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Abstract

We give representations and properties of a hyperholomorphic function with values in commutative-quaternions. We
first consider expressions of commutative-quaternions. Also, we investigate the results of derivatives and integrations for a
hyperholomorphic function of commutative-quaternionic variables in Clifford analysis.
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1. Introduction

A quaternion is a hypercomplex number defined in four dimensions which is introduced by Hamilton
[4]. It can be represented as follows:

z = x0 + x1i+ x2j+ x3k, xr ∈ R, r = 0, 1, 2, 3,

where R is a set of real numbers and the noncommutative units i, j, and k satisfy the relations:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Unlike in the complex analysis, the two analogous ways of defining a holomorphic functions of a quater-
nionic variable which are not equivalent, as in [10]. Sudbery [14] developed and organized the analogous
statements for quaternionic analysis. The algebra of quaternions H has developed the new theory which
can be applied in physics. Because quaternions has the noncommutative properties of the multiplication,
the Cauchy integral formula which is produced by Fueter [2] has two versions, left and right regular
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quaternionic functions for each analogue of the complex holomorphic functions satisfying the Cauchy-
Riemann equations:

Df :=
∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
+ k

∂f

∂x3
= 0

and
fD :=

∂f

∂x0
+
∂f

∂x1
i+

∂f

∂x2
j+

∂f

∂x3
k = 0,

where f : H→H is a differentiable function. Nôno [11] studied the properties of quaternions and the def-
inition of hyperholomorphic functions of quaternion variables. Kajiwara et al. [5] gave a basic calculation
for inhomogeneous Cauchy-Riemann system and the theories on a densely defined some operators in a
Hilbert space. Kim and Shon [7] researched unusual equations corresponding Cauchy-Riemann systems
and properties of functions with values in special quaternions by using a regular function with values in
dual split quaternions. Kim et al. [8, 9] obtained the regularity of functions on the reduced quaternion
field, and for the regularities of functions on the form of dual split quaternions.

Hypercomplex systems whose multiplications are commutative, which are introduced by Kaledin [6],
were applied by the development of the theory of functions of a complex variable. Scheicher et. al. [13]
extended some known inequalities for complex numbers to certain systems of hypercomplex numbers.
Fjelstad and Gal [1] generalized the complex analyticity to hypercomplex functions which included the
standard complex definition, except for reducing analytic functions to a trivial class. Grant and Strachan
[3] described complex numbers in the n dimension by using hypercomplex bases and the variables in real
numbers. Olariu [12] presented a detailed analysis of the hypercomplex numbers and the properties of
polar and planar hypercomplex numbers in the n dimension. Olariu researched the interplay between
the algebraic, the geometric, and the analytic relations.

In this paper, we describe the basic notation and definitions of the commutative-quatnions in four
dimensions, for which the multiplication is associative and commutative. Also, we investigate prop-
erties of a hyperholomorphic function and some representations of integral formulas for commutative-
quaternionic valued functions.

2. Preliminaries

A commutative-quaternion is determined as the ordered pair by four real components (x0, x1, x2, x3).
Let i, j, and k denote the pure imaginary numbers, respectively, then it is represented by

p = x0 + ix1 + jx2 + kx3,

where i, j, and k are bases for which the product rules are

i2 = j2 = −1, k2 = 1, ij = ji = −k, ik = ki = j, jk = kj = i.

Then we give a set of commutative-quaternions:

BQ := {p = x0 + ix1 + jx2 + kx3 | xr ∈ R (r = 0, 1, 2, 3)},

which is isomorphic to two dimensional complex numbers. If x0 = y0, x1 = y1, x2 = y2, and x3 = y3, then
two commutative-quaternions p = x0 + ix1 + jx2 + kx3, and q = y0 + iy1 + jy2 + ky3 are said to be equal.
For p,q ∈ BQ, the sum p+ q and the product pq can be expressed by

p+ q = (x0 + y0) + i(x1 + y1) + j(x2 + y2) + k(x3 + y3)

and

pq = (x0y0 − x1y1 − x2y2 + x3y3) + i(x0y1 + x1y0 + x2y3 + x3y2)

+ j(x0y2 + x2y0 + x1y3 + x3y1) + k(x0y3 + x3y0 − x1y2 − x2y1).
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From properties of the operators of the sum and product of commutative-quaternions, for p ∈ BQ, we
let the conjugate element p∗ such that p∗ = x0 − ix1 − jx2 + kx3. Then we have

M(p) := pp∗ = (x0 + kx3)
2 + (x1 + kx3)

2

and we set the element which appears M(p) to a real number, denoted by M(p),

M(p) := (x0 − kx3)
2 + (x1 − kx3)

2.

So, we give an inverse element p−1 = λ0 + iλ1 + jλ2 + kλ3 such that pp−1 = 1, where

λ0 =
x0(x

2
0 + x

2
1 + x

2
2 − x

2
3) − 2x1x2x3

r4 , λ1 =
x1(−x

2
0 − x

2
1 + x

2
2 − x

2
3) − 2x0x2x3

r4 ,

λ2 =
x2(−x

2
0 + x

2
1 − x

2
2 − x

2
3) − 2x0x1x3

r4 , λ3 =
x3(−x

2
0 + x

2
1 + x

2
2 + x

2
3) − 2x0x1x2

r4 ,

where a nonzero real number r (in [12]) is

r4 =M(p)M(p) =

3∑
r=0

x4
r + 2(x2

0x
2
1 + x

2
0x

2
2 − x

2
0x

2
3 − x

2
1x

2
2 + x

2
1x

2
3 + x

2
2x

2
3) − 8x0x1x2x3

= {(x2
0 − x

2
3)

2 + (x2
1 − x

2
2)

2}{(x2
0 + x

2
3)

2 + (x2
1 + x

2
2)

2}− 8x0x1x2x3.

If x0 = ±x3, x1 = ±x2, there is no inverse element in BQ.

3. Hyperholomorphic functions of commutative-quaternionic variables

Let Ω be an open subset in BQ. Let a commutative-quaternionic function f of a commutative-
quaternionic variable z be expressed by the real functions f0(x0, x1, x2, x3), f1(x0, x1, x2, x3), f2(x0, x1, x2, x3),
and f3(x0, x1, x2, x3) of continuously differentiable real variables x0, x1, x2, and x3. We give relations of
existences of the above limits between partial derivatives of the functions f0, f1, f2, and f3. From these
relations, for z0 = x0

0 + ix
0
1 + jx

0
2 + kx

0
3, we obtain the derivative, denoted by df(z0)

dz as follows.

Definition 3.1. Let a function f : Ω → BQ be defined by

f(z) = f0(x0, x1, x2, x3) + if1(x0, x1, x2, x3) + jf2(x0, x1, x2, x3) + kf3(x0, x1, x2, x3),

then the function f is said to be hyperholomorphic on Ω if the following limit

df(z0)

dz
:= lim
z → z0

(z− z0)
−1{f(z) − f(z0)} = lim

4z → 0
(4z)−1

( ∂f
∂x0
4x0 +

∂f

∂x1
4x1 +

∂f

∂x2
4x2 +

∂f

∂x3
4x3

)
,

where
4z = z− z0 = 4x0 + i4x1 + j4x2 + k4x3,

with 4xr = xr − x0
r (r = 0, 1, 2, 3) and except for x0 = ±x3, x1 = ±x2, exists in BQ.

By the above definition of the derivative, we have the following equations:

∂f0

∂x0
=
∂f1

∂x1
=
∂f2

∂x2
=
∂f3

∂x3
,

∂f1

∂x0
= −

∂f0

∂x1
= −

∂f3

∂x2
=
∂f2

∂x3
,

∂f2

∂x0
= −

∂f3

∂x1
= −

∂f0

∂x2
=
∂f1

∂x3
,

∂f3

∂x0
=
∂f2

∂x1
=
∂f1

∂x2
=
∂f0

∂x3
.

(3.1)
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The above system is called the corresponding Cauchy-Riemann system for components of a commutative-
quaternionic function. From properties of components fr (r = 0, 1, 2, 3), we consider harmonic functions
and solutions of the wave equation with respect to commutative-quaternionic variables.

Theorem 3.2. Let Ω be an open subset in BQ and a function f be hyperholomorphic in BQ. Then each component
of f is harmonic with respect to the pairs of variables (xt; xr) (t = 0, 3 and r = 1, 2). Also, each component of f is a
solution of the wave equation with respect to the pairs of variables (x0; x3) and (x1; x2).

Proof. Suppose the function f is hyperholomorphic. Then we have the corresponding Cauchy-Riemann
system (3.1) for components of a commutative-quaternionic function. From (3.1), we get

∂f0

∂x0
=
∂f1

∂x1
,

∂f1

∂x0
= −

∂f0

∂x1
.

We multiply by ∂
∂x0

and ∂
∂x1

, respectively. Then we get

∂2f0

∂x2
0
=

∂2f1

∂x0∂x1
, −

∂2f1

∂x1∂x0
=
∂2f0

∂x2
1

.

Hence, we have
∂2f0

∂x2
0
+
∂2f0

∂x2
1
= 0.

Also, we multiply
∂f0

∂x2
=
∂f2

∂x0
and

∂f2

∂x2
= −

∂f0

∂x0

by ∂
∂x2

and ∂
∂x0

, respectively. Then,

∂2f0

∂x2
2
=

∂2f2

∂x2∂x0
,

∂2f2

∂x0∂x2
= −

∂f2
0

∂x2
0

.

Hence, we have
∂2f0

∂x2
0
+
∂2f0

∂x2
2
= 0.

For the following equations

−
∂f0

∂x1
=
∂f2

∂x3
and

∂f2

∂x1
=
∂f0

∂x3
,

we multiply by ∂
∂x1

and ∂
∂x3

, respectively. Then we have

−
∂2f0

∂x2
1
=

∂2f2

∂x1∂x3
,

∂2f2

∂x3∂x1
=
∂f2

0

∂x2
3

and we obtain
∂2f0

∂x2
1
+
∂2f0

∂x2
3
= 0.

Also, by ∂
∂x2

and ∂
∂x3

, respectively, the equations

−
∂f0

∂x2
=
∂f1

∂x3
,

∂f1

∂x2
=
∂f0

∂x3

satisfy the following equation
∂2f0

∂x2
2
+
∂2f0

∂x2
3
= 0.
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For f1, f2, and f3, by using the similar calculating with the above processes, we obtain for the pairs of
variables (xt; xr) (t = 0, 3 and r = 1, 2), each components of f is harmonic on Ω.

Moreover, we multiply
∂f0

∂x0
=
∂f3

∂x3
and

∂f3

∂x0
=
∂f0

∂x3
,

by ∂
∂x0

and ∂
∂x3

, respectively. Then we get

∂2f0

∂x2
0
=

∂2f3

∂x0∂x3
and −

∂2f3

∂x3∂x0
=
∂2f0

∂x2
3

.

Hence, we have
∂2f0

∂x2
0
−
∂2f0

∂x2
3
= 0.

Also, we multiply

−
∂f0

∂x1
= −

∂f3

∂x2
and −

∂f0

∂x2
= −

∂f3

∂x1
,

by ∂
∂x1

and ∂
∂x2

, respectively. Then we have

∂2f0

∂x2
1
−
∂2f0

∂x2
2
= 0.

By similar processing for the components f1, f2, and f3, we also have the similar results. Therefore, for
the pairs (x0; x3) and (x1; x2), each components of f is a solution of the wave equation in BQ.

Let an orientation in the four dimensional space R4 be expressed with respect to the rotated system
(in [12]) of

α =
x0 + x3√

2
, β =

x1 + x2√
2

, γ =
x0 − x3√

2
, δ =

x1 − x2√
2

.

The Figure 1 is said to be a hyperplane in BQ.

Figure 1: Hyperplane.

Theorem 3.3. Let Γ be a surface consisting of a simple closed curve γ except for singularities of f. If an integral
of a commutative-quaternionic function f between two arbitrary points along a contour except for singularities is
independent of the contour, then the integral of the hyperholomorphic function f along the curve γ is zero, that is,∮

γ

f(z) dz = 0, (3.2)

where dz = dx0 + idx1 + jdx2 + kdx3.



J. E. Kim, J. Nonlinear Sci. Appl., 11 (2018), 469–476 474

Proof. Consider the integration along the curve γ and the pole z0, and their projections γ(αγ), γ(αδ) and
z
(αγ)
0 , z(αδ)0 on the planes αγ and αδ, respectively, as Figure 2.

Figure 2: Projections on the planes.

Since either z = z0 or all points of the two-dimensional hyperplanes being parallel to regions around
z0 as planes pass through z0 and contain each z0, z(αγ)0 , z(αδ)0 in Figure 2, by using the explicit form of
the integral in the equation (3.2), we have∮
γ

f(z) dz =

∮
γ

{(f0 dx0 − f1 dx1 − f2 dx2 + f3 dx3) + i(f1 dx0 + f0 dx1 + f3 dx2 + f2 dx3)

+ j(f2 dx0 + f3 dx1 + f0 dx2 + f1 dx3) + k(f3 dx0 − f2 dx1 − f1 dx2 + f0 dx3)}

=

∫ ∫
Γ

{(∂f0

∂x1
+
∂f1

∂x0

)
dx1dx0 +

(∂f0

∂x2
+
∂f2

∂x0

)
dx2dx0

+
(∂f0

∂x3
−
∂f3

∂x0

)
dx3dx0 +

(∂f1

∂x2
−
∂f2

∂x1

)
dx2dx1 +

(∂f1

∂x3
+
∂f3

∂x1

)
dx3dx1 +

(∂f2

∂x3
+
∂f3

∂x2

)
dx3dx2

}
.

If each component of the function f contain only the non-singularities on the surface Γ with the curve γ,
by Stokes’ theorem in the integral over the surface Γ , then we have

∂f0

∂x1
+
∂f1

∂x0
=
∂f0

∂x2
+
∂f2

∂x0
= 0,

∂f0

∂x3
−
∂f3

∂x0
=
∂f1

∂x2
−
∂f2

∂x1
= 0,

and
∂f1

∂x3
+
∂f3

∂x1
=
∂f2

∂x3
+
∂f3

∂x2
= 0.

From the corresponding Cauchy-Riemann system (3.1), these are equal to zero. Therefore, we obtain∮
γ

f(z) dz = 0.

Example 3.4. For a function zn in BQ, since we have∫
γ

zn dz =
zn+1

n+ 1

and the function zn+1 which contains the function for each integer n, the integral of the function 1
zn on a

simple closed curve γ is equal to zero for a positive or negative integer n (n 6= −1), that is,∮
γ

zn dz = 0.
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Let f : U → BQ be a function defined by f(z1, z2) = ϕ1(z1, z2) + jϕ2(z1, z2), where U is a bounded
open set of C2 and

ϕ1(z1, z2) = f0(x0, x1, x2, x3) + if1(x0, x1, x2, x3), ϕ2(z1, z2) = f2(x0, x1, x2, x3) + if3(x0, x1, x2, x3)

are complex analytic functions of z1 = x0 + ix1 and z2 = x2 + ix3 with real-valued functions fr(r = 0, 1, 2, 3).
Consider the following differential operators:

D∗z :=
∂

∂z1
+ j

∂

∂z2
,

where
∂

∂z1
=

∂

∂x0
+ i

∂

∂x1
and

∂

∂z2
=

∂

∂x2
+ i

∂

∂x3
.

Then the equation D∗zf = 0 satisfies the corresponding Cauchy-Riemann system (3.1). Indeed, D∗zf = 0
satisfies

∂ϕ1

∂z1
=
∂ϕ2

∂z2
and

∂ϕ1

∂z2
= −

∂ϕ2

∂z1
. (3.3)

Theorem 3.5. Let U be a bounded open set of C2. Let f : U → BQ be a function defined by f(z1, z2) =
ϕ1(z1, z2) + jϕ2(z1, z2). Then we have∫

U

f(z1, z2) (dζ1 + jdζ2) =

∫ ∫
U

D∗ζf(ζ1, ζ2) jdζ1 ∧ dζ2, (3.4)

where D∗ζ :=
∂
∂ζ1

+ j ∂
∂ζ2

, dζ1 = dx0 + idx1, dζ2 = dx2 + idx3, and

dζ1 ∧ dζ2 = dx0 ∧ dx2 − dx1 ∧ dx3 + i(dx0 ∧ dx3 + dx1 ∧ dx2).

Proof. We let κ = f0dx0 − f1dx1 − f2dx2 − f3dx3. Then we have

dκ =
( ∂f0
∂x2

+
∂f2
∂x0

)
dx2 ∧ dx0 +

( ∂f0
∂x3

−
∂f3
∂x0

)
dx3 ∧ dx0

+
( ∂f2
∂x1

−
∂f1
∂x2

)
dx2 ∧ dx1 −

( ∂f3
∂x1

+
∂f1
∂x3

)
dx3 ∧ dx1 −

( ∂f3
∂x2

+
∂f2
∂x3

)
dx3 ∧ dx2 +

( ∂f0
∂x1

+
∂f1
∂x0

)
dx1 ∧ dx0.

From the equations (3.3), we have

dκ =
(∂f0

∂x2
+
∂f2

∂x0

)
(dx2 ∧ dx0 − dx3 ∧ dx1) +

(∂f0

∂x3
−
∂f3

∂x0

)
(dx3 ∧ dx0 + dx2 ∧ dx1)

−
(∂f3

∂x2
+
∂f2

∂x3

)
dx3 ∧ dx2 +

(∂f0

∂x1
+
∂f1

∂x0

)
dx1 ∧ dx0.

Since f satisfies equations (3.1), by using the result of dκ, we obtain

dκ = −
{(∂f2

∂x0
+
∂f0

∂x2

)
+ i

(∂f3

∂x0
+
∂f1

∂x2

)
− j

(∂f0

∂x0
−
∂f2

∂x2

)
− k

(∂f1

∂x0
−
∂f3

∂x2

)}
· {dx0 ∧ dx2 − dx1 ∧ dx3 + i(dx0 ∧ dx3 + dx1 ∧ dx2)}

=
{(∂ϕ1

∂ζ1
−
∂ϕ2

∂ζ2

)
j−

(∂ϕ2

∂ζ1
+
∂ϕ1

∂ζ2

)}
(dζ1 ∧ dζ2)

= D∗ζfjdζ1 ∧ dζ2.

Therefore, by calculating and relating the above equations, we obtain equation (3.4).
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[11] K. Nôno, Hyperholomorphic functions of a quaternion variable, Bull. Fukuoka Univ. Ed. III, 32 (1982), 21–37. 1
[12] S. Olariu, Complex numbers in n dimensions, North-Holland Publishing Co., Amsterdam, (2002). 1, 2, 3
[13] K. Scheicher, R. F. Tichy, K. W. Tomantschger, Elementary Inequalities in Hypercomplex Numbers, Anz. Österreich.
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