Topological coincidence principles

Mohamed Jlelia, Donal O’Reganb,* and Bessem Sameta

aDepartment of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
bSchool of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland.

Communicated by Y. J. Cho

Abstract

In this paper a number of general coincidence principles are presented for set valued maps defined on subsets of completely regular topological spaces.

Keywords: Coincidence points, continuation methods, essential maps, extendability.

2010 MSC: 54H25, 47H10.

1. Introduction

In this paper we present coincidence principles for multimaps. We present two approaches. The first approach is based on the new notion of Φ-essential and d-Φ-essential maps (see [1, 3–5]) and the second approach is based on the notion of extendability (see [2]). The arguments presented are based on a Urysohn type lemma and homotopy type arguments.

2. Continuation principles

Let E be a completely regular topological space and U an open subset of E.

We consider classes A and B of maps.

\textbf{Definition 2.1.} We say $F \in A(\overline{U}, E)$ (respectively $F \in B(\overline{U}, E)$) if $F : \overline{U} \rightarrow 2^E$ and $F \in A(\overline{U}, E)$ (respectively $F \in B(\overline{U}, E)$); here 2^E denotes the family of nonempty subsets of E.

In this section we fix a $\Phi \in B(\overline{U}, E)$.

\textbf{Definition 2.2.} We say $F \in A_{\partial U}(\overline{U}, E)$ if $F \in A(\overline{U}, E)$ with $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$; here ∂U denotes the boundary of U in E.

*Corresponding author
Email addresses: jleli@ksu.edu.sa (Mohamed Jleli), donal.oregan@nuigalway.ie (Donal O’Regan), bsamet@ksu.edu.sa (Bessem Samet)
doi: 10.22436/jnsa.011.02.11

Received: 2016-01-24 Revised: 2017-06-12 Accepted: 2017-06-12
Definition 2.3. Let E be a completely regular (respectively normal) topological space, and U an open subset of E. Let $F, G \in A_{\partial U}(\overline{U}, E)$. We say $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ if there exists a map $H : \overline{U} \times [0, 1] \to 2^E$ with $H(\cdot, \eta(\cdot)) \in A(\overline{U}, E)$ for any continuous function $\eta : U \to [0, 1]$ with $\eta(\partial U) = 0$. If $H_t(x) \cap \Phi(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0, 1]$, then $H_t(x) \cap \Phi(x) = \emptyset$ for some $t \in [0, 1]$ is compact (respectively closed); here $H_t(x) = H(x, t)$.

Definition 2.4. Let $F \in A_{\partial U}(\overline{U}, E)$. We say $F : \overline{U} \to 2^E$ is Φ-essential in $A_{\partial U}(\overline{U}, E)$ if for every map $J \in A_{\partial U}(\overline{U}, E)$ with $J_{\partial U} = F_{\partial U}$ and $J \cong F$ in $A_{\partial U}(\overline{U}, E)$ there exists $x \in U$ with $J(x) \cap \Phi(x) \neq \emptyset$.

Theorem 2.5. Let E be a completely regular (respectively normal) topological space, U an open subset of E, and let $F \in A_{\partial U}(\overline{U}, E)$ be Φ-essential in $A_{\partial U}(\overline{U}, E)$. Suppose there exists a map $H : \overline{U} \times [0, 1] \to 2^E$ with $H(\cdot, \eta(\cdot)) \in A(\overline{U}, E)$ for any continuous function $\eta : U \to [0, 1]$ with $\eta(\partial U) = 0$, $\Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0, 1]$, $H_0 = F$, and $\{x \in U : \Phi(x) \cap H(x, t) \neq \emptyset \}$ is compact (respectively closed). Then there exists $x \in U$ with $\Phi(x) \cap H_t(x) \neq \emptyset$; here $H_t(x) = H(x, t)$.

Proof. Let

$$\text{D} = \{x \in U : \Phi(x) \cap H(x, t) \neq \emptyset \text{ for some } t \in [0, 1]\}.$$ \hfill (2.1)

Notice $\text{D} \neq \emptyset$ since F is Φ-essential in $A_{\partial U}(\overline{U}, E)$ (note from (2.1) that $F \cong F$ in $A_{\partial U}(\overline{U}, E)$). Also D is compact (respectively closed) if E is a completely regular (respectively normal) topological space. Note $\text{D} \cap \partial U = \emptyset$ (note $H_0 = F$ so for $t = 0$ we have $\Phi(x) \cap H_0(x) = \emptyset$ for $x \in \partial U$ since $F \in A_{\partial U}(\overline{U}, E)$). Thus there exists a continuous map $\mu : U \to [0, 1]$ with $\mu(\partial U) = 0$ and as a result $H_t(x) \cap \Phi(x) \neq \emptyset$.

It remains to show (2.2). Let $Q : U \times [0, 1] \to 2^E$ be given by $Q(x, t) = H(x, t\mu(x))$. Note $Q(\cdot, \eta(\cdot)) \in A(\overline{U}, E)$ for any continuous function $\eta : U \to [0, 1]$ with $\eta(\partial U) = 0$ and (see (2.1) and Definition 2.3)

$$\{x \in U : \emptyset \neq \Phi(x) \cap Q(x, t) \neq \emptyset \text{ for some } t \in [0, 1]\}$$

is compact (respectively closed). Note $Q_0 = F$ and $Q_1 = J$. Finally if there exists a $t \in [0, 1]$ and $x \in \partial U$ with $\Phi(x) \cap Q_t(x) \neq \emptyset$ then $\Phi(x) \cap H_{t\mu(x)}(x) \neq \emptyset$ so $x \in \text{D}$, and so $\mu(x) = 1$, i.e., $\Phi(x) \cap H_t(x) \neq \emptyset$, a contradiction. Thus (2.2) holds.

Remark 2.6. Suppose we change Definition 2.4 as follows. Let $F \in A_{\partial U}(\overline{U}, E)$. We say $F : \overline{U} \to 2^E$ is Φ-essential in $A_{\partial U}(\overline{U}, E)$ if for every map $J \in A_{\partial U}(\overline{U}, E)$ with $J_{\partial U} = F_{\partial U}$ there exists $x \in U$ with $J(x) \cap \Phi(x) \neq \emptyset$. The argument above (note (2.2) is not needed) yields the following result. Let E be a completely regular (respectively normal) topological space, U an open subset of E and let $F \in A_{\partial U}(\overline{U}, E)$ be Φ-essential in $A_{\partial U}(\overline{U}, E)$. Suppose there exists a map $H : U \times [0, 1] \to 2^E$ with $H(\cdot, \eta(\cdot)) \in A(\overline{U}, E)$ for any continuous function $\eta : U \to [0, 1]$ with $\eta(\partial U) = 0$, $\Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0, 1]$, $H_0 = F$ and $\{x \in U : \Phi(x) \cap H(x, t) \neq \emptyset \}$ is compact (respectively closed). Then there exists $x \in U$ with $\Phi(x) \cap H_t(x) \neq \emptyset$; here $H_t(x) = H(x, t)$.

Again we consider the map $F : \overline{U} \to 2^E$. In our (quite abstract) result we will assume that we have a homotopy extension type property (i.e., a $h : E \times [0, 1] \to 2^E$ with $H_I|_{\overline{U}} = F$).
Definition 2.7. We say $F \in A(E, E)$ if $F : E \to 2^E$ and $F \in A(E, E)$.

Definition 2.8. Let E be a completely regular (respectively normal) topological space. If $F, G \in A(E, E)$, then we say $F \bowtie G$ in $A(E, E)$ if there exists a map $\Lambda : E \times [0, 1] \to 2^E$ with $\Lambda(\cdot, \eta(\cdot)) \in A(E, E)$ for any continuous function $\eta : E \to [0, 1]$, $\Lambda_1 = G$, $\Lambda_0 = F$ (here $\Lambda_t(x) = \Lambda(x, t)$) and \{ $x \in E : F(x) \cap \Lambda(x, t) \neq \emptyset$ for some $t \in [0, 1]$ \} is compact (respectively closed).

We now fix a $F \in B(E, E)$.

Theorem 2.9. Let E be a completely regular (respectively normal) topological space and U an open subset of E. Suppose there exists a map $H : E \times [0, 1] \to 2^E$ with $H(\cdot, \eta(\cdot)) \in A(E, E)$ for any continuous function $\eta : E \to [0, 1]$ and with $F(x) \cap H(x, 0) = \emptyset$ for $x \in E \setminus U$, and $F(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0, 1]$, and \{ $x \in E : F(x) \cap H(x, t) \neq \emptyset$ for some $t \in [0, 1]$ \} is compact (respectively closed). In addition assume the following hold:

\[\text{for any } J \in A(E, E) \text{ with } J \bowtie H_0 \text{ in } A(E, E) \text{ there exists } x \in E \text{ with } F(x) \cap J(x) \neq \emptyset, \quad (2.3) \]

\[\{ x \in E \setminus U : F(x) \cap H_t(x) \neq \emptyset \text{ for some } t \in [0, 1] \} \text{ is closed}, \quad (2.4) \]

and

\[\left\{ \begin{array}{l}
\text{if } \mu : E \to [0, 1] \text{ is any continuous map with } \mu(U) = 1, \text{ then } \\
\{ x \in E : F(x) \cap H(x, t\mu(x)) \neq \emptyset \text{ for some } t \in [0, 1] \} \text{ is closed.}
\end{array} \right. \quad (2.5) \]

Then there exists $x \in U$ with $F(x) \cap H_t(x) \neq \emptyset$; here $H_t(x) = H(x, t)$.

Proof. Let

\[D = \{ x \in E \setminus U : F(x) \cap H_t(x) \neq \emptyset \text{ for some } t \in [0, 1] \}. \]

We consider two cases, as $D \neq \emptyset$ and $D = \emptyset$.

Case (i). $D = \emptyset$.

Then for every $t \in [0, 1]$ we have $F(x) \cap H_t(x) = \emptyset$ for $x \in E \setminus U$. Also from $H_1 \bowtie H_0$ in $A(E, E)$ and (2.3) we know there exists $y \in E$ with $F(y) \cap H_1(y) \neq \emptyset$. Since $F(x) \cap H_1(x) = \emptyset$ for $x \in E \setminus U$ we deduce that $y \in U$, and we are finished.

Case (ii). $D \neq \emptyset$.

Now (note $H_1 \bowtie H_0$ in $A(E, E)$ and (2.4)) D is compact (respectively closed) and $D \cap U \neq \emptyset$ (since $F(x) \cap H_t(x) = \emptyset$ for $x \in \partial U$ and $t \in [0, 1]$). Then there exists a continuous map $\mu : E \to [0, 1]$ with $\mu(D) = 0$ and $\mu(U) = 1$. Define a map $R : E \to 2^E$ by

\[R(x) = H(x, \mu(x)). \]

Now $R \in A(E, E)$. In fact $R \bowtie H_0$ in $A(E, E)$. To see this let $\Omega : E \times [0, 1] \to 2^E$ be given by

\[\Omega(x, t) = H(x, t\mu(x)). \]

Note $\Omega(\cdot, \eta(\cdot)) \in A(E, E)$ for any continuous function $\eta : E \to [0, 1]$, and (note (2.5) and $H_1 \bowtie H_0$ in $A(E, E)$),

\[\{ x \in E : F(x) \cap \Omega(x, t) = F(x) \cap H(x, t\mu(x)) \neq \emptyset \text{ for some } t \in [0, 1] \} \]

is compact (respectively closed). Also $\Omega_1 = R$ and $\Omega_0 = H_0$.

Now (2.3) guarantees that there exists $x \in E$ with $F(x) \cap R(x) = F(x) \cap H_{\mu(x)}(x) \neq \emptyset$. If $x \in E \setminus U$ then since $x \in D$ we have $\emptyset \neq F(x) \cap H(x, \mu(x)) = F(x) \cap H(x, 0)$, a contradiction. Thus $x \in U$ and so $\emptyset \neq F(x) \cap H(x, \mu(x)) = F(x) \cap H(x, 1)$.

Remark 2.10. In Definition 2.8 and in the statement of Theorem 2.9 we could replace, any continuous map $\eta : E \to [0, 1]$, with any continuous map $\eta : E \to [0, 1]$ with $\eta(U) = 1$.

We now show that the ideas in this section can be applied to other natural situations. Let E be a Hausdorff topological vector space (so automatically a completely regular space), Y a topological vector space, and U an open subset of E. Also let $L : \text{dom}(L) \subseteq E \to Y$ be a linear single valued map; here $\text{dom}(L)$ is a vector subspace of E. Finally $T : E \to Y$ will be a linear single valued map with $L + T : \text{dom}(L) \to Y$ a bijection; for convenience we say $T \in H_t(E,Y)$.

Definition 2.11. We say $F \in A(\overline{U}, Y, L, T)$ (respectively $F \in B(\overline{U}, Y, L, T)$) if $F : \overline{U} \to 2^Y$ and $(L + T)^{-1}(F + T) \in A(\overline{U}, E)$ (respectively $(L + T)^{-1}(F + T) \in B(\overline{U}, E)$).

We now fix a $\Phi \in B(\overline{U}, Y, L, T)$.

Definition 2.12. We say $F \in A_{\partial U}(\overline{U}, Y, L, T)$ if $F \in A(\overline{U}, Y, L, T)$ with $(L + T)^{-1}(F + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) = \emptyset$ for $x \in \partial U$.

Definition 2.13. Let $F, G \in A_{\partial U}(\overline{U}, Y, L, T)$. We say $F \equiv G$ in $A_{\partial U}(\overline{U}, Y, L, T)$ if there exists a map $H : \overline{U} \times [0, 1] \to 2^Y$ with $(L + T)^{-1}(H(\cdot, \eta(\cdot)) + T(\cdot)) \in A(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0$, $(L + T)^{-1}(H_t + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0, 1]$, $H_t = F, H_0 = G$ and

$$\{x \in \overline{U} : (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) \neq \emptyset \text{ for some } t \in [0, 1]\}$$

is compact; hence $H_t(x) = H(x, t)$.

Definition 2.14. Let $F \in A_{\partial U}(\overline{U}, Y, L, T)$.

We say F is L-Φ-essential in $A_{\partial U}(\overline{U}, Y, L, T)$ if for every map $J \in A_{\partial U}(\overline{U}, Y, L, T)$ with $J|_{\partial U} = F|_{\partial U}$ and $J \equiv F$ in $A_{\partial U}(\overline{U}, Y, L, T)$ there exists $x \in U$ with $(L + T)^{-1}(J + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) \neq \emptyset$.

Theorem 2.15. Let E be a topological vector space (so automatically completely regular), Y a topological vector space, U an open subset of E, $L : \text{dom}(L) \subseteq E \to Y$ a linear single valued map, and $T \in H_t(E,Y)$. Let $F \in A_{\partial U}(\overline{U}, Y, L, T)$ be L-Φ-essential in $A_{\partial U}(\overline{U}, Y, L, T)$. Suppose there exists a map $H : \overline{U} \times [0, 1] \to 2^Y$ with $(L + T)^{-1}(H(\cdot, \eta(\cdot)) + T(\cdot)) \in A(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0, 1]$ with $\eta(\partial U) = 0$, $(L + T)^{-1}(H_t + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0, 1], H_0 = F$ (here $H_t(x) = H(x, t)$) and

$$\{x \in \overline{U} : (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) \neq \emptyset \text{ for some } t \in [0, 1]\}$$

is compact. In addition assume

$$\left\{ \begin{array}{l}
\mu \in A(\overline{U} \to [0, 1]) \text{ is any continuous map with } \mu(\partial U) = 0,

\{x \in \overline{U} : (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t \mu(x) + T)(x) \neq \emptyset \text{ for some } t \in [0, 1]\}
\end{array} \right. \text{ is closed.}
$$

Then there exists $x \in U$ with $(L + T)^{-1}(H_t + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) \neq \emptyset$.

Proof. Let

$$D = \{x \in \overline{U} : (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) \neq \emptyset \text{ for some } t \in [0, 1]\}.$$

Note $D \neq \emptyset$ (note F is L-Φ-essential in $A_{\partial U}(\overline{U}, Y, L, T)$ and D is compact, $D \cap \partial U = \emptyset$ so there exists a continuous map $\mu : \overline{U} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(D) = 1$. Define $J : \overline{U} \to 2^Y$ by $J(x) = H(x, \mu(x))$. Note $J \in A_{\partial U}(\overline{U}, Y, L, T)$ and $J|_{\partial U} = F|_{\partial U}$. Also note $J \equiv F$ in $A_{\partial U}(\overline{U}, Y, L, T)$ (to see this let $Q : \overline{U} \times [0, 1] \to 2^Y$ be given by $Q(x, t) = H(x, t \mu(x))$). Now since F is L-Φ-essential in $A_{\partial U}(\overline{U}, Y, L, T)$ there exists $x \in U$ with $(L + T)^{-1}(J + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) \neq \emptyset$ (i.e., $(L + T)^{-1}(H_t \mu(x) + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) \neq \emptyset$), and thus $x \in D$ so $\mu(x) = 1$ and we are finished.

Remark 2.16. Suppose we change Definition 2.14 as follows. Let $F \in A_{\partial U}(\overline{U}, Y, L, T)$. We say F is L-Φ-essential in $A_{\partial U}(\overline{U}, Y, L, T)$ if for every map $J \in A_{\partial U}(\overline{U}, Y, L, T)$ with $J|_{\partial U} = F|_{\partial U}$ there exists $x \in U$ with $(L + T)^{-1}(J + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) \neq \emptyset$. The argument above yields the following result. Let E be a topological vector space, Y a topological vector space, U an open subset of E, $L : \text{dom}(L) \subseteq E \to Y$ a linear single valued map, and $T \in H_t(E,Y)$. Let $F \in A_{\partial U}(\overline{U}, Y, L, T)$ be L-Φ-essential in $A_{\partial U}(\overline{U}, Y, L, T)$. Suppose there exists a map $H : \overline{U} \times [0, 1] \to 2^Y$ with $(L + T)^{-1}(H(\cdot, \eta(\cdot)) + T(\cdot)) \in A(\overline{U}, E)$ for any continuous
function $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $(L + T)^{-1}(H_t + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$, $H_0 = F$ (here $H_t(x) = H(x, t)$) and \{x $\in \overline{U}$: $(L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) \neq \emptyset$ for some $t \in [0,1]$}\} is compact. Then there exists $x \in U$ with $(L + T)^{-1}(H_t + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) \neq \emptyset$.

Remark 2.17. If E is a normal topological vector space then the assumption that D (in the proof of Theorem 2.15) is compact, can be replaced by D is closed, in the statement (and proof) of Theorem 2.15 and also the assumption that

$$\{x \in \overline{U}: (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) \neq \emptyset \text{ for some } t \in [0,1]\}$$

is compact, can be replaced by

$$\{x \in \overline{U}: (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) \neq \emptyset \text{ for some } t \in [0,1]\}$$

is closed, in Definition 2.13.

Definition 2.18. Let $F : E \to 2^Y$. We say $F \in A(E, Y; L, T)$ if $(L + T)^{-1}(F + T) \in A(E, E)$.

Definition 2.19. If $F, G \in A(E, Y; L, T)$ then we say $F \equiv G$ in $A(E, Y; L, T)$ if there exists a map $\Lambda : E \times [0,1] \to 2^Y$ with $(L + T)^{-1}(\Lambda(\cdot, \eta(\cdot)) + T) \in A(E, E)$ for any continuous function $\eta : E \to [0,1]$, $\Lambda_1 = F$, $\Lambda_0 = G$ (here $\Lambda_t(x) = \Lambda(x, t)$) and

$$\{x \in E : (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(\Lambda_t + T)(x) \neq \emptyset \text{ for some } t \in [0,1]\}$$

is compact.

We now fix a $\Phi \in B(E, Y; L, T)$.

Theorem 2.20. Let E be a completely regular topological vector space, Y a topological vector space, U an open subset of E, $L : \text{dom}(L) \subseteq E \to Y$ a linear single valued map, and $T \in \mathcal{H}_L(E, Y)$. Suppose there exists a map $H : E \times [0,1] \to 2^Y$ with $(L + T)^{-1}(H_t + T) \in A(E, E)$ for any continuous function $\eta : E \to [0,1]$, $(L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_0 + T)(x) = \emptyset$ for $x \in E \cup \mathcal{U}$, $(L + T)^{-1}(H_t + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0,1]$, and

$$\{x \in E : (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) \neq \emptyset \text{ for some } t \in [0,1]\}$$

is compact. In addition assume the following conditions holds:

$$\begin{cases} \text{for any } J \in A(E, Y; L, T) \text{ with } J \supseteq H_0 \text{ in } A(E, Y; L, T) \text{ there exists } x \in E \text{ with} \\ (L + T)^{-1}(J + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) \neq \emptyset, \end{cases} \quad (2.6)$$

and

$$\begin{cases} \{x \in E \cup \mathcal{U} : (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) \neq \emptyset \text{ for some } t \in [0,1]\} \text{ is closed,} \end{cases} \quad (2.7)$$

and

$$\begin{cases} \text{if } \mu : E \to [0,1] \text{ is any continuous map with } \mu(\overline{U}) = 1, \text{ then} \\ \{x \in E : (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_{t\mu(x)} + T)(x) \neq \emptyset \text{ for some } t \in [0,1]\} \text{ is closed.} \end{cases}$$

Then there exists $x \in \mathcal{U}$ with $(L + T)^{-1}(H_1 + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) \neq \emptyset$; here $H_1(x) = H(x, t)$.

Proof. Let

$$D = \{x \in E \cup \mathcal{U} : (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) \neq \emptyset \text{ for some } t \in [0,1]\}.$$

We consider two cases, as $D \neq \emptyset$ and $D = \emptyset$.

Case (i). $D = \emptyset$.

Then for every $t \in [0, 1]$ we have $(L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) = \emptyset$ for $x \in E \setminus U$. Also from $H_t \equiv H_0$ in $A(E; Y; L, T)$ and (2.6) we see that there exists $y \in E$ with $(L + T)^{-1}(\Phi + T)(y) \cap (L + T)^{-1}(H_t + T)(y) \neq \emptyset$. Since $D = \emptyset$ we see that $y \in U$, and we are finished.

Case (ii). $D \neq \emptyset$.

Now (note $H_t \equiv H_0$ in $A(E; Y; L, T)$ and (2.7)) D is compact, and $D \cap U \neq \emptyset$ (since $(L + T)^{-1}(H_t + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) = \emptyset$ for $x \in \partial U$ and $t \in [0, 1]$). Then there exists a continuous map $\mu : E \to [0, 1]$ with $\mu(D) = 0$ and $\mu(U) = 1$. Define a map $R : E \to 2^Y$ by $R(x) = H(x, \mu(x))$. Note $R \in A(E; Y; L, T)$. Also note $R \equiv H_0$ in $A(E; Y; L, T)$ (to see this let $\Omega : E \times [0, 1] \to 2^E$ be given by $\Omega(x, t) = H(x, t\mu(x))$). Also $\Omega_1 = R$ and $\Omega_0 = H_0$.

Now (2.6) guarantees that there exists $x \in E$ with $\emptyset \neq (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_t + T)(x) \cap (L + T)^{-1}(H_{\mu(x)} + T)(x)$. If $x \in E \setminus U$ then since $x \in D$ we have $\emptyset \neq (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_{\mu(x)} + T)(x) \cap (L + T)^{-1}(H_t + T)(x)$, a contradiction. Thus $x \in U$ and so $\emptyset \neq (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_{\mu(x)} + T)(x) \cap (L + T)^{-1}(H_t + T)(x)$. \[\square\]

Remark 2.21. In Definition 2.19 and in the statement of Theorem 2.20 we could replace any continuous map $\eta : E \to [0, 1]$ with any continuous map $\eta : X \to [0, 1]$ with $\eta(U) = 1$.

Remark 2.22. There is an analogue of Remark 2.17 (for normal topological vector spaces) in the statement of Theorem 2.20 and in Definition 2.19.

3. Generalized continuation principles

Let E be a completely regular topological space and U an open subset of E. Again we consider classes A and B of maps.

In this section we fix a $\Phi \in B(U, E)$.

For any map $F \in A(U, E$) let $F^* = I \times F : U \to 2^{U \times E}$, with $I : U \to U$ given by $I(x) = x$, and let

$$d : \left\{ (F^*)^{-1}(B) \right\} \cup \{ \emptyset \} \to \Omega$$

be any map with values in the nonempty set Ω; here $B = \left\{ (x, \Phi(x)) : x \in U \right\}$.

Definition 3.1. Let E be a completely regular (respectively normal) topological space, and U an open subset of E. Let $F, G \in A_{\partial U}(U, E)$. We say $F \equiv G$ in $A_{\partial U}(U, E)$ if there exists a map $H : U \times [0, 1] \to 2^E$ with $H(\cdot, \eta(\cdot)) \in A(U, E)$ for any continuous function $\eta : \partial U \to [0, 1]$ with $\eta(\partial U) = 0$, $H_t(x) \cap \Phi(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0, 1]$, $H_1 = F$, $H_0 = G$ and $\{ x \in U : (x, \Phi(x)) \cap H^+(x, t) \neq \emptyset \}$ for some $t \in [0, 1]$ is compact (respectively closed); here $H^+(x, t) = (x, H(x, t))$ and $H_t(x) = H(x, t)$.

Definition 3.2. Let $F \in A_{\partial U}(U, E)$ with $F^* = I \times F$. We say $F^* : U \to 2^{U \times E}$ is d-Φ-essential if for every map $J \in A_{\partial U}(U, E)$ with $J^* = I \times J$ and $J|\partial U = F|\partial U$ and $J \equiv F$ in $A_{\partial U}(U, E)$ we have that $d \left((J^*)^{-1}(B) \right) = d \left((F^*)^{-1}(B) \right) \neq d(\emptyset)$.

Remark 3.3. If F^* is d-Φ-essential then

$$\emptyset \neq (F^*)^{-1}(B) = \{ x \in U : F^*(x) \cap B \neq \emptyset \} = \{ x \in U : (x, \Phi(x)) \cap (x, \Phi(x)) \neq \emptyset \},$$

and this together with $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$ implies that there exists $x \in U$ with $(x, \Phi(x)) \cap F^*(x) \neq \emptyset$ (i.e., $\Phi(x) \cap F(x) \neq \emptyset$).

Theorem 3.4. Let E be a completely regular (respectively normal) topological space, U an open subset of E, $B = \{(x, \Phi(x)) : x \in U\}$, d a map defined in (3.1) and let $F \in A_{\partial U}(U, E)$ and F^* be d-Φ-essential (here $F^* = I \times F$). Suppose there exists a map $H : U \times [0, 1] \to 2^E$ with $H(\cdot, \eta(\cdot)) \in A(U, E)$ for any continuous function $\eta : \partial U \to [0, 1]$ with $\eta(\partial U) = 0$, $H_t(x) \cap \Phi(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0, 1]$, $H_0 = F$ and
\{x \in \overline{U} : (x, \Phi(x)) \cap H^*(x, t) \neq \emptyset \text{ for some } t \in [0,1]\} \text{ is compact (respectively closed); here } H^*(x, t) = (x, H(x, t)) \text{ and } H_t(x) = H(x, t). \text{ In addition assume }
\begin{array}{l}
\{ \text{if } \mu : \overline{U} \to [0,1] \text{ is any continuous map with } \mu(\partial U) = 0, \text{ then} \\
\{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, t\mu(x))) \neq \emptyset \text{ for some } t \in [0,1] \} \text{ is closed.}
\end{array}

Let \(H_t^* = I \times H_t \). Then
\[
\text{d} \left((H_t^*)^{-1} (B) \right) = \text{d} \left((F^*)^{-1} (B) \right) \neq \text{d}(\emptyset).
\]

Proof. Let
\[
D = \left\{ x \in \overline{U} : (x, \Phi(x)) \cap H^*(x, t) \neq \emptyset \text{ for some } t \in [0,1] \right\},
\]
where \(H^*(x, t) = (x, H(x, t)) \). Notice \(D \neq \emptyset \) since \(F^* \) is d-\(\Phi \)-essential. Also \(D \) is compact (respectively closed) if \(E \) is a completely regular (respectively normal) topological space and \(D \cap \partial U = \emptyset \). Thus there exists a continuous map \(\mu : \overline{U} \to [0,1] \) with \(\mu(\partial U) = 0 \) and \(\mu(D) = 1 \). Define \(R_\mu : \overline{U} \to 2^\overline{U} \) by \(R_\mu(x) = H(x, \mu(x)) \) and let \(R^*_\mu = I \times R_\mu \). Note \(R_\mu \in A_{\partial U}(\overline{U}, E) \) with \(R_\mu|\partial U = F|\partial U \) (note if \(x \in \partial U \) then \(R_\mu(x) = H_0(x) = F(x) \) and \(R_\mu(x) \cap \Phi(x) = F(x) \cap \Phi(x) = \emptyset \).

Next we note since \(\mu(D) = 1 \) that
\[
(R^*_\mu)^{-1} (B) = \left\{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, \mu(x))) \neq \emptyset \right\} = \left\{ x \in \overline{U} : (x, \Phi(x)) \cap (x, H(x, 1)) \neq \emptyset \right\} = (H_t^*)^{-1} (B),
\]
so
\[
\text{d} \left((R^*_\mu)^{-1} (B) \right) = \text{d} \left((H_t^*)^{-1} (B) \right).
\]

Also note \(R_\mu \cong F \in A_{\partial U}(\overline{U}, E) \) (to see this let \(Q : \overline{U} \times [0,1] \to 2^E \) be given by \(Q(x, t) = H(x, t\mu(x)) \)). As a result since \(F^* \) is d-\(\Phi \)-essential we have \(\text{d} \left((R^*_\mu)^{-1} (B) \right) = \text{d} \left((F^*)^{-1} (B) \right) \neq \text{d}(\emptyset) \). This together with (3.2) yields \(\text{d} \left((H_t^*)^{-1} (B) \right) = \text{d} \left((F^*)^{-1} (B) \right) \neq \text{d}(\emptyset) \).

Remark 3.5. Suppose we change Definition 3.2 as follows. Let \(F \in A_{\partial U}(\overline{U}, E) \) with \(F^* = I \times F \). We say \(F^* : \overline{U} \to 2^{\overline{U} \times E} \) is d-\(\Phi \)-essential if for every map \(J \in A_{\partial U}(\overline{U}, E) \) with \(J^* = I \times J \) and \(J|_{\partial U} = F|_{\partial U} \) we have that \(\text{d} \left((F^*)^{-1} (B) \right) = \text{d} \left((J^*)^{-1} (B) \right) \neq \text{d}(\emptyset) \). The argument above yields the following result. Let \(E \) be a completely regular (respectively normal) topological space, \(U \) an open subset of \(E \), \(B = \{(x, \Phi(x)) : x \in \overline{U} \} \), a map defined in (3.1) and let \(F \in A_{\partial U}(\overline{U}, E) \) and \(F^* \) be d-\(\Phi \)-essential (here \(F^* = I \times F \)). Suppose there exists a map \(H : \overline{U} \times [0,1] \to 2^E \) with \(H(., \eta(\cdot)) \in A(\overline{U}, E) \) for any continuous function \(\eta : \overline{U} \to [0,1] \) with \(\eta(\partial U) = 0 \), \(H_t(x) \cap \Phi(x) = \emptyset \) for any \(x \in \partial U \) and \(t \in [0,1] \), \(H_0 = F \) and \(\{ x \in U : (x, \Phi(x)) \cap H^*(x, t) \neq \emptyset \text{ for some } t \in [0,1] \} \) is compact (respectively closed); here \(H^*(x, t) = (x, H(x, t)) \) and \(H_t(x) = H(x, t) \). Then \(\text{d} \left((H_t^*)^{-1} (B) \right) = \text{d} \left((F^*)^{-1} (B) \right) \neq \text{d}(\emptyset) \).

Remark 3.6. Suppose the following conditions holds (which is common in the literature on topological degree):
\[
\begin{cases}
\text{if } F, G \in A_{\partial U}(\overline{U}, E) \text{ with } F|_{\partial U} = G|_{\partial U} \text{ and } F \cong G \\
in A_{\partial U}(\overline{U}, E), \text{ then } \text{d} \left((F^*)^{-1} (B) \right) = \text{d} \left((G^*)^{-1} (B) \right).
\end{cases}
\]

Then Definition 3.2 reduces to the following. Let \(F \in A_{\partial U}(\overline{U}, E) \) with \(F^* = I \times F \). We say \(F^* : \overline{U} \to 2^{\overline{U} \times E} \) is d-\(\Phi \)-essential if \(\text{d} \left((F^*)^{-1} (B) \right) \neq \text{d}(\emptyset) \).

Next in this paper we use the notion of extendability to establish new continuation theorems.

Definition 3.7. We say \(F \in A(E, E) \) if \(F : E \to 2^E \) and \(F \in A(E, E) \).
We now fix a \(\Phi \in B(E, E) \).

For any map \(F \in A(E, E) \) let \(F^* = I \times F : E \to 2^E \times E \), with \(I : E \to E \) given by \(I(x) = x \), and let

\[
d : \{(F^*)^{-1}(B)\} \cup \{\emptyset\} \to \Omega \tag{3.4}
\]

be any map with values in the nonempty set \(\Omega \); here \(B = \{(x, \Phi(x)) : x \in E\} \). In our applications we will be interested in maps \(F : \overline{U} \to 2^E \) so \(F^* = I \times F : \overline{U} \to 2^{\overline{U}\times E} \) and in this case we consider

\[
d : \{(F^*)^{-1}(B_U)\} \cup \{\emptyset\} \to \Omega,
\]

where \(B_U = \{(x, \Phi(x)) : x \in U\} \).

Definition 3.8. If \(F, G \in A(E, E) \), then we say \(F \equiv G \) in \(A(E,E) \) if there exists a map \(\Lambda : E \times [0,1] \to 2^E \) with \(\Lambda(,\eta(\cdot)) \in A(E,E) \) for any continuous function \(\eta : E \to [0,1] \), \(\Lambda_1 = F \), \(\Lambda_0 = G \) (here \(\Lambda_1(x) = \Lambda(x,t) \)) and \(\{x \in E : (x, \Phi(x)) \cap \Lambda^*(x,t) \neq \emptyset \) for some \(t \in [0,1] \} \) is compact (respectively closed); here \(\Lambda^*(x,t) = (x,\Lambda(x,t)) \).

Theorem 3.9. Let \(E \) be a completely regular (respectively normal) topological space, \(U \) an open subset of \(E \) and \(d \) a map defined in (3.4). Suppose there exists a map \(H : E \times [0,1] \to 2^E \) with \(H(,\eta(\cdot)) \in A(E,E) \) for any continuous function \(\eta : E \to [0,1] \) and with \(\Phi(x) \cap H(x,0) = \emptyset \) for \(x \in E \setminus U \) and \(\Phi(x) \cap H_1(x) = \emptyset \) for any \(x \in \partial U \) and \(t \in [0,1] \), and

\[
\{x \in E : (x, \Phi(x)) \cap (x, H(x,t)) \neq \emptyset \text{ for some } t \in [0,1]\}
\]

is compact (respectively closed). In addition assume the following hold:

\[
\begin{cases}
\text{for any } J \in A(E,E) \text{ with } J^* = I \times J \text{ and } J \equiv H_0 \text{ in } A(E,E), \text{ we have that}\\
d \left((J^*)^{-1}(B) \right) = d \left((H_0^*)^{-1}(B) \right) \neq d(\emptyset),\\
\end{cases}
\]

\[
[x \in E \setminus U : (x, \Phi(x)) \cap H^*(x,t) \neq \emptyset \text{ for some } t \in [0,1] \}
\]

is closed,

and

\[
\begin{cases}
\text{if } \mu : E \to [0,1] \text{ is any continuous map with } \mu(U) = 1, \text{ then}\\
\{x \in E : \emptyset \neq (x, \Phi(x)) \cap (x, H(x, t\mu(x))) \text{ for some } t \in [0,1]\}
\end{cases}
\]

is closed;

here \(H_0^* = I \times H_0 \) and \(H^*(x,t) = (x, H(x,t)) \). Let \(H_1^* = I \times H_1 \). Then we have

\[
d \left((H_1^*)^{-1}(B_U) \right) = d \left((H_0^*)^{-1}(B_U) \right) \neq d(\emptyset).
\]

Proof. Let

\[
D = \{x \in E \setminus U : (x, \Phi(x)) \cap H^*(x,t) \neq \emptyset \text{ for some } t \in [0,1]\},
\]

where \(H^*(x,t) = (x, H(x,t)) \).

We consider two cases, as \(D \neq \emptyset \) and \(D = \emptyset \).

Case (i). \(D = \emptyset \).

Then for every \(t \in [0,1] \) we have \(\Phi(x) \cap H_t(x) = \emptyset \) for \(x \in E \setminus U \). Also from \(H_1 \equiv H_0 \) in \(A(E,E) \) and (3.5) we have

\[
d \left((H_1^*)^{-1}(B) \right) = d \left((H_0^*)^{-1}(B) \right) \neq d(\emptyset). \tag{3.7}
\]

Note \((H_1^*)^{-1}(B) = \{x \in E : (x, \Phi(x)) \cap (x, H_1(x)) \neq \emptyset\} \). Consider \(y \in E \) and \((y, \Phi(y)) \cap H_1^*(y) \neq \emptyset \). Then \(y \in E \) and \(\Phi(y) \cap H_1(y) \neq \emptyset \). Now since \(D = \emptyset \) we have \(y \in U \) and \(\Phi(y) \cap H_1(y) \neq \emptyset \) i.e., \(y \in U \) and \((y, \Phi(y)) \cap H_1^*(y) \neq \emptyset \). Consequently \((H_1^*)^{-1}(B) \subseteq (H_1^*)^{-1}(B_U) \) and on the other hand it is immediate that \((H_1^*)^{-1}(B_U) \subseteq (H_1^*)^{-1}(B) \). Thus \((H_1^*)^{-1}(B) = (H_1^*)^{-1}(B_U) \). It is also immediate that \((H_1^*)^{-1}(B) = (H_1^*)^{-1}(B_U) \). Thus (3.7) implies \(d \left((H_1^*)^{-1}(B_U) = d \left((H_0^*)^{-1}(B_U) \right) \right) \neq d(\emptyset) \), and we are finished.
Case (ii). $D \neq \emptyset$.

Note D is compact (respectively closed) and also note $D \cap \overline{U} \neq \emptyset$ (since $\Phi(x) \cap H_t(x) = \emptyset$ for $x \in \partial U$ and $t \in [0,1]$). Then there exists a continuous map $\mu : E \to [0,1]$ with $\mu(D) = 0$ and $\mu(\overline{U}) = 1$. Define a map $R : E \to 2^E$ by $R(x) = H(x, \mu(x))$. Note $R \in A(E,E)$. In fact $R \cong H_0$ in $A(E,E)$. To see this let $\Lambda : E \times [0,1] \to 2^E$ be given by $\Lambda(x,t) = H(x, t\mu(x))$. Note $\Lambda(\cdot, \eta(\cdot)) \in A(E,E)$ for any continuous function $\eta : E \to [0,1]$, and (note (3.6) and $H_t \cong H_0$ in $A(E,E)$),

$$\{x \in E : (x, \Phi(x)) \cap (x, H(x, t\mu(x))) \neq \emptyset \text{ for some } t \in [0,1]\}$$

is compact (respectively closed). Also $A_t = R$ and $A_0 = H_0$.

Let $R^* = I \times R$. Now (3.5) guarantees that

$$d\left((R^*)^{-1}(B)\right) = d\left((H_0^*)^{-1}(B)\right) \neq d(\emptyset).$$ \hfill (3.8)

Note $(R^*)^{-1}(B) = \{x \in E : (x, \Phi(x)) \cap (x, R(x)) \neq \emptyset\}$. Consider $x \in E$ and $(x, \Phi(x)) \cap R^*(x) \neq \emptyset$. Then $x \in E$ and $\emptyset \neq \Phi(x) \cap R(x) = \Phi(x) \cap H_{\mu(x)}(x)$. If $x \in E \cup \emptyset$ then since $x \in D$ we have $\emptyset \neq \Phi(x) \cap H_{\mu(x)}(x) = \Phi(x) \cap H(x, 0)$, which is a contradiction. Thus $x \in \overline{U}$ and $\emptyset \neq \Phi(x) \cap R(x)$. Consequently $(R^*)^{-1}(B) \subseteq (R^*)^{-1}(B_U)$ and on the other hand it is immediate that $(R^*)^{-1}(B_U) \subseteq (R^*)^{-1}(B)$. Thus $(R^*)^{-1}(B) = (R^*)^{-1}(B_U)$. Also $(H_0^*)^{-1}(B) = (H_0^*)^{-1}(B_U)$. Thus (3.8) implies

$$d\left((R^*)^{-1}(B_U)\right) = d\left((H_0^*)^{-1}(B_U)\right) \neq d(\emptyset).$$ \hfill (3.9)

Finally notice (note $\mu(\overline{U}) = 1$) that

$$(R^*)^{-1}(B_U) = \{x \in U : (x, \Phi(x)) \cap (x, H(x, \mu(x))) \neq \emptyset\}$$

$$= \{x \in U : (x, \Phi(x)) \cap (x, H(x, 1)) \neq \emptyset\} = (H_1^*)^{-1}(B_U),$$

so from (3.9) we have $d\left((H_1^*)^{-1}(B_U)\right) = d\left((H_0^*)^{-1}(B_U)\right) \neq d(\emptyset)$. \hfill \Box

Remark 3.10. In Definition 3.8 and in the statement of Theorem 3.9 we could replace, any continuous map $\eta : E \to [0,1]$, with, any continuous map $\eta : E \to [0,1]$ with $\eta(\overline{U}) = 1$.

Let E be a topological vector space, Y a topological vector space, U an open subset of E, $L : \text{dom}(L) \subseteq E \to Y$ a linear single valued map, and $T \in H_L(E,Y)$.

We now fix a $\Phi \in B(\overline{U}, Y; L, T)$.

For any map $F \in A(\overline{U}, Y; L, T)$ let $F^* = I \times (L + T)^{-1}(F + T) : \overline{U} \to 2^{\overline{U} \times E}$, with $I : \overline{U} \to \overline{U}$ given by $I(x) = x$, and let

$$d : \left\{ (F^*)^{-1}(B) \right\} \cup \{\emptyset\} \to \Omega \hfill (3.10)$$

be any map with values in the nonempty set Ω; here $B = \{ (x, (L + T)^{-1}(\Phi + T)(x)) : x \in \overline{U} \}$.

Definition 3.11. Let $F, G \in A_{\partial U}(\overline{U}, Y; L, T)$. We say $F \cong G$ in $A_{\partial U}(\overline{U}, Y; L, T)$ if there exists a map $H : \overline{U} \times [0,1] \to 2^Y$ with $(L + T)^{-1}(H(\cdot, \eta(\cdot))) + T(\cdot) \in A(\overline{U}, E)$ for any continuous function $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $(L + T)^{-1}(H_t + T)(x) \cap (L + T)^{-1}(\Phi + T)(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0,1]$, $H_1 = F$, $H_0 = G$ and

$$\{x \in \overline{U} : (x, (L + T)^{-1}(\Phi + T)(x)) \cap H_t(x, t) \neq \emptyset \text{ for some } t \in [0,1]\}$$

is compact; here $H_t(x) = H(x, t)$ and $H^*(x, \lambda) = (x, (L + T)^{-1}(H + T)(x, \lambda))$.

Definition 3.12. Let $F \in A_{\partial U}(\overline{U}, Y; L, T)$ with $F^* = I \times (L + T)^{-1}(F + T)$. We say $F^* : \overline{U} \to 2^{\overline{U} \times E}$ is d-L-Φ-essential if for every map $J \in A_{\partial U}(\overline{U}, Y; L, T)$ with $J^* = I \times (L + T)^{-1}(J + T)$ and $J_{\partial U} = F_{\partial U}$ and $J \cong F$ in $A_{\partial U}(\overline{U}, Y; L, T)$ we have that $d\left((F^*)^{-1}(B)\right) = d\left((J^*)^{-1}(B)\right) \neq d(\emptyset)$.
Theorem 3.13. Let E be a Hausdorff topological vector space, Y a topological vector space, U an open subset of E, $B = \{(x, (L+T)^{-1}(\Phi + T)(x)) : x \in \overline{U}\}$, $L : \text{dom}(L) \subseteq E \to Y$ a linear single valued map, $T \in H_L(E,Y)$, a map defined in (3.10), and let $F \in A_{\partial U}(\overline{U},Y;L,T)$ and F^* be d-L-Φ-essential (here $F^* = I \times (L+T)^{-1}(F + T)$). Suppose here exists a map $H : \overline{U} \times [0,1] \to 2^Y$ with $(L+T)^{-1}(H(\eta,\eta)) + T(\cdot)) \in A(\overline{U},E)$ for any continuous function $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $(L+T)^{-1}(H_1 + T)(x) \cap (L+T)^{-1}(\Phi + T)(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0,1]$, $H_0 = F$, and

$$\{x \in \overline{U} : (x, (L+T)^{-1}(\Phi + T)(x)) \cap H^*(x,t) \neq \emptyset \text{ for some } t \in [0,1]\}$$

is compact; here $H_1(x) = H(x,t)$ and $H^*(x,\lambda) = (x, (L+T)^{-1}(H + T)(x,\lambda))$. In addition assume

$$\left\{ \begin{array}{ll}
\text{if } \mu : \overline{U} \to [0,1] \text{ is any continuous map with } \mu(\partial U) = 0, \\
\{x \in \overline{U} : (x, (L+T)^{-1}(\Phi + T)(x)) \cap (x, (L+T)^{-1}(H_{t\mu(x)}(x) + T)(x)) \neq \emptyset \text{ for some } t \in [0,1]\} \end{array} \right.$$ is closed.

Let $H^*_1 = I \times (L+T)^{-1}(H_1 + T)$. Then

$$d \left((H^*_1)^{-1} (B) \right) = d \left((F^*)^{-1} (B) \right) \neq d(\emptyset).$$

Proof. Let

$$D = \{x \in \overline{U} : (x, (L+T)^{-1}(\Phi + T)(x)) \cap H^*(x,t) \neq \emptyset \text{ for some } t \in [0,1]\},$$

where $H^*(x,\lambda) = (x, (L+T)^{-1}(H + T)(x,\lambda))$. Notice $D \neq \emptyset$, D is compact, and $D \cap \partial U = \emptyset$. Thus there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(D) = 1$. Define $R_{\mu} : \overline{U} \to 2^Y$ by $R_{\mu}(x) = H(x,\mu(x)) = H_{\mu(x)}(x)$ and let $R^*_{\mu} = I \times (L+T)^{-1}(R_{\mu} + T)$. Note $R_{\mu} \in A_{\partial U}(\overline{U},Y;L,T)$ with $R_{\mu}|_{\partial U} = F|_{\partial U}$ (note if $x \in \partial U$ then $R_{\mu}(x) = H_0(x) = F(x)$ and $R_{\mu}(x) \cap \Phi(x) = F(x) \cap \Phi(x) = \emptyset$).

Next we note, since $\mu(D) = 1$, that

$$(R^*_{\mu})^{-1} (B) = \{x \in \overline{U} : (x, (L+T)^{-1}(\Phi + T)(x)) \cap (x, (L+T)^{-1}(H_{\mu(x)}(x) + T)(x)) \neq \emptyset\} = \{x \in \overline{U} : (x, (L+T)^{-1}(\Phi + T)(x)) \cap (x, (L+T)^{-1}(H_1 + T)(x)) \neq \emptyset\} = (H^*_1)^{-1} (B)$$

and so

$$d \left((R^*_{\mu})^{-1} (B) \right) = d \left((H^*_1)^{-1} (B) \right). \quad (3.11)$$

Also note $R_{\mu} \equiv F$ in $A_{\partial U}(\overline{U},Y;L,T)$ (to see this let $Q : \overline{U} \times [0,1] \to 2^Y$ be given by $Q(x,t) = H(x,t)\mu(x))$.

As a result since F^* is d-L-Φ-essential we have $d \left((R^*_{\mu})^{-1} (B) \right) = d \left((F^*)^{-1} (B) \right) \neq d(\emptyset)$. This together with (3.11) yields $d \left((H^*_1)^{-1} (B) \right) = d \left((F^*)^{-1} (B) \right) \neq d(\emptyset)$.

Remark 3.14. Suppose we change Definition 3.12 as follows. Let $F \in A_{\partial U}(\overline{U},Y;L,T)$ with $F^* = I \times (L+T)^{-1}(F + T)$. We say $F^* : \overline{U} \to 2^{\overline{U} \times E}$ is d-L-Φ-essential if for every map $J \in A_{\partial U}(\overline{U},Y;L,T)$ with $J^* = I \times (L+T)^{-1}(J + T)$ and $J|_{\partial U} = F|_{\partial U}$ we have that $d \left((F^*)^{-1} (B) \right) = d \left((J^*)^{-1} (B) \right) \neq d(\emptyset)$. The argument above yields the following result. Let E be a Hausdorff topological vector space, Y a topological vector space, U an open subset of E, $B = \{(x, (L+T)^{-1}(\Phi + T)(x)) : x \in \overline{U}\}$, $L : \text{dom}(L) \subseteq E \to Y$ a linear single valued map, $T \in H_L(E,Y)$, a map defined in (3.10) and let $F \in A_{\partial U}(\overline{U},Y;L,T)$ and F^* be d-L-Φ-essential (here $F^* = I \times (L+T)^{-1}(F + T)$). Suppose here exists a map $H : \overline{U} \times [0,1] \to 2^Y$ with $(L+T)^{-1}(H(\eta,\eta)) + T(\cdot)) \in A(\overline{U},E)$ for any continuous function $\eta : \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $(L+T)^{-1}(H_1 + T)(x) \cap (L+T)^{-1}(\Phi + T)(x) = \emptyset$ for any $x \in \partial U$ and $t \in [0,1]$, $H_0 = F$, $H_0 = G$ and

$$\{x \in \overline{U} : (x, (L+T)^{-1}(\Phi + T)(x)) \cap H^*(x,t) \neq \emptyset \text{ for some } t \in [0,1]\}$$
is compact; here $H_1(x) = H(x,t)$ and $H^*(x,\lambda) = (x, (L+T)^{-1}(H + T)(x,\lambda))$. Let $H^*_1 = I \times (L+T)^{-1}(H_1 + T)$. Then $d \left((H^*_1)^{-1} (B) \right) = d \left((F^*)^{-1} (B) \right) \neq d(\emptyset)$. \qed
Definition 3.17. Suppose the following condition holds:

\[
\begin{cases}
\text{if } F, G \in A_{\partial U}(\overline{U}, Y; L, T) \text{ with } F|_{\partial U} = G|_{\partial U} \text{ and } F \cong G \\
in A_{\partial U}(\overline{U}, Y; L, T) \text{ then } d\left(\left((F^+)^{-1}(B)\right)\right) = d\left(\left((G^+)^{-1}(B)\right)\right).
\end{cases}
\]

Then Definition 3.12 reduces to the following. Let \(F \in A_{\partial U}(\overline{U}, Y; L, T) \) with \(F^* = I \times (L + T)^{-1}(F + T) \). We say \(F^* : \overline{U} \to 2^{\overline{U} \times E} \) is d-L-\(\Phi \)-essential if \(d\left(\left((F^+)^{-1}(B)\right)\right) \neq d(\emptyset) \).

Remark 3.16. If \(E \) is a normal topological vector space then the assumption that \(D \) (in the proof of Theorem 2.15) is compact, can be replaced by \(D \) is closed, in the statement (and proof) of Theorem 3.13 and also the assumption that

\[
\{x \in \overline{U} : (x, (L + T)^{-1}(\Phi + T)(x))) \cap H^*(x, t) \neq \emptyset \text{ for some } t \in [0, 1]\}
\]

is compact, can be replaced by

\[
\{x \in \overline{U} : (x, (L + T)^{-1}(\Phi + T)(x))) \cap H^*(x, t) \neq \emptyset \text{ for some } t \in [0, 1]\}
\]

is closed, in Definition 3.11; here \(H^*(x, \lambda) = (x, (L + T)^{-1}(H + T)(x, \lambda)) \).

We now fix a \(\Phi \in B(E, Y; L, T) \).

Definition 3.17. Let \(F : E \to 2^Y \). We say \(F \in A(E, Y; L, T) \) if \((L + T)^{-1}(F + T) \in A(E, E) \).

For any map \(F \in A(E, Y; L, T) \) let \(F^* = I \times (L + T)^{-1}(F + T) : E \to 2^{E \times E} \), with \(I : E \to E \) given by \(I(x) = x \), and let

\[
d : \left((F^+)^{-1}(B)\right) \cup \{\emptyset\} \to \Omega
\]

be any map with values in the nonempty set \(\Omega \); here \(B = \{(x, (L + T)^{-1}(\Phi + T)(x)) : x \in E\} \). In our applications we will be interested in maps \(F : \overline{U} \to 2^Y \) so \(F^* = I \times (L + T)^{-1}(F + T) : \overline{U} \to 2^{\overline{U} \times E} \) and in this case we consider

\[
d : \left((F^+)^{-1}(B_U)\right) \cup \{\emptyset\} \to \Omega,
\]

where \(B_U = \{(x, (L + T)^{-1}(\Phi + T)(x)) : x \in U\} \).

Definition 3.18. If \(F, G \in A(E, Y; L, T) \) then we say \(F \cong G \) in \(A(E, Y; L, T) \) if there exists a map \(\Lambda : E \times [0, 1] \to 2^Y \) with \((L + T)^{-1}(\Lambda(\cdot, \eta(\cdot)) + T) \in A(E, E) \) for any continuous function \(\eta : E \to [0, 1], \Lambda_1 = F \) and \(\Lambda_0 = G \) (here \(\Lambda_1(x) = (x, t) \)) and

\[
\{x \in E : (x, (L + T)^{-1}(\Phi + T)(x))) \cap \Lambda^*(x, t) \neq \emptyset \text{ for some } t \in [0, 1]\}
\]

is compact; here \(\Lambda^*(x, \lambda) = \Lambda(x, (L + T)^{-1}(\Lambda(x, t), \lambda)) \).

Theorem 3.19. Let \(E \) be a Hausdorff topological vector space, \(Y \) a topological vector space, \(U \) an open subset of \(E \), \(L : dom(L) \subseteq E \to Y \) a linear single valued map, \(T \in H_1(E, Y) \) and \(d \) a map defined in (3.12). Suppose there exists a map \(H : E \times [0, 1] \to 2^Y \) with \((L + T)^{-1}(H(\cdot, \eta(\cdot)) + T) \in A(E, E) \) for any continuous function \(\eta : E \to [0, 1], (L + T)^{-1}(\Phi + T)(x)) \cap (L + T)^{-1}(H_0 + T)(x) = \emptyset \) for any \(x \in \partial U \) and \(t \in [0, 1] \), and

\[
\{x \in E : (x, (L + T)^{-1}(\Phi + T)(x))) \cap H^*(x, t) \neq \emptyset \text{ for some } t \in [0, 1]\}
\]

is compact; here \(H^*(x, \lambda) = (x, (L + T)^{-1}(H + T)(x, \lambda)) \). In addition assume the following hold:

\[
\begin{cases}
\text{for any } J \in A(E, Y; L, T) \text{ with } J^* = I \times (L + T)^{-1}(J + T) \\
\text{and } \Phi \cong H_0 \text{ in } A(E, Y; L, T) \text{ we have that } d\left(\left((J^*)^{-1}(B)\right)\right) = d\left(\left((H_0^*)^{-1}(B)\right)\right) \neq d(\emptyset),
\end{cases}
\]
\[\begin{cases} x \in E \setminus U : (x, (L + T)^{-1}(\Phi + T)(x)) \cap H^*(x, t) \neq \emptyset \text{ for some } t \in [0, 1] \\ \text{is closed} \end{cases} \]

and

\[\begin{cases} \text{if } \mu : E \to [0, 1] \text{ is any continuous map with } \mu(U) = 1, \text{ then} \\ \{ x \in U : (x, (L + T)^{-1}(\Phi + T)(x)) \cap (x, (L + T)^{-1}(H_{\mu(x)} + T)(x)) \neq \emptyset \text{ for some } t \in [0, 1] \} \text{ is closed.} \end{cases} \]

Here \(H_0^* = 1 \times (L + T)^{-1}(H_0 + T) \). Let \(H_1^* = 1 \times (L + T)^{-1}(H_1 + T) \). Then we have

\[d \left((H_1^*)^{-1}(B_1) \right) = \mathcal{d} \left((H_0^*)^{-1}(B_1) \right) \neq d(\emptyset). \tag{3.14} \]

Note \((H_1^*)^{-1}(B) = \{ x \in E : (x, (L + T)^{-1}(\Phi + T)(x)) \cap (x, (L + T)^{-1}(H_1 + T)(x)) \neq \emptyset \} \). Consider \(y \in E \) and \((y, (L + T)^{-1}(\Phi + T)(y)) \cap H_1^*(y) \neq \emptyset \). Then \(y \in E \) and \(\Phi(y) \cap (L + T)^{-1}(H_1 + T)(y) \neq \emptyset \). Now since \(D = \emptyset \) we have \(y \in U \) and \(\Phi(y) \cap (L + T)^{-1}(H_1 + T)(y) \neq \emptyset \) i.e., \(y \in U \) and \((y, (L + T)^{-1}(\Phi + T)(y)) \cap H_1^*(y) \neq \emptyset \).

Consequently \((H_1^*)^{-1}(B) \subseteq (H_0^*)^{-1}(B_1) \) and on the other hand it is immediate that \((H_1^*)^{-1}(B_1) \subseteq (H_1^*)^{-1}(B) \). Thus \((H_1^*)^{-1}(B) = (H_1^*)^{-1}(B_1) \). It is also immediate that \((H_0^*)^{-1}(B) = (H_0^*)^{-1}(B_1) \).

Thus (3.14) implies \(\mathcal{d} \left((H_1^*)^{-1}(B_1) \right) = \mathcal{d} \left((H_0^*)^{-1}(B_1) \right) \neq d(\emptyset), \) and we are finished.

Case (ii). \(D \neq \emptyset \).

Note \(D \) is compact and also note \(D \cap U \neq \emptyset \). Then there exists a continuous map \(\mu : E \to [0, 1] \) with \(\mu(D) = 0 \) and \(\mu(U) = 1 \). Define a map \(R : E \to 2^Y \) by

\[R(x) = H(x, \mu(x)). \]

Note \(R \in \mathcal{A}(E, Y; L, T) \). In fact \(R \equiv H_0 \) in \(\mathcal{A}(E, Y; L, T) \) (to see this let \(\Lambda : E \times [0, 1] \to 2^Y \) be given by \(\Lambda(x, t) = H(x, t \mu(x)) \)).

Let \(R^* = 1 \times (L + T)^{-1}(R + T) \). Now (3.13) guarantees that

\[\mathcal{d} \left((R^*)^{-1}(B) \right) = \mathcal{d} \left((H_0^*)^{-1}(B) \right) \neq d(\emptyset). \tag{3.15} \]

Note \((R^*)^{-1}(B) = \{ x \in E : (x, (L + T)^{-1}(\Phi + T)(x)) \cap (x, (L + T)^{-1}(R + T)(x)) \neq \emptyset \} \). Consider \(x \in E \) and \((x, (L + T)^{-1}(\Phi + T)(x)) \cap R^*(x) \neq \emptyset \). Then \(x \in E \) and \(\emptyset \neq (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(R + T)(x) = (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_{\mu(x)} + T)(x) \). If \(x \in E \setminus U \) then since \(x \in D \) we have \(\emptyset \neq (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(H_0 + T)(x) \) which is a contradiction. Thus \(x \in U \) and \(\emptyset \neq (L + T)^{-1}(\Phi + T)(x) \cap (L + T)^{-1}(R + T)(x) \). Consequently \((R^*)^{-1}(B) \subseteq (R^*)^{-1}(B_1) \) and on the other hand it is immediate that \((R^*)^{-1}(B) \subseteq (R^*)^{-1}(B_1) \). Thus \((R^*)^{-1}(B) = (R^*)^{-1}(B_1) \). Also \((H_0^*)^{-1}(B) = (H_0^*)^{-1}(B_1) \). Thus (3.15) implies

\[\mathcal{d} \left((R^*)^{-1}(B_1) \right) = \mathcal{d} \left((H_0^*)^{-1}(B_1) \right) \neq d(\emptyset). \tag{3.16} \]
Finally notice

\[(\mathbb{R}^\ast)^{-1}(B_U) = \{x \in U : (x, (L + T)^{-1}(\Phi + T)(x)) \cap (x, (L + T)^{-1}(H_{\mu(x)} + T)(x)) \neq \emptyset\}\]

\[= \{x \in U : (x, (L + T)^{-1}(\Phi + T)(x)) \cap (x, (L + T)^{-1}(H_1 + T)(x)) \neq \emptyset\} = (H_1^\ast)^{-1}(B_U),\]

so from (3.16) we have \(d\left((H_1^\ast)^{-1}(B_U)\right) = d\left((H_0^\ast)^{-1}(B_U)\right) \neq d(\emptyset).\)

\[\Box\]

Remark 3.20. In Definition 3.18 and in the statement of Theorem 3.19 we could replace, any continuous map \(\eta : E \to [0, 1]\), with, any continuous map \(\eta : E \to [0, 1]\) with \(\eta(U) = 1\).

Remark 3.21. There is an analogue of Remark 3.16 (for normal topological vector spaces) in the statement of Theorem 3.19 and in Definition 3.18.

Acknowledgment

The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP No. 0027.

References

