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Abstract
We prove the existence and uniqueness of fixed point belonging to the zero-set of a given function. The results are

established in the setting of metric spaces and partial metric spaces. Our approach combines the recent notions of (F,ϕ)-
contraction and Z-contraction. The main result allows to deduce, as a particular case, some of the most known results in the
literature. An example supports the theory.
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1. Introduction

Let (Z, ρ) be a metric space, h : Z → Z be a mapping and θ : Z → [0,+∞[ be a given function. In
this paper, we prove the existence and uniqueness of fixed point of the function h, which belongs to the
zero-set of a given function θ (see [10, 11]). The notion of contraction used in this paper merges the
notions of (F,ϕ)-contraction (see [3]) and Z-contraction (see [4]). The main result allows to deduce, as a
particular case, some of the most known results in the literature. An example supports the theory.

2. Preliminaries

We recall the notions and notation which we will use later on. In [3], Jleli et al. take into account the
family H of functions H : [0,+∞[3→ [0,+∞[ satisfying the following conditions:

(H1) max{α,β} 6 H(α,β,γ) for all α,β,γ ∈ [0,+∞[;

(H2) H(0, 0, 0) = 0;

(H3) H is continuous.
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They use the family H to introduce a new type of contraction useful to get the existence and uniqueness
of fixed point belonging to the zero-set of a particular function.

Example 2.1. The following are examples of functions which belong to H:

(i) H(α,β,γ) = α+β+ γ;

(ii) H(α,β,γ) = max{α,β}+ γ;

(iii) H(α,β,γ) = α+β+αβ+ γ.

Let us denote by S the family of functions S : [0,+∞[2→ R satisfying the following conditions (see
[4]):

(S1) S(z,w) < w− z for all z,w > 0;

(S2) if {zn}, {wn} are sequences in ]0,+∞[ such that limn→+∞ zn = limn→+∞wn = λ ∈ ]0,+∞[ then
lim supn→+∞ S(zn,wn) < 0.

Example 2.2. The following are examples of functions in S:

(j) Let µ : [0,+∞[→ [0,+∞[ be a lower semi-continuous function with µ−1(0) = {0}. So, S ∈ S if
S(z,w) = w− µ(w) − z for all z,w > 0.

(jj) Let µ : [0,+∞[→ [0, 1[ be such that lim supz→r+ µ(z) < 1 for all r > 0. So, S ∈ S if S(z,w) =
wµ(w) − z for all z,w > 0.

(jj) Let µ : [0,+∞[→ [0,+∞[ be an upper semi-continuous function with µ(w) < w for all w > 0 and
µ(0) = 0. So, S ∈ S if S(z,w) = µ(w) − z for all z,w > 0.

3. Main result

In this section, we prove our first result (see Theorem 3.2). Here, we use a notion of contraction
involving the families S and H. Let Z 6= ∅, h : Z→ Z, u0 ∈ Z and un = hun−1 for all n ∈N. We call {un}
a sequence of Picard starting at u0.

Lemma 3.1. Let (Z, ρ) be a metric space and let h : Z→ Z be a mapping. Assume that there exist a function S ∈ S,
a function H ∈ H and a function θ : Z→ [0,+∞[ such that

S (H(ρ(hu,hv), θ(hu), θ(hv)),H(ρ(u, v), θ(u), θ(v))) > 0 for all u, v ∈ Z. (3.1)

If {un} is a sequence of Picard starting at u0 ∈ Z such that un−1 6= un for all n ∈ N, then {un} is a Cauchy
sequence.

Proof. Let u0 ∈ Z and let {un} be a sequence of Picard starting at u0 ∈ Z such that un−1 6= un for all
n ∈N. Firstly, we prove that

lim
n→+∞ ρ(un−1,un) = 0 and lim

n→+∞ θ(un) = 0. (3.2)

Taking into account that un−1 6= un for all n ∈N, by (H1) we obtain

H(ρ(un−1,un), θ(un−1), θ(un)) > 0 for all n ∈N.

Using (3.1) and (S1), with u = un−1 and v = vn, we deduce that

0 6 S(H(ρ(un,un+1), θ(un), θ(un+1)),H(ρ(un−1,un), θ(un−1), θ(un)))
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< H(ρ(un−1,un), θ(un−1), θ(un)) −H(ρ(un,un+1), θ(un), θ(un+1))

for all n ∈N. The previous inequality leads to

H(ρ(un,un+1), θ(un), θ(un+1)) < H(ρ(un−1,un), θ(un−1), θ(un)) for all n ∈N.

So, {H(ρ(un−1,un), θ(un−1), θ(un))} ⊂ ]0,+∞[ is a decreasing sequence and hence there is some λ > 0
such that

lim
n→+∞H(ρ(un−1,un), θ(un−1), θ(un)) = λ. (3.3)

We remark that if λ > 0, by using condition (S2) with zn = H(ρ(un,un+1), θ(un), θ(un+1)) and wn =
H(ρ(un−1,un), θ(un−1), θ(un)), we get

0 6 lim sup
n→+∞ S (H(ρ(un,un+1), θ(un), θ(un+1)),H(ρ(un−1,un), θ(un−1), θ(un))) < 0.

Clearly, this is a contradiction and hence λ = 0. Thus, from (H1) we get

max{ρ(un−1,un), θ(un−1)} 6 H(ρ(un−1,un), θ(un−1), θ(un)) for all n ∈N

and hence
lim
n→+∞ ρ(un−1,un) = 0 and lim

n→+∞ θ(un−1) = 0.

Now, we establish the Cauchyness of {un}. By contradiction, we assume that {un} is not Cauchy.
Then, there exist a positive real number σ and two sequences {jk} and {ik} such that ik > jk > k and
ρ(ujk ,uik) > σ > ρ(ujk ,uik−1) for all k ∈N. This implies

lim
k→+∞ ρ(ujk ,uik) = lim

k→+∞ ρ(ujk−1,uik−1) = σ.

So, it is not restrictive to assume that ρ(ujk−1,uik−1) > 0 for all k ∈N. Consequently, we deduce that also

H(ρ(ujk−1,uik−1), θ(ujk−1), θ(uik−1)) > 0 and H(ρ(ujk ,uik), θ(ujk), θ(uik)) > 0.

Now, taking into account that H is a continuous function, we have

lim
k→+∞H(ρ(ujk−1,uik−1), θ(ujk−1), θ(uik−1)) = lim

k→+∞H(ρ(ujk ,uik), θ(ujk), θ(uik))

= H(σ, 0, 0) > 0.

So, by using (S2) with

zk = H(ρ(ujk ,uik), θ(ujk), θ(uik)) and wk = H(ρ(ujk−1,uik−1), θ(ujk−1), θ(uik−1)),

we obtain

0 6 lim sup
k→+∞ S

(
H(ρ(ujk ,uik), θ(ujk), θ(uik)),H(ρ(ujk−1,uik−1), θ(ujk−1), θ(uik−1))

)
< 0.

Thus, we get a contradiction and hence {un} is a Cauchy sequence.

Now, we can demonstrate our main result.

Theorem 3.2. Let (Z, ρ) be a complete metric space and let h : Z → Z be a mapping. Suppose that there exist a
function S ∈ S, a function H ∈ H and a lower semi-continuous function θ : Z → [0,+∞[ such that (3.1) holds,
that is,

S (H(ρ(hu,hv), θ(hu), θ(hv)),H(ρ(u, v), θ(u), θ(v))) > 0 for all u, v ∈ Z.

Then h has a unique fixed point w such that θ(w) = 0.
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Proof. Firstly, we establish uniqueness of the fixed point, that is, w is the unique fixed point of h. Suppose
that there exists z ∈ Z such that z = hz and z 6= w. Using (3.1) and (S1) with u = w and v = z we get

0 6 S(H(ρ(hw,hz), θ(hw), θ(hz)),H(ρ(w, z), θ(w), θ(z)))
< H(ρ(w, z), θ(w), θ(z)) −H(ρ(w, z), θ(w), θ(z)) = 0.

Clearly, this is a contradiction. Hence, we have w = z and so we obtain the claim.
In order to establish the existence of a fixed point, we consider a point u0 ∈ Z. Let {un} be a sequence

of Picard starting at u0. We stress that if uk = uk+1 for some k ∈N then uk = uk+1 = huk, that is, uk is
a fixed point of h. Clearly θ(uk) = 0 (in order to show this, it is sufficient to proceed as in the first part
of the proof of Lemma 3.1). Taking into account that if uk = uk+1 we have existence of a fixed point, it is
not restrictive to assume that un 6= un+1 for every n ∈N.

Now, Lemma 3.1 ensures that the sequence {un} is Cauchy. Since (Z, ρ) is complete, there exists some
w ∈ Z such that

lim
n→+∞un = w. (3.4)

By (3.2), taking into account that θ is a lower semi-continuous function, we get

0 6 θ(w) 6 lim inf
n→+∞ θ(un) = 0,

that is, θ(w) = 0. We have that w is a fixed point of h. Clearly, w is a fixed point of h if there exists a
subsequence {ujk} of {un} such that ujk = w or hujk = hw, for all k ∈N. If there is no such subsequence,
we can assume that un 6= w and hun 6= hw for all n ∈ N. So, using (3.1) and (S1) with u = un and
v = w, we have

0 6 S(H(ρ(hun,hw), θ(hun), θ(hw)),H(ρ(un,w), θ(un), θ(w)))
< H(ρ(un,w), θ(un), θ(w)) −H(ρ(hun,hw), θ(hun), θ(hw)).

Consequently

H(ρ(hun,hw), θ(hun), θ(hw)) < H(ρ(un,w), θ(un), θ(w)) for all n ∈N

and so

ρ(w,hw) 6 ρ(w,un+1) + ρ(hun,hw)
6 ρ(w,un+1) +H(ρ(hun,hw), θ(hun), θ(hw))
< ρ(w,un+1) +H(ρ(un,w), θ(un), θ(w))

for all n ∈ N. Letting n → +∞ in the previous inequality, the continuity of the function H in (0, 0, 0)
ensures that ρ(w,hw) 6 H(0, 0, 0) = 0. So, w = hw and hence w is a fixed point of h.

4. Consequences

Now, we point out the unifying force of the contractive condition (3.1). In fact, using Theorem 3.2, we
recover various contractive conditions in the existing literature.

We start by a result of Jleli et al. type (see [3, Theorem 2.1]).

Corollary 4.1. Let (Z, ρ) be a complete metric space and let h : Z → Z be a mapping. Suppose that there exist
δ ∈ ]0, 1[, H ∈ H and a lower semi-continuous function θ : Z→ [0,+∞[ such that

H(ρ(hu,hv), θ(hu), θ(hv)) 6 δH(ρ(u, v), θ(u), θ(v)) for all u, v ∈ Z.

Then h has a unique fixed point w such that θ(w) = 0.
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Proof. The claim follows by Theorem 3.2 if we choose the function S ∈ S given by S(z,w) = λw− z for all
z,w > 0.

Clearly, if H(α,β,γ) = α+β+γ for all α,β,γ ∈ [0,+∞[ and θ(u) = 0 for all u ∈ Z, then we obtain the
Banach contraction principle [1].

Now, we give a result of Rhoades type (see [9]).

Corollary 4.2. Let (Z, ρ) be a complete metric space and let h : Z → Z be a mapping. Suppose that there exist
H ∈ H and two lower semi-continuous functions µ : [0,+∞[→ [0,+∞[ with µ−1(0) = {0} and θ : Z → [0,+∞[
such that

H(ρ(hu,hv), θ(hu), θ(hv)) 6 H(ρ(u, v), θ(u), θ(v)) − µ(H(ρ(u, v), θ(u), θ(v))) for all u, v ∈ Z.

Then h has a unique fixed point w such that θ(w) = 0.

Proof. Again, we deduce the claim by Theorem 3.2 if we choose S ∈ S defined by S(z,w) = w− µ(w) − z,
for all z,w > 0 (see Example 2.2 (j)).

As consequence of Theorem 3.2, we get also the following result (see [8]).

Corollary 4.3. Let (Z, ρ) be a complete metric space and let h : Z → Z be a mapping. Suppose that there exist
H ∈ H, a function µ : [0,+∞[→ [0, 1[ with lim supz→r+ µ(z) < 1 for all r > 0 and a lower semi-continuous
function θ : Z→ [0,+∞[ such that

H(ρ(hu,hv), θ(hu), θ(hv)) 6 µ(H(ρ(u, v), θ(u), θ(v))H(ρ(u, v), θ(u), θ(v))) for all u, v ∈ Z.

Then h has a unique fixed point w such that θ(w) = 0.

Proof. Using Theorem 3.2 with respect to the function S ∈ S defined by S(z,w) = wµ(w) − z for all
z,w > 0 (see Example 2.2 (jj)), we obtain the claim.

The following is a result of Boyd-Wong type (see [2]).

Corollary 4.4. Let (Z, ρ) be a complete metric space and let h : Z → Z be a mapping. Suppose that there exist
a function H ∈ H, an upper semi-continuous function µ : [0,+∞[→ [0,+∞[ with µ(z) < z for all z > 0 and
µ(0) = 0 and a lower semi-continuous function θ : Z→ [0,+∞[ such that

H(ρ(hu,hv), θ(hu), θ(hv)) 6 µ(H(ρ(u, v), θ(u), θ(v))) for all u, v ∈ Z.

Then h has a unique fixed point w such that θ(w) = 0.

Proof. In order to obtain the claim it is sufficient to apply Theorem 3.2 and to take the function S ∈ S

given by S(z,w) = µ(w) − z for all z,w > 0 (see Example 2.2 (jjj)).

We stress that if we suppose H(α,β,γ) = α+β+ γ for all α,β,γ ∈ [0,+∞[ and θ(u) = 0 for all u ∈ Z,
then we obtain the Boyd-Wong result.

The following example shows that Theorem 3.2 is a proper generalization of both Banach contraction
principle and Boyd-Wong result in the setting of metric spaces.

Example 4.5 (see [11, Example 4]). We consider Z = [0, 1] and we endow Z with the usual metric ρ(u, v) =
|u− v| for all u, v ∈ Z. Clearly, (Z, ρ) is a complete metric space. Fix δ ∈ [0, 1[ and consider the function
h : Z→ Z defined by

hu =



0 if u = 0,

δ

2m
− δ

2m− 1
2m

(2mu− 1) if
1

2m
6 u 6

1
2m− 1

,

δ

2m
+ δ

2m+ 1
2m

(2mu− 1) if
1

2m+ 1
6 u 6

1
2m

.
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We remark that h is not a nonexpansive function (if δ is chosen appropriately close to 1). In fact, if for
odd m > 1 we choose u = 1

2m−1 and v = 1
m−1 , we have

ρ(hu,hv) =
δ

m− 1
6 ρ(u, v) =

m

(m− 1)(2m− 1)
6

3
5(m− 1)

.

This inequality is not satisfied for δ > 3/5. This ensures that both the Banach contraction principle and
Boyd-Wong result cannot be applied to show that h has a fixed point.

Now, if we consider the function θ : Z → [0,+∞[ defined by θ(u) = u for all u ∈ Z and the function
H(α,β,γ) = α+β+ γ for all α,β,γ ∈ [0,+∞[, then we have

H(ρ(hu,hv), θ(hu), θ(hv)) = ρ(hu,hv) + θ(hu) + θ(hv)
= 2 max{hu,hv} 6 2 max{δu, δv}
= 2δmax{u, v}
= δ[ρ(u, v) + θ(u) + θ(v)]
= δH(ρ(u, v), θ(u), θ(v))

for all u, v ∈ Z. So, all the conditions of Corollary 4.1 are satisfied and this implies that h has a unique
fixed point in Z, we say w = 0 with θ(w) = 0.

5. Fixed points in partial metric spaces

Let us observe that we can use Theorem 3.2 to get some results of fixed point on the setting of partial
metric spaces.

For other details on partial metric spaces, we refer the reader to [5–7] and the references therein.

Definition 5.1. Let Z be a non-empty set. A function π : Z×Z→ [0,+∞[ such that

(π1) u = v⇔ π(u,u) = π(u, v) = π(v, v) for all u, v ∈ Z;

(π2) π(u,u) 6 π(u, v) for all u, v ∈ Z;

(π3) π(u, v) = π(v,u) for all u, v ∈ Z;

(π4) π(u, v) 6 π(u, z) + π(z, v) − π(z, z) for all u, v, z ∈ Z

is a partial metric on Z. The pair (Z,π) is called partial metric space.

We stress that u = v does not imply π(u, v) = 0. The function π : [0,+∞[×[0,+∞[→ [0,+∞[ defined
by π(u, v) = max{u, v} for all u, v ∈ [0,+∞[ is a partial metric on [0,+∞[.

Let (Z,π) be a partial metric space and let {un} ⊂ Z be a sequence. Then

(a) {un} converges to a point u ∈ Z if and only if π(u,u) = lim
n→+∞π(u,un).

(b) {un} is called a Cauchy sequence if there exists (and it is finite) lim
n,m→+∞π(un,um).

A partial metric space (Z,π) is complete if every Cauchy sequence {un} ⊂ Z converges to a point u ∈ Z
such that π(u,u) = lim

n,m→+∞π(un,um).

We recall that to every partial metric π on a set Z we can associate one metric on Z, precisely, the
function ρπ : Z×Z→ [0,+∞[ given by

ρπ(u, v) = 2π(u, v) − π(u,u) − π(v, v) (5.1)

is a metric on Z. We say that lim
n→+∞ ρπ(un,u) = 0 if and only if

π(u,u) = lim
n→+∞π(un,u) = lim

n,m→+∞π(un,um).
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Lemma 5.2. Let (Z,π) be a partial metric space and let θ : Z→ [0,+∞[ be given by θ(u) = π(u,u) for all u ∈ Z.
Then θ is a lower semi-continuous function in the metric space (Z, ρπ).

Proof. Let {um} ⊂ Z and u ∈ Z. If um → u as m→ +∞ in the metric space (Z, ρπ), then

θ(u) = π(u,u) = lim
m→+∞π(um,um) = lim inf

m→+∞ θ(um),

consequently, θ is lower semi-continuous in u and hence in (Z, ρπ).

Lemma 5.3. Let (Z,π) be a partial metric space and {un} ⊂ Z . Then

(a) if {un} is a Cauchy sequence in (Z,π), then it is a Cauchy sequence in (Z, ρπ) and vice versa.

(b) If (Z,π) is a complete partial metric space, then (Z, ρπ) is a complete metric space and vice versa.

Now, we produce our main result in the context of partial metric spaces.

Theorem 5.4. Let (Z,π) be a complete partial metric space and let h : Z → Z be a mapping. Suppose that there
exists S ∈ S such that

S (π(hu,hv),π(u, v)) > 0 for all u, v ∈ Z. (5.2)

Then h has a unique fixed point w ∈ Z such that π(w,w) = 0.

Proof. We remark that by (5.1), we get

π(u, v) =
ρπ(u, v) + π(u,u) + π(v, v)

2
for all u, v ∈ Z. (5.3)

Now, we equip Z with the metric ρ = 2−1ρπ. Since (Z,π) is complete, by Lemma 5.3 we infer that
the metric space (Z, ρ) is complete. By Lemma 5.2, we say that the function θ : Z → [0,+∞[ given by
θ(u) = 2−1π(u,u) is lower semi-continuous in (Z, ρ). Thus, from (5.2) and (5.3), we have that the mapping
h verifies the following condition

S (H(ρ(hu,hv), θ(hu), θ(hv)),H(ρ(u, v), θ(u), θ(v))) > 0 for all u, v ∈ Z,

where H ∈ H is defined by H(α,β,γ) = α+β+ γ for all α,β,γ ∈ [0,+∞[. So, the mapping h satisfies all
the conditions of Theorem 3.2 with respect to the metric space (Z, ρ). By Theorem 3.2, we can affirm that
h has a unique fixed point w such that θ(w) = 0 and so π(w,w) = 0.

We observe that the Matthews fixed point theorem (see [5]) follows from Theorem 5.4. It is sufficient
to choose the function S ∈ S given by S(u, v) = σ v− u for all u, v ∈ [0,+∞[ with σ ∈ [0, 1[.

Corollary 5.5. Let (Z,π) be a complete partial metric space and let h : Z → Z be a mapping. Suppose that there
exists σ ∈ [0, 1[ such that

π(hu,hv) 6 σπ(u, v) for all u, v ∈ Z. (5.4)

Then h has a unique fixed point w ∈ Z such that π(w,w) = 0.

Proceeding as in the proof of Theorem 5.4, from Corollary 4.2 we infer the following corollary.

Corollary 5.6. Let (Z,π) be a complete partial metric space and let h : Z → Z be a mapping. Suppose that there
exists a lower semi-continuous function µ : [0,+∞[→ [0,+∞[ with µ−1(0) = {0} such that

ρ(hu,hv) 6 ρ(u, v) − µ(ρ(u, v)) for all u, v ∈ Z.

Then h has a unique fixed point w ∈ Z such that π(w,w) = 0.

Again proceeding as in the proof of Theorem 5.4, from Corollary 4.3 we infer the following corollary.
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Corollary 5.7. Let (Z,π) be a complete partial metric space and let h : Z → Z be a mapping. Suppose that there
exists µ : [0,+∞[→ [0, 1[ with lim supz→r+ µ(z) < 1 for all r > 0 such that

ρ(hu,hv) 6 µ(ρ(u, v)) ρ(u, v) for all u, v ∈ Z.

Then h has a unique fixed point w ∈ Z such that π(w,w) = 0.

By Corollary 4.4, proceeding as in the proof of Theorem 5.4, we deduce the following corollary.

Corollary 5.8. Let (Z,π) be a complete partial metric space and let h : Z → Z be a mapping. Suppose that there
exists an upper semi-continuous function µ : [0,+∞[→ [0,+∞[ with µ(z) < z for all z > 0 and µ(0) = 0 such
that

ρ(hu,hv) 6 µ(ρ(u, v)) for all u, v ∈ Z.

Then h has a unique fixed point w ∈ Z such that π(w,w) = 0.
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