), σsu(T)∗ = −σsu(T

∗).
(ii) σp(T)∗ = −σp(T

∗), σcomp(T)∗ = −σcomp(T
∗), σp(T) = −σcomp(T), σp(T∗) = −σcomp(T

∗).
(iii) σe(T)∗ = −σe(T

∗), σle(T)∗ = −σle(T
∗), σre(T)∗ = −σre(T

∗).

Proof.

(i) Let λ ∈ σa(T) and {xn} be a sequence of unit vectors such that limn→∞(T − λ)xn = 0. We know that
limn→∞(CTC− λ)Cxn = 0. Since T is m-skew complex symmetric with conjugation C, so ∆−

m(T) = 0. It
ensures that

lim
n→∞∆−

m(T)Cxn = lim
n→∞

( m∑
j=0

(mj )T∗jCTm−jC

)
Cxn = lim

n→∞
( m∑
j=0

(mj )T∗jλ
m−j

)
Cxn = lim

n→∞(T∗ + λ)mCxn.

If limn→∞ (T∗+λ)m−1Cxn
‖(T∗+λ)m−1Cxn‖

6= 0, then λ ∈ −σa(T
∗). Otherwise, limn→∞(T∗ + λ)m−1Cxn = 0.

If limn→∞ (T∗+λ)m−2Cxn
‖(T∗+λ)m−2Cxn‖

6= 0, then λ ∈ −σa(T
∗). Otherwise, limn→∞(T∗ + λ)m−2Cxn = 0. By

induction, we have limn→∞(T∗ + λ)Cxn = 0, so λ ∈ −σa(T
∗). Hence σa(T)∗ ⊆ −σa(T

∗).
For the converse, let λ ∈ σa(T∗) and {xn} be a sequence of unit vectors such that limn→∞(T∗ − λ)xn =

0. We know that limn→∞(CT∗C− λ)Cxn = 0. Since T is m-skew complex symmetric with conjugation C,
so ∆−

m(T) = 0, therefore [∆−
m(T)]∗ = 0. By Theorem 4.2, we obtain [∆−

m(T∗)] = 0. It ensures that

lim
n→∞∆−

m(T∗)Cxn = lim
n→∞

( m∑
j=0

(mj )T jCT∗m−jC

)
Cxn = lim

n→∞
( m∑
j=0

(mj )T jλ
m−j

)
Cxn = lim

n→∞(T + λ)mCxn.

If limn→∞ (T+λ)m−1Cxn
‖(T+λ)m−1Cxn‖

6= 0, then λ ∈ −σa(T). Otherwise, limn→∞(T + λ)m−1Cxn = 0.

If limn→∞ (T+λ)m−2Cxn
‖(T+λ)m−2Cxn‖

6= 0, then λ ∈ −σa(T). Otherwise, limn→∞(T +λ)m−2Cxn = 0. By induction,

we have limn→∞(T + λ)Cxn = 0, then λ ∈ −σa(T). So, σa(T∗) ⊆ −σa(T)
∗. Hence σa(T)∗ = −σa(T

∗).
For any T ∈ L(H), we have σ(T) = σa(T) ∪ σa(T∗)∗ in [9]. Since σa(T)∗ = −σa(T

∗), then σ(T) =
σa(T) ∪−σa(T), we obtain σ(T)∗ = σa(T)

∗ ∪−σa(T)
∗ = −σa(T

∗) ∪ σa(T∗) = −σ(T∗). Hence σ(T)∗ =
−σ(T∗).

For any T ∈ L(H), σsu(T)∗ = σa(T∗). So σsu(T∗)∗ = σa(T), we have σsu(T∗) = σa(T)∗ = −σa(T
∗) =

−σsu(T)
∗. Hence σsu(T)∗ = −σsu(T

∗).

(ii) Since σa(T)∗ = −σa(T
∗), we can easily obtain σp(T)∗ = −σp(T

∗). For T ∈ L(H), σcomp(T)∗ =
σp(T

∗), so σcomp(T∗)∗ = σp(T∗∗) = σp(T). Then σcomp(T∗) = σp(T)∗ = −σp(T
∗) = −σcomp(T)

∗. Hence,
σcomp(T)

∗ = −σcomp(T
∗). For T ∈ L(H), σcomp(T)∗ = σp(T

∗), so we have σcomp(T∗)∗ = σp(T
∗∗) =

σp(T). Since σcomp(T)∗ = −σcomp(T
∗), so σcomp(T∗)∗ = −σcomp(T). Hence σp(T) = −σcomp(T),

σp(T
∗) = −σcomp(T

∗).

(iii) For T ∈ L(H), we have σe(T) ⊆ σ(T). Since σ(T)∗ = −σ(T∗) and T is m-skew complex symmetric
with conjugation C, we obtain σe(T)∗ = −σe(T

∗).
For T ∈ L(H), σe(T) = σle(T)∪ σre(T) and σle(T)∗ = σre(T∗). Since σe(T)∗ = −σe(T

∗), we can obtain

σe(T)
∗ = σle(T)

∗ ∪ σre(T)∗ = −σe(T
∗) = −σle(T

∗)∪−σre(T∗)
= −σle(T

∗)∪−σle(T)∗ = σle(T)∗ ∪−σle(T∗).

Hence σle(T)∗ = −σle(T
∗). Using the proof of σle(T)∗ = −σle(T

∗), we can obtain σre(T)∗ = −σre(T
∗).

Corollary 4.4. Let T be m-skew complex symmetric with conjugation C. The following statements are true.



H. Li, Y. Wang, J. Nonlinear Sci. Appl., 11 (2018), 734–745 743

(i) σ(T) = σa(T)∪ [−σa(T)] and σ(T∗) = σsu(T∗)∪ [−σsu(T∗)].
(ii) σe(T) = σre(T) ∪ [−σa(T)] = σle(T) ∪ [−σle(T)] and σe(T∗) = σre(T

∗) ∪ [−σa(T
∗)] = σle(T

∗) ∪
[−σle(T

∗)].

Proof.

(i) For T ∈ L(H), σ(T) = σa(T) ∪ σa(T∗)∗ by [9]. Since σa(T)∗ = −σa(T
∗) by Theorem 4.3, we obtain

σ(T) = σa(T) ∪ [−σa(T)]. Using the proof of σ(T) = σa(T) ∪ [−σa(T)], we can obtain σ(T∗) = σsu(T
∗) ∪

[−σsu(T
∗)].

(ii) Since T ∈ L(H), σe(T) = σle(T) ∪ σre(T) and σle(T)
∗ = σre(T

∗), so σle(T)
∗ = −σle(T

∗) and
σre(T)

∗ = −σre(T
∗) by Theorem 4.3, we obtain σle(T) = −σre(T) and σle(T

∗) = −σre(T
∗). Hence

we obtain that σe(T) = σre(T) ∪ [−σa(T)] = σle(T) ∪ [−σle(T)] and σe(T
∗) = σre(T

∗) ∪ [−σa(T
∗)] =

σle(T
∗)∪ [−σle(T∗)].

Corollary 4.5. Let T be m-skew complex symmetric with conjugation C. The following statements are equivalent.

(i) T − λ is invertible.
(ii) T ± λ is bounded below.

(iii) T ± λ is one-to-one and have closed range.

Proof.

(i)⇒(ii) and (iii). If T − λ is invertible, then λ /∈ σa(T) ∪ [−σa(T)] from Corollary 4.4, so λ /∈ σa(T) and
−λ /∈ σa(T). By [5], we can imply that T −λ and T +λ are bounded below. Equivalently, T ±λ is one-to-one
and have closed range.

(ii)⇔ (iii). It is trivial by [5].

(ii) =⇒(i). If T ± λ is bounded below, then ±λ /∈ σa(T) and ±λ /∈ σa(T)∪ [−σa(T)]. By Corollary 4.4, we
have ±λ /∈ σ(T). The proof is similar to [13, Corollary 3.6].

Corollary 4.6. Let T be m-skew complex symmetric with conjugation C. The following statements are equivalent.

(i) λ /∈ σe(T).
(ii) dim ker (T ± λ) <∞ and ran(T ± λ) are closed.

(iii) dim[ran(T ± λ)]⊥ <∞ and ran(T ± λ) are closed.

Proof. We can obtain the corollary by Theorem 4.3 and [5] immediately.

Theorem 4.7. Let T ∈ L(H) be m-skew complex symmetric with conjugation C. Then T∗ has the property (β) if
and only if T is decomposable.

Proof. The proof is similar to [2, Theorem 4.7], so −T has the property (β), it is easy to obtain that T has
the property (β).

Theorem 4.8. Let T ∈ L(H) be m-skew complex symmetric with conjugation C. If T∗ has the single-valued
extension property, then T has the single-valued extension property.

Proof. The proof is similar to [2, Theorem 4.7, Theorem 4.10], so −T has the single-valued extension
property, it is easy to obtain that T has the single-valued extension property.

Recall that an operator N ∈ L(H) is said nilpotent of order n, if Nn = 0 and Nn−1 6= 0 for some
positive integer n. In the following theorem, we will study some properties of the operator T +N.

Theorem 4.9. Let T ∈ L(H) be m-skew complex symmetric with conjugation C and N be nilpotent of order n > 2
with NT = TN. Then T +N is (2n+m− 1)-skew complex symmetric.
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Proof. Let R = T +N and k = 2n+m− 1. Since

[(a+ b) + (c+ d)]k = [(a+ c) + (b+ d)]k =

k∑
i=0

(ki )(a+ c)
i(b+ d)k−i =

k∑
i=0

k−i∑
j=0

(ki )(
k−i
j )(a+ c)ibjdk−i−j.

We have

∆−
k (R) =

k∑
i=0

(R∗)iCRk−iC = (R∗ +CRC)k

= [(T∗ +N∗) + (CTC+CNC)]k

= [(T∗ +CTC) + (N∗ +CNC)]k

=

k∑
i=0

(ki )(T
∗ +CTC)i(N∗ +CNC)k−i

=

k∑
i=0

k−i∑
j=0

(ki )(
k−i
j )(T∗ +CTC)i(N∗)jCNk−i−jC

=

k∑
i=0

k−i∑
j=0

(ki )(
k−i
j )∆−

i (T)(N
∗)jCNk−i−jC.

(i) If j > n or k− i− j > n, then (N∗)j = 0 and CNk−i−jC = 0. We can imply that ∆−
k (R) = 0, by the fact

Nn = 0.

(ii) If j < n and k− i− j < n, then i > k−n− j > k−n− (n− 1) = m, thus ∆−
i (T) = 0 and ∆−

k (R) = 0.
Hence k = m+ 2n− 1 and T +N is a (2n+m− 1)-skew complex symmetric operator with conjugation
C.

Theorem 4.10. Let T ∈ L(H) be m-skew complex symmetric with conjugation C and N be nilpotent of order
n > 2 with NT = TN. Let R = T +N, then the following arguments hold.

(i) If T∗ has the single-valued extension property, then R and R∗ have the single-valued extension property.
(ii) If T has the Dunford’s property (C) and σT (x) ⊂ σR(Nn−1x)∩σR(x) for all x ∈ H, then R has the Dunford’s

property (C).

Proof.

(i) If T∗ has the single-valued extension property, then T has the single-valued extension property by
Theorem 4.8. Using the similar proof of [4, Theorem 3.13], we obtain that R has the single-valued extension
property. Similarly, we get that R∗ has the single-valued extension property. Hence R and R∗ have the
single-valued extension property.

(ii) The proof is similar to [4, Theorem 3.13].

Corollary 4.11. Let T ∈ L(H) be m-skew complex symmetric with conjugation C and N be nilpotent of order
n > 2 with NT = TN. Let R = T +N, if T∗ has the single-valued extension property, then the following arguments
hold.

(i) σ(R) = σsu(R) = σap(R) = σse(R), σes(R) = σb(R) = σω(R) = σe(R).
(ii) H0(R− λ) = HR({λ}) and HR∗({λ}) = H0(R

∗ − λ) for all λ ∈ C.

Proof. The proof is similar to [4, Corollary 3.14].
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