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Abstract

Our paper takes into account a new bifurcation case of the cycle length and a fifth-order difference equation dynamics of
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, m = 0, 1, 2, 3, . . . ,

where γ ∈ [0,∞) , α,β ∈ Z+, and y−4,y−3,y−1,y−2,y0 ∈ (0, ∞) is took into consideration. The disturbance of initials
lead to a distinction of cycle length principle of the non-trivial solutions of the equation. The principle of the track solutions
structure for this equation is given. The consecutive periods of negative and positive semicycles of non-trivial solutions of
this equation take place periodically with only prime period fifteen and in a period with the principles represented by either
{3+, 1−, 2+, 2−, 1+, 1−, 1+, 4−} or {3−, 1+, 2−, 2+, 1−, 1+, 1−, 4+}. From this rubric we will establish that the positive fixed point
has global asymptotic stability.
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1. Introduction

Recently, the difference equations qualitative properties have been the matter studied. One of the
purposes of this technique is the need for a number of techniques that can be used in the study of
equations that arise in probability theory, psychology, biology, population, genetics, economics, etc..

The studies of fractional difference equations of order higher than one is perfectly challenging and re-
munerative because some patterns for developing the main theory of the behavior of non-linear difference
equations come from results for fractional difference equations.
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Ladas [11] submitted the studying of the fractional difference equation

ym+1 =
ym + ym−1ym−2 + γ

ymym−1 + ym−2 + γ
.

From that time, rational difference equations whose have a unique positive fixed point $ = 1 have
received considerable solicitude. For more results, we refer to [1–9, 12–16].

From the previous known works, we can grasp that it is troublesome to perceive perfectly the track
framework of solutions of fractional difference equations in spite of they have simple semblances. If the
change of a initial value or a parameter around a value leads to the essential change of the track structure
principle of its solution, then it is called that a bifurcation of this equation takes place.

Furthermore, the critical value is said to be a bifurcation value. This concept looks like the definition
of the bifurcation for any differential equation.

It is important to indicated that the fundamental change of the track structure principle of a difference
equation contains many cases, such as, a solution from the boundedness to the unboundedness, and from
the stability to the un-stability, from one period to other period, or the cycle length from one period to
another period, etc.. Then, it is significance to examine the bifurcation theory of difference equation with
reference to its own right.

In our current paper we take into account the fifth-order difference equation

ym+1 =
ymy

α
m−2y

β
m−4 + ym + yαm−2 + y

β
m−4 + γ

ymy
α
m−2 + y

α
m−2y

β
m−4 + ymy

β
m−4 + γ+ 1

, m = 0, 1, 2, . . . , (1.1)

where γ ∈ [0,∞), α,β ∈ Z+and the initials y0,y−3,y−2,y−1,y−4 ∈ (0, ∞).
By analyzing the principle of the length of semicycle to take place respectively, we characterize the

principle of the track framework of its solutions and then we conclude the global asymptotic stabilization
of fixed point of (1.1). It is considerably hard to employ methods in the previous known good manners,
such as [10] to give the principle of track framework of solutions of (1.1).

It is achieved without great effort to find the fixed point $ of (1.1) from

$ =
$α+β+1 +$+$α +$β + γ

$1+α +$1+β +$α+β + γ+ 1

and from it, we can find that (1.1) has a unique fixed point $ = 1.
Here, we also provide relevant definitions, finding some results that will benefit us in implementing

of the behavior of solutions of (1.1). Consider J is an interval in R and g : J× J× J→ J be a differentiable
continuously mapping. Then, for initials y−1,y−4,y−3,y−2,y0 ∈ J, the difference equation

ym+1 = g(ym,ym−2,ym−4), m = 0, 1, 2, . . . , (1.2)

has a unique solution {ym}∞m=−4.
A point $ is called an fixed point of (1.2) if $ = g($,$,$). That is, ym = $ for m > 0, is a solution

of (1.2).

Definition 1.1. Let $ be a fixed of (1.2).

(a) A fixed point $ is said to be stable if, ∀ ε > 0, ∃ δ > 0 such that if y−3,y−2,y−4,y−1,y0 ∈ J and
|−$+ y−4|+ |−$+ y−3|+ |y−2 −$|+ |y−1 −$|+ |y0 −$| < δ, then |ym −$| < ε for all m > −4.

(b) A fixed point $ is called locally asymptotically stable if $ is stable and if ∃ δ > 0 such that if
y−1,y−3,y−2,y−4,y0 ∈ J and | −$ + y−3| + |y−4 −$| + |y−2 −$| + |y−1 −$| + |y0 −$| < δ, then
limm→∞ ym = $.

(c) A fixed point $ is said to be a global attractor if

lim
m→∞ym = $, ∀y−2, y−3,y−1,y−4, y0 ∈ J.
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(d) The fixed point $ is said to be globally asymptotically stable if $ is global attractor and stable.
(e) A fixed point $ is said to be unstable if isn’t stable.
(f) A fixed point $ is called a repeller if ∃ δ > 0 such that for y−3,y−4,y−2,y−1,y0 ∈ J and |y−1 −$|+

|−$+ y−3|+ |y−2 −$|+ |y−4 −$|+ |−$+ y0| < δ, ∃M > −4 such that |yM −$| > δ.

Let

b1 =
∂g($, $, $)

∂s
, b2 =

∂g($, $, $)

∂t
, and b3 =

∂g($, $, $)

∂u
,

where g(s, t,u) is the mapping in (1.2) and $ is a fixed point of the equation. Hence

ym+1 = b1ym + b2ym−2 + b3ym−4, n = 0, 1, 2, 3, . . .

is said to be linearized equation associated with (1.2) about the fixed point $.

Definition 1.2. A positive semicycle of a solution {ym}∞m=−4 of (1.1) consists of a string of terms
{yh,yh+1, · · · ,yk}, all greater than or equal to the fixed point $, with h > −4 and k 6 ∞ such that

either h = −4 or h > −4 and yh−1 < $

and
either k = ∞ or k <∞ and yk+1 < $.

A negative semicycle of a solution {ym}∞m=−4 of (1.1) consists of a string of terms {yh,yh+1, · · · ,yk},
all less than $, with h > −4 and k 6 ∞ provided that

either h = −4 or h > −4 and yh−1 > $

and
either k = ∞ or k <∞ and yk+1 > $.

Length for a semicycle represents number of all terms included in it.

The solution {ym}∞m=−4 of (1.1) is called eventually trivial if ym is eventually equal to $ = 1. Other-
wise, the solution is called nontrivial. A solution {ym}∞m=−4 of (1.1) is called eventually negative (positive)
if ym is eventually less (great) than $ = 1;

2. Main conclusions and their proofs

In current section we shall establish our main results. We concentrate on the non-trivial solutions,
non-oscillation, oscillation, and global asymptotically stability for (1.1).

2.1. Non-trivial solution

Theorem 2.1. A positive solution {ym}∞m=−4 of (1.1) is eventually trivial if and only if

(−1 + y−3)(−1 + y−1)(y−2 − 1)(−1 + y−4)(y0 − 1) = 0. (2.1)

Proof. Let (2.1) holds. Thus it pursues from (1.1):

1) if y−4 = 1, hence ym = 1 where m > 1;
2) y−3 = 1, hence ym = 1 where m > 2;
3) y−2 = 1, hence ym = 1 where m > 1;
4) y−1 = 1, hence ym = 1 where m > 2;
5) y0 = 1, hence ym = 1 for m > 1.



T. F. Ibrahim, J. Nonlinear Sci. Appl., 11 (2018), 375–382 378

Conversely, assume that

(−1 + y−1)(y−4 − 1)(−1 + y−2)(y−3 − 1)(y0 − 1) 6= 0.

Then we can show that
ym 6= 1 for any m > 1.

Assume to the contrary that, for some 1 6M,

1 = yM and that 1 6= ym for − 4 6 m 6M− 1.

We have,

1 = yM =
yM−1y

α
M−3y

β
M−5 + yM−1 + y

α
M−3 + y

β
M−5 + γ

yM−1y
α
M−3 + y

α
M−3y

β
M−5 + yM−1y

β
M−5 + γ+ 1

,

which implies (yM−1 − 1)(yM−3 − 1)(yM−5 − 1) = 0, which is a contradiction.

Remark 2.2. Theorem 2.1 factually elucidates that a solution {ym}∞m=−4 of (1.1) is eventually non-trivial
if and only if (−1 + y−4)(y−3 − 1)(y−1 − 1)(−1 + y−2)(y0 − 1) 6= 0. Thus, if a solution {ym}∞m=−4 is non-
trivial, then ym 6= 1 for −4 6 m.

2.2. Non-Oscillation and Oscillation
Firstly, we require the following important lemma.

Lemma 2.3. For every non-trivial solution {ym}∞m=−4 of (1.1):

(a) (−1 + ym+1)(−1 + ym)(ym−2 − 1)(−1 + ym−4) > 0, m > 0;
(b) (ym+1 − ym)(ym − 1) < 0 for m > 0;
(c) (−ym−2 + ym+1)(−1 + ym−2) < 0 for m > 0;
(d) (ym+1 − ym−4)(−1 + ym−4) < 0 for m > 0.

Proof. By (1.1), we find that

−1 + ym+1 =
(−1 + ym)(−1 + ym−2)(−1 + ym−4)f(ym−2,ym,ym−4)

ymy
α
m−2 + y

α
m−2y

β
m−4 + ymy

β
m−4 + γ+ 1

, m = 0, 1, 2, . . . ,

where f(ym,ym−2,ym−4) gives positive values for all ym,ym−2,ym−4 ∈ (0, ∞). This gives inequality (a).
Moreover,

ym+1 − ym =
−(−1 + ym)g(ym−2,ym,ym−4)

ymy
α
m−2 + y

α
m−2y

β
m−4 + ymy

β
m−4 + γ+ 1

, m = 0, 1, 2, 3, . . . ,

where g(ym−4,ym−2,ym) gives positive values for all ym,ym−4,ym−2 ∈ (0, ∞), which gives the inequal-
ity (b). Similarly we can get inequalities (c) and (d). So the proof terminates.

Theorem 2.4. There exist nonoscillatory solutions for (1.1), which have to be eventually negative. Eventually
positive nonoscillatory solutions do not exist for (1.1).

Proof. Take into account a solution of (1.1) with y−1 < 1,y−3 < 1,y−4 < 1, y−2 < 1 and y0 < 1. By
Lemma 2.3 (a) we have ym < 1 for m > −4. This solution is merely a nonoscillatory solution and over
and above eventually negative.

Let there are eventually positive nonoscillatory solutions of (1.1). So, we have a positive integer M
provided that ym > 1 for m > M. Therefore, for m > M+ 2, (−1 + ym+1)(ym − 1)(−1 + ym−2)(−1 +
ym−4) < 0. Thus, there is no eventually positive nonoscillatory solutions of (1.1), as desired.

Now we anatomize the principle of track framework of precisely solutions of (1.1).
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Theorem 2.5. Let {ym}∞m=−4 represents a precisely oscillatory solution of (1.1). The principle of periods of negative
and positive semicycles of the solution respectively take place as either

· · · , 3−, 1+, 2−, 2+, 1−, 1+, 1−, 4+, 3−, 1+, 2−, 2+, 1−, · · ·

or
· · · , 3+, 1−, 2+, 2−, 1+, 1−, 1+, 4−, 3+, 1−, 2+, 2−, 1+, · · · l.

Proof. According to the precisely oscillatory nature of a solution, we have, for integer Υ > 0, that subse-
quent cases take place as:

Case 1: yΥ−4 > 1,yΥ−3 < 1, 1 < yΥ−2, 1 > yΥ−1, 1 < yΥ;

Case 2: yΥ−4 > 1,yΥ−3 < 1, 1 < yΥ−2, 1 > yΥ−1,yΥ < 1;

Case 3: yΥ−4 > 1,yΥ−3 < 1, 1 < yΥ−2, 1 < yΥ−1,yΥ < 1;

Case 4: yΥ−4 > 1,yΥ−3 < 1, 1 < yΥ−2, 1 < yΥ−1,yΥ > 1;

Case 5: yΥ−4 > 1,yΥ−3 < 1, 1 > yΥ−2, 1 > yΥ−1,yΥ > 1;

Case 6: yΥ−4 > 1,yΥ−3 < 1, 1 > yΥ−2, 1 > yΥ−1,yΥ < 1;

Case 7: yΥ−4 > 1,yΥ−3 < 1, 1 > yΥ−2, 1 < yΥ−1,yΥ < 1;

Case 8: yΥ−4 > 1,yΥ−3 < 1, 1 > yΥ−2, 1 < yΥ−1,yΥ > 1.
If Case 1 takes place, we have, from Lemma 2.3 (a), that 1 < yΥ+1, yΥ+2 > 1, 1 < yΥ+3, 1 > yΥ+4, 1 <

yΥ+5, 1 > yΥ+6, 1 < yΥ+7, 1 > yΥ+8, 1 > yΥ+9, 1 < yΥ+10, 1 < yΥ+11, 1 > yΥ+12, 1 < yΥ+13, 1 > yΥ+14,
1 < yΥ+15, . . ., and then the principle of the periods of negative and positive semicycles of the solution of
(1.1) respectively take place as . . . , 3−, 1+, 2−, 2+, 1−, 1+, 1−, 4+, 3−, 1+, 2−, 2+, 1−. . . .

If Case 2 occurs, then we have yΥ+1 < 1, 1 > yΥ+2, 1 < yΥ+3, 1 < yΥ+4,yΥ+5 > 1, 1 > yΥ+6,
1 < yΥ+7, 1 < yΥ+8,yΥ+9 < 1, 1 > yΥ+10, 1 < yΥ+11, 1 > yΥ+12, 1 < yΥ+13, 1 > yΥ+14, 1 > yΥ+15, . . ..
Thus the principle of terms numbers of negative and positive semicycles of solution of (1.1) respectively
is . . . , 3+, 1−, 2+, 2−, 1+, 1−, 1+, 4−, 3+, 1−, 2+, 2−, 1+, . . . .

By the same way and by using Lemma 2.3 (a) we can find that the Cases 3, 6, 7 have the principle
. . . , 3+, 1−, 2+, 2−, 1+, 1−, 1+, 4−, 3+, 1−, 2+, 2−, 1+, . . . for negative and positive semicycles of solution as
in Case 2. But the Cases 4, 5, 8 have the principle . . . , 3−, 1+, 2−, 2+, 1−, 1+, 1−, 4+, 3−, 1+, 2−, 2+, 1−, . . .
for the periods of negative and positive semicycles of solution as in Case 1.

Remark 2.6. We know that specification Cases in Theorem 2.5 are happened by the disruption of the
starting point round the fixed point. So, Theorem 2.5 in effect points out that disturbance of the initials
may instruct to the distinction of the track framework principle of solution of (1.1).

2.3. Global asymptotic stability
In the beginning, we take into account local asymptotically stability of positive fixed $ of (1.1).

Theorem 2.7. Non-negative fixed point of (1.1) has locally asymptotically stability.

Proof. For the positive fixed point $ = 1, we get linearized equation of (1.1)

ym+1 = ym−4 × 0 + ym−2 × 0 + 0× ym, m = 0, 1, . . . .

By dint of [10], $ is locally asymptotically stable.

Theorem 2.8. The Non-negative fixed point of (1.1) has global asymptotic stability.

Proof. It is sufficient to show that each solution {ym}∞m=−4 of (1.1) converges to $ as m→∞, i.e.,

lim
m→∞ym = $ = 1. (2.2)

We can split solutions as 1) trivial solutions and 2) non-trivial solutions.
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If solution is trivial, then (2.2) holds because ym = 1 eventually. Hence (2.2) holds.
First, let solution be non-trivial. Thus we can split the solution to a) nonoscillatory solution and b)

oscillatory solution.
If a) happens, thus we have an eventually negative solution. Thus, there works out an integer M

provided that ym < 1 for m >M. From Lemma 2.3 (b) we have that solution is bounded and monotonic.
Then, limn→∞ ym = U exists and finite. If we take limit of (1.1), we get

U =
U1+α+β +U+Uα +Uβ + a

U1+α +U1+β +Uα+β + a+ 1
.

Hence U = 1. This shows that (2.2) is adequate for nonoscillatory solutions.
Hence, it is enough to show that (2.2) precises for the solution is oscillatory. This means that Case b)

takes place.
Let {ym}∞m=−4 is precisely oscillatory about fixed point $ of (1.1). First, we find that the princi-

ple of the periods of negative and positive semicycles of this solution respectively take place as either
. . . , 3−, 1+, 2−, 2+, 1−, 1+, 1−, 4+, 3−, 1+, 2−, 2+, 1−, . . . or . . . , 3+, 1−, 2+, 2−, 1+, 1−, 1+, 4−, 3+, 1−, 2+, 2−,
1+, . . ..

Now we do the case in which the principle of the periods of negative and positive semicycles take
place respectively as . . . , 3−, 1+, 2−, 2+, 1−, 1+, 1−, 4+, 3−, 1+, 2−, 2+, 1−, . . ..

Now, we denote by {yΥ,yΥ+1,yΥ+2}
−, {yΥ+3}

+, {yΥ+4,yΥ+5}
−, {yΥ+6,yΥ+7}

+, {yΥ+8}
−, {yΥ+9}

+,
{yΥ+10}

−, {yΥ+11,yΥ+12,yΥ+13,yΥ+14}
+. So, the principle of the negative and positive semicycles that take

place, respectively can be put as {yΥ+15m,yΥ+15m+1,yΥ+15m+2}
−, {yΥ+15m+3}

+, {yΥ+15m+4,
yΥ+15m+5}

−, {yΥ+15m+6,yΥ+15m+7}
+, {yΥ+15m+8}

−, {yΥ+15m+9}
+,{yΥ+15m+10}

−, {yΥ+15m+11,
yΥ+15m+12,yΥ+15m+13,yΥ+15m+14}

+, m = 0, 1, . . ..
We can see that:

(I1). yΥ+15m < yΥ+15m+1 < yΥ+15m+4 < yΥ+15m+5 < yΥ+15m+10 < yΥ+15m+15;
(I2). yΥ+15m+18 < yΥ+15m+13 < yΥ+15m+12 < yΥ+15m+11 < yΥ+15m+6 < yΥ+15m+3 ;
(I3). yΥ+15m+2 <

1
yΥ+15m+7

< yΥ+15m+8 <
1

yΥ+15m+9
< 1
yΥ+15m+14

< yΥ+15m+15 < yΥ+15m+16 < yΥ+15m+17.

The inequalities (I1) and (I2) follow directly from Lemma 2.3 (b), Lemma 2.3 (c), and Lemma 2.3 (d),
and inequality (I3) comes from Lemma 2.3 and (1.1). We can see from inequalities (I1), (I2), and (I3) that
both of {yΥ+15m}∞m=0 and {yΥ+15m+2}

∞
m=0 will increase with upper bound 1, while {yΥ+15m+3}

∞
m=0 will

decrease with lower bound 1. Hence, their limits exist and are finite. Suppose that limm→∞ yΥ+15m = U,
limm→∞ yΥ+15m+2 = V , and limm→∞ yΥ+15m+3 =W. So

lim
m→∞yΥ+15m = lim

m→∞yΥ+15m+1 = lim
m→∞yΥ+15m+4 = lim

m→∞yΥ+15m+5 = lim
m→∞yΥ+15m+10 = U.

Furthermore, in light of (I2) we can get

lim
m→∞yΥ+15m+3 = lim

m→∞yΥ+15m+6 = lim
m→∞yΥ+15m+11 = lim

m→∞yΥ+15m+12 = lim
m→∞yΥ+15m+13 =W.

On the other hand, in light of (I3), we have

lim
m→∞yΥ+15m+2 = lim

m→∞yΥ+15m+8 = V ,

lim
m→∞yΥ+15m+7 = lim

m→∞yΥ+15m+9 = lim
m→∞yΥ+15m+14 =

1
V

.

Now by using (1.1), we get

yΥ+15m+5 =
yΥ+15m+4y

α
Υ+15m+2y

β
Υ+15m + yΥ+15m+4 + y

α
Υ+15m+2 + y

β
Υ+15m + γ

yΥ+15m+4y
α
Υ+15m+2 + yΥ+15m+4y

β
Υ+15m + yαΥ+15m+2y

β
Υ+15m + γ+ 1

, (2.3)
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yΥ+15m+6 =
yΥ+15m+5y

α
Υ+15m+3y

β
Υ+15m+1 + yΥ+15m+5 + y

α
Υ+15m+3 + y

β
Υ+15m+1 + γ

yΥ+15m+5y
α
Υ+15m+3 + yΥ+15m+5y

β
Υ+15m+1 + y

α
Υ+15m+3y

β
Υ+15m+1 + γ+ 1

, (2.4)

yΥ+15m+7 =
yΥ+15m+6y

α
Υ+15m+4y

β
Υ+15m+2 + yΥ+15m+6 + y

α
Υ+15m+4 + y

β
Υ+15m+2 + γ

yΥ+15m+6y
α
Υ+15m+4 + yΥ+15m+6y

β
Υ+15m+2 + y

α
Υ+15m+4y

β
Υ+15m+2 + γ+ 1

. (2.5)

Now let us take the limit on both sides of equalities (2.3)-(2.5). So, we have the following system

U =
VαUβ+1 +U+ Vα +Uβ + γ

UVα +Uβ+1 + VαUβ + 1 + γ
, (2.6)

W =
WαUβ+1 +U+Wα +Uβ + γ

UWα +Uβ+1 +WαUβ + 1 + γ
, (2.7)

1
V

=
WUαVβ +W +Uα + Vβ + γ

WUα +WVβ +UαVβ + 1 + γ
. (2.8)

If we solve system (2.6)-(2.8) we get U = V =W = 1.
Up to this, we have shown limm→∞ yΥ+15m+k = 1,k = 0, 1, 2, 3, . . . , 14. Thus limm→∞ ym = 1.
Now, we examine the case in which the principle of lengths of negative and positive semicycles

which take place respectively as . . . , 3+, 1−, 2+, 2−, 1+, 1−, 1+, 4−, 3+, 1−, 2+, 2−, 1+, . . .. Then the prin-
ciple of the positive and negative semicycles to take place respectively can be periodically formulated as
{yΥ+15m,yΥ+15m+1,yΥ+15m+2}

+, {yΥ+15m+3}
−, {yΥ+15m+4,yΥ+15m+5}

+, {yΥ+15m+6,yΥ+15m+7}
−,

{yΥ+15m+8}
+, {yΥ+15m+9}

−, {yΥ+15m+10}
+, {yΥ+15m+11,yΥ+15m+12,yΥ+15m+13,yΥ+15m+14}

−, m=0, 1, . . ..
We have

(I4). yΥ+15m > yΥ+15m+1 > yΥ+15m+4 > yΥ+15m+5 > yΥ+15m+10 > yΥ+15m+15;
(I5). yΥ+15m+18 > yΥ+15m+13 > yΥ+15m+12 > yΥ+15m+11 > yΥ+15m+6 > yΥ+15m+3;
(I6). yΥ+15m+2 >

1
yΥ+15m+7

> yΥ+15m+8 >
1

yΥ+15m+9
> 1
yΥ+15m+14

> yΥ+15m+15 > yΥ+15m+16 > yΥ+15m+17.

Indeed, the above inequalities (I4) and (I5) follow directly from Lemma 2.3 (b), Lemma 2.3 (c), and
Lemma 2.3 (d) and inequality (I6) comes from Lemma 2.3 and (1.1). We can see from inequalities (I4),
(I5), and (I6) that both of {yΥ+15m}∞m=0 and {yΥ+15m+2}

∞
m=0 will decrease with lower bound 1, while

{yΥ+15m+3}
∞
m=0 will increase with upper bound 1. Thus, their limits are finite and exist.

Let limm→∞ yΥ+15m = U∗, limm→∞ yΥ+15m+2 = V∗, and limm→∞ yΥ+15m+3 =W∗. So

lim
m→∞yΥ+15m = lim

m→∞yΥ+15m+1 = lim
m→∞yΥ+15m+4 = lim

m→∞yΥ+15m+5 = lim
m→∞yΥ+15m+10 = U∗.

Furthermore, in light of (I5) we can get

lim
m→∞yΥ+15m+3 = lim

m→∞yΥ+15m+6 = lim
m→∞yΥ+15m+11 = lim

m→∞yΥ+15m+12 = lim
m→∞yΥ+15m+13 =W∗.

On the other hand, in light of (I6), we have

lim
m→∞yΥ+15m+2 = lim

m→∞yΥ+15m+8 = V∗,

lim
m→∞yΥ+15m+7 = lim

m→∞yΥ+15m+9 = lim
m→∞yΥ+15m+14 =

1
V∗

.

As in previous case and by using equations (2.3), (2.4), and (2.5), we get U∗ = W∗ = V∗ = 1. So we
have limm→∞ yΥ+15m+k = 1,k = 0, 1, 2, 3, ...., 14. Consequently limm→∞ ym = 1.

So, we have completed the proof for the Theorem.

2.4. Principle of track structure
We can summarize the general principle of the track framework of (1.1) solutions.
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Theorem 2.9. The principle of the track framework of a solution of (1.1) is divided into:

1. solution will be eventually trivial;
2. solution will be eventually non-trivial:

(a) solution will be eventually negative nonoscillatory,
(b) solution will be precisely oscillatory.

Moreover, the lengths for negative and positive semicycles take place periodically with only prime period fifteen
and in a period exemplified by {3+, 1−, 2+, 2−, 1+, 1−, 1+, 4−} or {3−, 1+, 2−, 2+, 1−, 1+, 1−, 4+}. By using this
principle, positive fixed point (1.1) has global asymptotic stability.
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