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1. Introduction

In general, some of the nonlinear models of real-life problems are still very difficult to solve either
numerically or theoretically. Burgers equation is considered as a model equation that describes the in-
teraction of convection and diffusion. It occurs in several areas of applied mathematics, such as heat
conduction, phenomena of turbulence, and flow through a shock wave traveling in a viscous fluid such
as modeling of dynamics. Recently many authors have proposed analytical solution to one dimensional
coupled Burgers equation, e.g., [7, 9] using Adomian decomposition method and in [5, 13], the homotopy
perturbation method has been used to obtain the exact solution of nonlinear Burgers’ equation. In [3] the
author has used Laplace transform and homotopy perturbation method to obtain approximate solutions
of homogeneous and nonhomogeneous coupled Burgers’ equations. Authors in [10, 14] have obtained
approximate solution of the viscous coupled Burgers equation using cubic and cubic B-spline collocation
method. The convergence of Adomian’s method has been studied by several authors [1, 2, 4, 6]. In this
work, modified double Laplace decomposition method and the self-canceling noise-terms phenomenon
will be employed in the treatments of these models. The main aim of this method is that it can be used
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directly without using restrictive assumptions or linearization. Now, we recall the following definitions
which are given by [8, 11, 12]. The double Laplace transform is defined as

LxLt [f(x, t)] = F(p, s) =
∫∞

0
e−px

∫∞
0
e−stf(x, t)dtdx, (1.1)

where x, t > 0 and p, s are complex values, and further double Laplace transform of the first order partial
derivatives is given by

LxLt

[
∂u(x, t)
∂x

]
= pU(p, s) −U(0, s). (1.2)

Similarly, the double Laplace transform for second partial derivative with respect to x and t are defined
as follows

LxLt

[
∂2u(x, t)
∂2x

]
= p2U(p, s) − pU(0, s) −

∂U(0, s)
∂x

,

LxLt

[
∂2u(x, t)
∂2t

]
= s2U(p, s) − sU(p, 0) −

∂U(p, 0)
∂t

.
(1.3)

The inverse double Laplace transform L−1
p L

−1
s [F (p, s)] = f(x, t) is defined as in [8, 11] by the complex

double integral formula

L−1
p L

−1
s [F (p, s)] = f(x, t) =

1
2πi

∫c+i∞
c−i∞ epxdp

1
2πi

∫d+i∞
d−i∞ estds,

where F (p, s) must be an analytic function for all p and s in the region defined by the inequalities Re(p) >
c and Re(s) > d, where c and d are real constants to be chosen suitably.

The following basic lemma of the double Laplace transform is given and shall be used in this paper.

Lemma 1.1. Double Laplace transform of the non constant coefficient second order partial derivative xr ∂
2u
∂t2 and the

function xrf(x, t) is given by

LxLt

(
xr
∂2u

∂t2

)
= (−1)r

dr

dpr

[
s2U(p, s) − sU(p, 0) −

∂U(p, 0)
∂t

]
,

and
LxLt (x

rf(x, t)) = (−1)r
dr

dpr
[LxLt (f(x, t))] = (−1)r

drF (p, s)
dpr

,

where r = 1, 2, 3, ...

One can prove this lemma by using the definition of double Laplace transform in Eqs. (1.1), (1.2), and
(1.3).

2. Singular one dimensional Burgers’ equations

The main aim of this section is to discuss the use of modified double Laplace decomposition method
for solving singular one dimensional Burgers’ equation. We consider a singular one dimensional Burgers’
equation with initial condition in the form:

∂u

∂t
−

1
x

∂

∂x

(
x
∂u

∂x

)
+ u

∂u

∂x
= f (x, t) , t > 0 (2.1)

with initial condition
u (x, 0) = f1 (x) ,
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where 1
x
∂
∂x

(
x ∂∂x

)
is the Bessel operator and f (x, t), f1 (x) are known functions. In order to obtain the

solution of Eq. (2.1), we use modified double Laplace decomposition methods as follows.

Step 1: Multiply both sides of Eq. (2.1) by x.

Step 2: Using Lemma 1.1 and definition of the double Laplace transform of partial derivatives for equa-
tions in Step 1 and single Laplace transform for initial condition, we get

dU (p, s)
dp

=
1
s

dF1 (p)

dp
+

1
s

dF (p, s)
dp

−
1
s
LxLt

[
∂

∂x

(
x
∂u

∂x

)
− xu

∂u

∂x

]
. (2.2)

Step 3: By integrating both sides of Eq. (2.2) from 0 to p with respect to p, we have

U (p, s) =
F1 (p)

s
+

1
s

∫p
0
dF (p, s) −

1
s

∫p
0
LxLt

[
∂

∂x

(
x
∂u

∂x

)
− xN1

]
dp, (2.3)

where N1 = u∂u∂x and F1 (p), F (p, s) are single and double Laplace transforms of f1 (x) and f (x, t), respec-
tively.

Step 4: Using double Laplace Adomian decomposition methods to define the solution of the system as
u (x, t) by the infinite series

u (x, t) =
∞∑
n=0

un (x, t) . (2.4)

The nonlinear operators can be defined as

N1 =

∞∑
n=0

An,

where An is given by

An =
1
n!

(
dn

dλn

[
N1

∞∑
i=0

(
λiui

)])
λ=0

.

Here, Adomian’s polynomials An are given by

A0 = u0u0x,
A1 = u0u1x + u1u0x

A2 = u0u2x + u1u1x + u2u0x,
A3 = u0u3x + u1u2x + u2u1x + u3u0x,
A4 = u0u4x + u1u3x + u2u2x + u3u1x + u4u0x.

(2.5)

Step 5: Operating the inverse double Laplace transform on both sides of Eq. (2.3) and using Eq. (2.4), we
obtain

∞∑
n=0

un (x, t) = f1 (x) + L
−1
p L

−1
s

[
1
s

∫p
0
dF (p, s)

]
− L−1

p L
−1
s

[
1
s

∫p
0
LxLt

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

un

)]
dp

]

+ L−1
p L

−1
s

[
1
s
LxLt

[∫p
0

(
x

∞∑
n=0

An

)
dp

]]
,

we define the following recursively formula:

u0 = f1 (x) + L
−1
p L

−1
s

[
1
s

∫p
0
dF (p, s)

]
, (2.6)
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and the rest terms can be written as

un+1 = −L−1
p L

−1
s

[
1
s

∫p
0
LxLt

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

un

)]
dp

]
+ L−1

p L
−1
s

[
1
s
LxLt

[∫p
0

(
x

∞∑
n=0

An

)
dp

]]
, (2.7)

where LxLt is the double Laplace transform with respect to x, t and double inverse Laplace transform
denoted by L−1

p L
−1
s with respect to p, s. Here we provide double inverse Laplace transform with respect

to p and s exists for each terms in the right hand side of Eqs. (2.6) and (2.7). To confirm our method for
solving the singular one dimensional Burgers equations, we consider the following example.

Example 2.1. Consider the following nonhomogeneous form of a singular one dimensional Burgers equa-
tion:

∂u

∂t
− xt

∂

∂x

(
x
∂u

∂x

)
+

2
x
u
∂u

∂x
= x2, t > 0,

subject to the initial condition
u (x, 0) = 0.

According to the above steps, we have

u (x, t) = x2t− L−1
p L

−1
s

[∫p
0

1
s
LxLt

[
x2t

∂

∂x

(
x
∂

∂x

∞∑
n=0

un

)]
dp

]
+ L−1

p L
−1
s

[∫p
0

1
s
LxLt

[
2

∞∑
n=0

An

]
dp

]
,

where An is given by Eq. (2.5). Using equations analogous to Eqs. (2.6) and (2.7), we obtain

u0 = x2t, u1 = −L−1
p L

−1
s

[
1
s

∫p
0
LxLt

[
x2t

∂

∂x

(
x
∂

∂x
u0

)
− (2A0)

]
dp

]
.

Therefore we have
u1 = 0.

In the same manner, we obtain that
u2 = 0.

It is obvious that the self-canceling some terms appear between various components and connected by
coming terms, we have

u (x, t) = u0 + u1 + · · · .

Therefore, the exact solution is given by
u (x, t) = x2t.

3. Modified double Laplace decomposition method applied to coupled Burgers’ equation

In this section, we discuss the solutions of two problems by applying Modified double Laplace de-
composition method.

Problem 3.1 (The first problem). Regular burgers coupled equation is given by

ut − uxx + ηuux +α (uv)x = f (x, t) , vt − vxx + ηvvx +β (uv)x = g (x, t) , (3.1)

subject to
u (x, 0) = f1 (x) , v (x, 0) = g1 (x) (3.2)

for t > 0. Here, f(x, t), g(x, t), f1 (x), and g1 (x) are given functions, η is a real constant, α and β are ar-
bitrary constants depending on the system parameters such as Peclet number, Stokes velocity of particles
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due to gravity and Brownian diffusivity [15]. By taking double Laplace transform for both sides of (3.1)
and single Laplace transform for (3.2) we obtain

U(p, s) =
F1(p)

s
+
F(p, s)
s

+
1
s
LxLt [uxx − ηuux −α (uv)x] , (3.3)

and

V(p, s) =
G1(p)

s
+
G(p, s)
s

+
1
s
LxLt [vxx − ηvvx −β (uv)x] . (3.4)

The modified double Laplace decomposition method (MDLDM) defines the solution of regular burgers
coupled equation as u (x, t) and v (x, t) by the infinite series

u (x, t) =
∞∑
n=0

un (x, t) , v (x, t) =
∞∑
n=0

vn (x, t) . (3.5)

We can give Adomian’s polynomials An, Bn, and Cn respectively as follows

An =

∞∑
n=0

unuxn, Bn =

∞∑
n=0

vnvxn, and Cn =

∞∑
n=0

unvn. (3.6)

The Adomian polynomials for the nonlinear term uux are given by Eq. (2.5), and for the nonlinear terms,
vvx and uv are given by

B0 = v0v0x,
B1 = v0v1x + v1v0x,
B2 = v0v2x + v1v1x + v2v0x,
B3 = v0v3x + v1v2x + v2v1x + v3v0x,
B4 = v0v4x + v1v3x + v2v2x + v3v1x + v4v0x.

(3.7)

and

C0 = u0v0,
C1 = u0v1 + u1v0

C2 = u0v2 + u1v1 + u2v0.
C3 = u0v3 + u1v2 + u2v1 + u3v0,
C3 = u0v4 + u1v3 + u2v2 + u3v1 + u4v0.

(3.8)

By applying inverse double Laplace transform on both sides of (3.3) and (3.4) and using (3.6), we have

∞∑
n=0

un (x, t) = f1 (x) + L
−1
p L

−1
s

[
F(p, s)
s

]
+ L−1

p L
−1
s

[
1
s
LxLt

[
∂2

∂x2un

]]
− L−1

p L
−1
s

[
1
s
LxLt [ηAn]

]
− L−1

p L
−1
s

[
1
s
LxLt [α (Cn)x]

]
,

(3.9)

and
∞∑
n=0

vn (x, t) = g1 (x) + L
−1
p L

−1
s

[
G(p, s)
s

]
+ L−1

p L
−1
s

[
1
s
LxLt

[
∂2

∂x2 vn

]]
− L−1

p L
−1
s

[
1
s
LxLt [ηBn]

]
− L−1

p L
−1
s

[
1
s
LxLt [β (Cn)x]

]
.

(3.10)
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On comparing both sides of Eqs. (3.9) and (3.10) we have

u0 = f1 (x) + L
−1
p L

−1
s

[
F(p, s)
s

]
, v0 = g1 (x) + L

−1
p L

−1
s

[
G(p, s)
s

]
. (3.11)

In general, the recursive relation is given by

un+1 = L−1
p L

−1
s

[
1
s
LxLt

[
∂2

∂x2un

]]
− L−1

p L
−1
s

[
1
s
LxLt [ηAn]

]
− L−1

p L
−1
s

[
1
s
LxLt [α (Cn)x]

]
, (3.12)

and

vn+1 = L−1
p L

−1
s

[
1
s
LxLt

[
∂2

∂x2 vn

]]
− L−1

p L
−1
s

[
1
s
LxLt [ηBn]

]
− L−1

p L
−1
s

[
1
s
LxLt [β (Cn)x]

]
. (3.13)

Here, we provide double inverse Laplace transform with respect to p and s exists for each terms in
the right hand side of above equations. To illustrate this method for one dimensional coupled Burgers’
equations we take the following example.

Example 3.2. Consider the following homogeneous form of a coupled Burgers equation ([3])

ut − uxx − 2uux + (uv)x = 0, vt − vxx − 2vvx + (uv)x = 0,

with initial conditions
u (x, 0) = sin x, v (x, 0) = sin x.

By using Eqs. (3.11), (3.12), and (3.13) we have

u0 = sin x, v0 = sin x,

u1 = L−1
p L

−1
s

[
1
s
LxLt

[
∂2u0

∂x2 + 2u0u0x − (u0v0)x

]]
= −t sin x,

v1 = L−1
p L

−1
s

[
1
s
LxLt

[
∂2v0

∂x2 + 2v0v0x − (u0v0)x

]]
= −t sin x

u2 = L−1
p L

−1
s

[
1
s
LxLt

[
∂2u1

∂x2 + 2 (u0u1x + u1u0x) − (u0v1 + u1v0)x

]]
=
t2

2
sin x,

v2 = L−1
p L

−1
s

[
1
s
LxLt

[
∂2v1

∂x2 + 2 (v0v1x + v1v0x) − (u0v1 + u1v0)x

]]
=
t2

2
sin x,

and

u3 = L−1
p L

−1
s

[
1
s
LxLt

[
∂2u2

∂x2 + 2 (u0u2x + u1u1x + u2u0x)

]]
− L−1

p L
−1
s

[
1
s
LxLt [(u0v2 + u1v1 + u2v0)x]

]
= −

t3

6
sin x,

v3 = L−1
p L

−1
s

[
1
s
LxLt

[
∂2v2

∂x2 + 2 (v0v2x + v1v1x + v2v0x)

]]
− L−1

p L
−1
s

[
1
s
LxLt [(u0v2 + u1v1 + u2v0)x]

]
= −

t3

6
sin x,

and so on for other components. Using Eq. (3.5), the series solutions are therefore given by

u (x, t) = u0 + u2 + u3 + · · · =
(

1 − t+
t2

2!
−
t3

3!
+ · · ·

)
sin x,



H. Eltayeb, S. Mesloub, A. Kılıçman, J. Nonlinear Sci. Appl., 11 (2018), 635–643 641

v (x, t) = v0 + v2 + v3 + · · · =
(

1 − t+
t2

2!
−
t3

3!
+ · · ·

)
sin x,

and hence the exact solutions become

u (x, t) = e−t sin x, v (x, t) = e−t sin x.

Problem 3.3 (The second problem). Singular one dimensional coupled Burgers equations with Bessel
operator are given by

ut −
1
x
(xux)x + ηuux +α (uv)x = f (x, t) , vt −

1
x
(xvx)x + ηvvx +β (uv)x = g (x, t) , (3.14)

with initial conditions
u (x, 0) = f1 (x) , v (x, 0) = g1 (x) ,

where the linear term 1
x
∂
∂x

(
x ∂∂x

)
is the called Bessel operator, and α, β, and η are real constants. In order

to obtain the solution of Eq. (3.14), applying the above steps, we get
∞∑
n=0

un (x, t) = f1 (x) + L
−1
p L

−1
s

[
1
s

∫p
0
dF (p, s)

]
− L−1

p L
−1
s

[
1
s

∫p
0
LxLt

[(
x
∂

∂x
un

)
x

]
dp

]
+ L−1

p L
−1
s

[
1
s
LxLt

[∫p
0
(ηxAn)dp

]]
+ L−1

p L
−1
s

[
1
s
LxLt

[∫p
0
(αx (Cn)x)dp

]]
,

and ∞∑
n=0

vn (x, t) = g1 (x) + L
−1
p L

−1
s

[
1
s

∫p
0
dG (p, s)

]
− L−1

p L
−1
s

[
1
s

∫p
0
LxLt

[(
x
∂

∂x
vn

)
x

]
dp

]
+ L−1

p L
−1
s

[
1
s
LxLt

[∫p
0
(ηxBn)dp

]]
+ L−1

p L
−1
s

[
1
s
LxLt

[∫p
0
(βx (Cn)x)dp

]]
.

The first few components can be written as

u0 = f1 (x) + L
−1
p L

−1
s

[
1
s

∫p
0
dF (p, s)

]
, v0 = g1 (x) + L

−1
p L

−1
s

[
1
s

∫p
0
dG (p, s)

]
, (3.15)

and

un+1 (x, t) = −L−1
p L

−1
s

[
1
s

∫p
0
LxLt

[(
x
∂

∂x

∞∑
n=0

un

)
x

]
dp

]

+ L−1
p L

−1
s

[
1
s
LxLt

[∫p
0

(
ηx

∞∑
n=0

An

)
dp

]]

+ L−1
p L

−1
s

[
1
s
LxLt

[∫p
0

(
αx

( ∞∑
n=0

Cn

)
x

)
dp

]]
,

(3.16)

and

vn+1 (x, t) = −L−1
p L

−1
s

[
1
s

∫p
0
LxLt

[(
x
∂

∂x
vn

)
x

]
dp

]
+ L−1

p L
−1
s

[
1
s
LxLt

[∫p
0
(ηxBn)dp

]]
+ L−1

p L
−1
s

[
1
s
LxLt

[∫p
0
(βx (Cn)x)dp

]]
.

(3.17)

Here we provide double inverse Laplace transform with respect to p and s which exist for each terms in
the right hand side of of Eqs. (3.15), (3.16), and (3.17).
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Example 3.4. Consider the following non homogeneous form of a coupled Burgers equation

ut −
1
x
(xux)x − 2uux + (uv)x = −x2e−t − 4e−t, vt −

1
x
(xvx)x − 2vvx + (uv)x = −x2e−t − 4e−t,

subject to
u (x, 0) = x2, v (x, 0) = x2.

By applying the above steps, we obtain
∞∑
n=0

un (x, t) = x2e−t + 4e−t − 4 − L−1
p L

−1
s

[
1
s

∫p
0
LxLt

[(
x
∂

∂x
un

)
x

]
dp

]
− L−1

p L
−1
s

[
1
s

∫p
0
LxLt [2x (An)]dp

]
+ L−1

p L
−1
s

[
1
s

∫p
0
LxLt [2x (Cn)x]dp

]
and ∞∑

n=0

vn (x, t) = x2e−t + 4e−t − 4 − L−1
p L

−1
s

[
1
s

∫p
0
LxLt

[(
x
∂

∂x
vn

)
x

]
dp

]
− L−1

p L
−1
s

[
1
s

∫p
0
LxLt [2x (Bn)]dp

]
+ L−1

p L
−1
s

[
1
s

∫p
0
LxLt [2x (Cn)x]dp

]
,

where An,Bn, and Cn are defined in Eqs. (2.5), (3.7), and (3.8), respectively. On using Eqs. (3.15), (3.16),
and (3.17) the components are given by

u0 = x2e−t + 4e−t − 4, v0 = x2e−t + 4e−t − 4,

u1 = −L−1
p L

−1
s

[
1
s

∫p
0
LxLt [(xu0x)x + 2xu0u0x − x (u0v0)x]dp

]
,

u1 = 4 − 4e−t,

v1 = L−1
p L

−1
s

[
1
s

∫p
0
LxLt [(xv0x)x + 2xv0v0x − x (u0v0)x]dp

]
,

v1 = 4 − 4e−t.

In the same manner, we obtain that

u2 = L−1
p L

−1
s

[
1
s

∫p
0
LxLt [(xu1x)x + 2x (u0u1x + u1u0x) − x (u0v1 + u1v0)x]dp

]
= 0,

v2 = L−1
p L

−1
s

[
1
s

∫p
0
LxLt [(xv1x)x + 2x (v0v1x + v1v0x) − x (u0v1 + u1v0)x]dp

]
= 0.

It is obvious that some self-canceling terms appear between various components and the connected by
coming terms, then we have,

u (x, t) = u0 + u1 + u2 + · · · , v (x, t) = v0 + v1 + v2 + · · · .

Therefore, the exact solution is given by

u (x, t) = x2e−t and v (x, t) = x2e−t.

4. conclusion

In this paper, we have proposed new modified double Laplace decomposition methods to solve singu-
lar Burgers equation and coupled Burgers equations. The efficiency and accuracy of the presented scheme
are validated through examples. This method can be applied to many complicated linear and non-linear
PDEs and also for system of PDEs on which linearization is not required.
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