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Abstract

We take into account some additive mappings in Banach ∗-algebras with derivations. We will first study the conditions
for additive mappings with derivations on Banach ∗-algebras. Then we prove some theorems involving linear mappings on
Banach ∗-algebras with derivations. So derivations on C∗-algebra are characterized.
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1. Introduction and preliminaries

Let A be an algebra over the real or complex field F. An additive mapping δ : A → A is called a
derivation (resp., left derivation) if the functional equation

δ(xy) = δ(x)y+ xδ(y), (resp., δ(xy) = yδ(x) + xδ(y))

holds for all x,y ∈ A. In addition, if δ(tx) = tδ(x) is fulfilled for all x ∈ A and t ∈ F, then δ is said to
be a linear derivation (resp., linear left derivation). An additive mapping δ : A → A is called a Jordan
derivation, if

δ(x2) = δ(x)x+ xδ(x), ∀ x ∈ A.

Furthermore, if δ(tx) = tδ(x) holds for all x ∈ A and t ∈ F, then δ is said to be a linear Jordan derivation.
Let us introduce the background of our investigation. Singer and Wermer [21] obtained a fundamen-

tal result which started investigation into the ranges of linear derivations on Banach algebras. The result,
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which is called the Singer-Wermer theorem, states that every continuous linear derivation on a commuta-
tive Banach algebra maps into the radical. In the same paper, they made a very insightful conjecture that
the assumption of continuity is unnecessary. This is called the Singer-Wermer conjecture. Thomas [22]
proved this conjecture. Hence linear derivations on Banach algebras (if everywhere defined) genuinely
belong to the noncommutative setting.

The stability problem of functional equations originated from a famous talk given by Ulam [23]:
”Under what condition does there exist a homomorphism near an approximate homomorphism?”
Hyers [14] had answered affirmatively the question of Ulam under the assumption that the groups

are Banach spaces. A generalized version of the theorem of Hyers for approximately additive mappings
was given by Aoki [2] and for approximately linear mappings was presented by Rassias [19]. Bourgin
proved the superstability of homomorphism in [7]. The stability result, i.e., superstability concerning
derivations between operator algebras was first obtained by Šemrl [20]. Badora [4] gave a generalization
of the Bourgin’s result [7]. As well, he dealt with the stability and the superstability of Bourgin-type for
derivations in [5]. Since then, many interesting results of the stability problems to a number of functional
equations and inequalities (or involving derivations) have been investigated. The reader is referred to the
references [1, 3, 10, 16–18] for many information of stability problem with a large variety of applications.

In this work, we consider some additive mappings with involution related to derivations or a sort of
additive mappings introduced in [8, 11], and then prove some theorems concerning additive mappings
on complex Banach ∗-algebras with derivations.

2. Main results

In this work, we assume that Tε := {eiθ : 0 6 θ 6 ε} and we write the unit element by e.

Theorem 2.1. Let A be a complex Banach ∗-algebra. Assume that mappingsΦ : A×A→ [0,∞) and ϕ : A×A→
[0,∞) satisfy the assumptions

1. σ(x,y) :=
∑∞
j=0

1
2jΦ(2jx, 2jy) <∞, (x,y ∈ A);

2. limn→∞ 1
2nϕ(2

nx,y) = 0, (x,y ∈ A).

Suppose that δ : A→ A is mapping such that

‖δ(x+ y) − δ(x) − δ(y)‖ 6 Φ(x,y) (2.1)

for all x,y ∈ A and

‖δ(xy∗ + yx∗) − δ(x)y∗ − xδ(y∗) − δ(y)x∗ − yδ(x∗)‖ 6 ϕ(x,y), (x,y ∈ A). (2.2)

Then there exists a unique additive mapping L : A→ A with

L(xy∗ + yx∗) = L(x)y∗ + xL(y∗) +L(y)x∗ + yL(x∗), ∀x,y ∈ A, (2.3)

and

‖L(x) − δ(x)‖ 6 1
2
σ(x, x), ∀ x ∈ A. (2.4)

Moreover, the following equation

x{L(y) − δ(y)} = 0 (2.5)

holds for all x,y ∈ A.
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Proof. It follows from the Găvruta theorem [12] that there exists a unique additive mapping L : A → A

defined by

L(x) = lim
n→∞ 1

2n
δ(2nx) (2.6)

for all x ∈ A satisfying (2.4).
We first prove (2.3). We obtain from (2.2) and (2.6) that

‖L(xy∗+yx∗) −L(x)y∗ − xδ(y∗) − δ(y)x∗ − yL(x∗)‖

= lim
n→∞ 1

2n
‖δ(2n(xy∗ + yx∗)) − δ(2nx)y∗ − 2nxδ(y∗) − 2nδ(y)x∗ − yδ(2nx∗)‖

6 lim
n→∞ 1

2n
ϕ(2nx,y) = 0,

which implies that

L(xy∗ + yx∗) = L(x)y∗ + xδ(y∗) + δ(y)x∗ + yL(x∗) (2.7)

for all x,y ∈ A. In view of (2.7), we see that

2nL(x)y∗ + 2nxδ(y∗) + 2nδ(y)x∗ + 2nyL(x∗) = L(2nx · y∗ + y · 2nx∗) = L(x · 2ny∗ + 2ny · x∗)
= 2nL(x)y∗ + xδ(2ny∗) + δ(2ny)x∗ + 2nyL(x∗).

(2.8)

It follows by (2.8) that

xL(y∗) +L(y)x∗ = lim
n→∞

[
x
δ(2ny∗)

2n
+
δ(2ny)

2n
x∗
]
= xδ(y∗) + δ(y)x∗ (2.9)

for all x,y ∈ A. Therefore, we get (2.3).
Finally, it is sufficient to show that the property (2.5) holds. Multiplying by i on both sides in (2.9), we

obtain that

ixL(y∗) + iL(y)x∗ = ixδ(y∗) + iδ(y)x∗.

Putting x = ix in (2.9), we find that

ixL(y∗) − iL(y)x∗ = ixδ(y∗) − iδ(y)x∗.

Comparing the two above equation, we get the identity (2.5), which completes the proof.

Theorem 2.2. Let A be a semiprime unital complex Banach ∗-algebra. Assume that mappings Φ : A×A→ [0,∞)
and ϕ : A×A→ [0,∞) satisfy the assumptions of Theorem 2.1. Suppose that δ : A→ A is mapping subjected to
inequalities (2.1) and (2.2). Then δ is a linear derivation.

Proof. Since A has a unit element, by setting x = e in (2.5), we see that δ = L. In particular, we obtain
from (2.3) that

δ(xy∗ + yx∗) = δ(x)y∗ + xδ(y∗) + δ(y)x∗ + yδ(x∗), ∀ x,y ∈ A. (2.10)

Considering y = x∗ in (2.10), we get

J(x) + J(x∗) = 0, ∀ x ∈ A, (2.11)

where J(x) stands for
J(x) = δ(x2) − δ(x)x− xδ(x).
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Letting y = xy∗ + yx∗ in (2.10), we have

δ(x(y+ y∗)x∗) = −J(x)y∗ − yJ(x∗) + δ(x)(y+ y∗)x∗ + x(y+ y∗)δ(x∗) + xδ(y+ y∗)x∗.

Replacing y by y− y∗ in the above equation, we get

J(x)(y− y∗) − (y− y∗)J(x∗) = 0. (2.12)

Multiplying by i on both sides in (2.12), we obtain that

iJ(x)(y− y∗) − i(y− y∗)J(x∗) = 0.

Putting y = iy in (2.12), we find that

iJ(x)(y+ y∗) − i(y+ y∗)J(x∗) = 0.

Combining the above relation, we see that

J(x)y = yJ(x∗), ∀ x,y ∈ A. (2.13)

Since A contains a unit element, by letting y = e in (2.13), we have J(x) = J(x∗). By virtue of (2.11), we
know that a mapping δ satisfies the equation

δ(x2) = δ(x)x+ xδ(x), ∀ x ∈ A.

So δ is a ring Jordan derivation. The semiprimeness of A guarantees that δ is a ring derivation, that is,

δ(xy) = δ(x)y+ xδ(y), ∀ x,y ∈ A. (2.14)

From (2.1), we see that

‖δ(2te)‖ = lim
n→∞ 1

2n
‖δ(2n · 2te)‖ 6 lim

n→∞ 1
2n
Φ(2nte, 2nte) = 0,

for t ∈ C. This implies that δ(te) = 0. Let y = te in (2.14). Then δ(tx) = tδ(x) for all x ∈ A and for t ∈ C.
Therefore, δ is linear, which concludes the proof.

Remark 2.3. Note that any linear derivation on semi-simple Banach algebra is continuous [15]. It is well-
known that semisimple algebras are semiprime [6].

We get the following result.

Corollary 2.4. Let A be a semisimple unital complex Banach ∗-algebra. Assume that mappingsΦ : A×A→ [0,∞)
and ϕ : A×A→ [0,∞) satisfy the assumptions of Theorem 2.1. Suppose that δ : A→ A is mapping subjected to
inequalities (2.1) and (2.2). Then δ is continuous.

Theorem 2.5. Let A be either a semiprime complex Banach ∗-algebra or a unital complex Banach ∗-algebra. Assume
that mappings Φ : A×A→ [0,∞) and ϕ : A×A→ [0,∞) satisfy the assumptions of Theorem 2.1. Suppose that
δ : A→ A is mapping such that

‖δ(tx+ ty) − tδ(x) − tδ(y)‖ 6 Φ(x,y) (2.15)

for all x,y ∈ A and all t ∈ Tε and the inequality (2.2). Then δ is a linear derivation.
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Proof. We consider t = 1 in (2.15). According to Theorem 2.1, we see that there exists a unique additive
mapping L : A→ A satisfying (2.3), (2.4) and (2.5).

It is suffices to show that L is linear. The inequality (2.15) yields that for all x ∈ A and all t ∈ Tε,

‖L(tx) − tL(x)‖ = lim
n→∞ 1

2n
‖δ(2ntx) − 2tδ(2n−1x)‖ 6 lim

n→∞ 1
2n
Φ(2n−1x, 2n−1x) = 0.

Hence L(tx) = tL(x). Then the mapping L is linear (refer to [13]).
If A is unital, set y = e in (2.5). Then δ = L. If A is non-unital, then, by (2.5), we see that L(y) − δ(y)

lies in the right annihilator ran(A) of A. If A is semiprime, ran(A) = 0, so that δ = L.
From (2.3), we get (2.10). Considering y = iy in (2.10), we have

−iδ(xy∗) + iδ(yx∗) = −iδ(x)y∗ − ixδ(y∗) + iδ(y)x∗ + iyδ(x∗).

Multiplying i on both sides in the above relation, we see that

δ(xy∗) − δ(yx∗) = δ(x)y∗ + xδ(y∗) − δ(y)x∗ − yδ(x∗). (2.16)

Combining (2.10) and (2.16), we obtain that

δ(xy∗) = δ(x)y∗ + xδ(y∗).

Letting y = y∗ in the above equation, we find that

δ(xy) = δ(x)y+ xδ(y), ∀ x,y ∈ A.

Thereby, δ is a linear derivation. This completes the proof.

Corollary 2.6. Let A be a semisimple complex Banach ∗-algebra. Assume that mappings Φ : A×A→ [0,∞) and
ϕ : A×A → [0,∞) satisfy the assumptions of Theorem 2.1. Suppose that δ : A → A is mapping subjected to the
inequalities (2.15) and (2.2). Then δ is continuous.

We now demonstrate the following proposition quoted in this work.

Proposition 2.7 ([9, Proposition 1.6.]). Let R be a ring, X be a left R-module and δ : R→ X be a left derivation.

(i) Suppose that aRx = 0 with a ∈ R, x ∈ X implies a = 0 or x = 0. If δ 6= 0, then R is commutative.

(ii) Suppose that X = R is a semiprime ring. Then δ is a derivation which maps R into its center.

Theorem 2.8. Let A be a semiprime complex Banach ∗-algebra. Assume that mappings Φ : A×A → [0,∞) and
ϕ : A×A → [0,∞) satisfy the assumptions of Theorem 2.1. Suppose that δ : A → A is mapping subjected to the
inequality (2.15) and

‖δ(xy∗ + yx∗) − y∗δ(x) − xδ(y∗) − x∗δ(y) − yδ(x∗)‖ 6 ϕ(x,y), (x,y ∈ A). (2.17)

Then δ is a linear derivation which maps A into the intersection of its center Z(A) and its radical rad(A).

Proof. We let t = 1 in (2.15). As in the proof of Theorem 2.1, we see that there exists a unique additive
mapping L : A→ A satisfying (2.4) and (2.5) with

L(xy∗ + yx∗) = y∗L(x) + xL(y∗) + x∗L(y) + yL(x∗), ∀ x,y ∈ A. (2.18)

Employing the same method as the proof of Theorem 2.5, we find that L is linear.
By (2.5), L(y) − δ(y) lies in the right annihilator ran(A) of A. Since A is semiprime, ran(A) = 0, so that

δ = L. It follows from (2.18) that

δ(xy∗ + yx∗) = y∗δ(x) + xδ(y∗) + x∗δ(y) + yδ(x∗), ∀ x,y ∈ A. (2.19)
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Letting y = iy∗ in (2.19), we have

−iδ(xy∗) + iδ(yx∗) = −iy∗δ(x) − ixδ(y∗) + ix∗δ(y) + iyδ(x∗).

Multiplying i on both sides in the above relation, we see that

δ(xy∗) − δ(yx∗) = y∗δ(x) + xδ(y∗) − x∗δ(y) − yδ(x∗). (2.20)

Combining (2.18) and (2.20), we obtain that

δ(xy∗) = y∗δ(x) + xδ(y∗).

Letting y = y∗ in the above equation, we find that

δ(xy) = yδ(x) + xδ(y), ∀ x,y ∈ A.

Thereby, δ is a linear left derivation.
On the other hand, from Proposition 2.7, we see that δ is a linear derivation with δ(A) ⊆ Z(A). Since

Z(A) is a commutative Banach algebra, the Singer-Wermer theorem tells us that δ|Z(A) maps Z(A) into
rad(Z(A)) = Z(A) ∩ rad(A) and thus δ2(A) ⊆ rad(A). Using the semiprimeness of rad(A) as well as the
identity

2δ(x)yδ(x) = δ2(xyx) − xδ2(yx) − δ2(xy)x+ xδ2(y)x, (x,y ∈ A),

we have δ(A) ⊆ rad(A). Therefore, δ(A) ⊆ Z(A)∩ rad(A), which concludes the proof.

Theorem 2.9. Let A be a noncommutative prime unital complex Banach ∗-algebra. Assume that mappings
Φ : A×A→ [0,∞) and ϕ : A×A→ [0,∞) satisfy the assumptions of Theorem 2.1. Suppose that δ : A→ A is
mapping subjected to the inequalities (2.15) and (2.17). Then δ is identically zero.

Proof. As we did in the proof of Theorem 2.8, there exists a unique linear mapping L : A → A satisfying
(2.4) and (2.5) with the inequality (2.18). Since A contains the unit element, we have by (2.5) that δ = L.
So (2.18) implies (2.19). Using the same method as the proof of Theorem 2.8, we see that δ is a linear left
derivation.

Therefore, by Proposition 2.7, δ is identically zero, which ends the proof.
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