Integral transforms and partial sums of certain meromorphically p-valent starlike functions

Yong-Jie Liu, Jin-Lin Liu*

Department of Mathematics, Yangzhou University, Yangzhou 225002, China.

Communicated by Y. Hu

Abstract

In this paper, we introduce two new subclasses of meromorphically p-valent starlike functions. Inclusion relation, integral transforms, and partial sums for each of these classes are discussed.

Keywords: Analytic function, meromorphic function, p-valent function, starlike function, subordination, inclusion relation, integral transforms, partial sum.

2010 MSC: 30C45, 30C80.

1. Introduction

In this paper, we assume that

\[-1 \leq B < 0, \quad B < A \leq -B, \quad \lambda \geq 1 \quad \text{and} \quad k \in \mathbb{N} \setminus \{1\}.\] \hspace{1cm} (1.1)

For functions f and g analytic in the open unit disk $U = \{ z \in \mathbb{C} : |z| < 1 \}$, the function f is said to be subordinate to g, written $f(z) \prec g(z)$ ($z \in U$), if there exists an analytic function w in U, with $w(0) = 0$ and $|w(z)| < 1$, such that $f(z) = g(w(z))$.

A function f which is analytic in a domain $D \subset \mathbb{C}$ is called p-valent in D if for every complex number w, the equation $f(z) = w$ has at most p roots in D and there will be a complex number w_0 such that the equation $f(z) = w_0$ has exactly p roots in D. Let Σ_p denote the class of functions of the form

\[f(z) = z^{-p} + \sum_{n=p}^{\infty} a_n z^n \quad (p \in \mathbb{N}),\] \hspace{1cm} (1.2)

*Corresponding author
Email addresses: 1723549889@qq.com (Yong-Jie Liu), jlliu@yzu.edu.cn (Jin-Lin Liu)

doi: 10.22436/jnsa.011.02.05

Received: 2017-10-01 Revised: 2017-11-16 Accepted: 2017-11-27
which are analytic in the punctured open unit disk $U_0 = U \setminus \{0\}$. We denote by S^*_p the well-known class of meromorphically p-valent starlike functions. It is defined as follows

$$S^*_p = \left\{ f \in \Sigma_p : \text{Re} \frac{zf'(z)}{f(z)} < 0, z \in U \right\}.$$

Let

$$f_j(z) = z^{-p} + \sum_{n=0}^{\infty} a_{n,j} z^n \in \Sigma_p \quad (j = 1, 2).$$

Then the Hadamard product (or convolution) of f_1 and f_2 is defined by

$$(f_1 * f_2)(z) = z^{-p} + \sum_{n=0}^{\infty} a_{n,1} a_{n,2} z^n = (f_1 * f_2)(z).$$

Lemma 1.1. Let $f \in \Sigma_p$ defined by (1.2) satisfies

$$\sum_{n=p}^{\infty} \left\{ p(1 - A) + (1 - B)[\lambda n + p(\lambda - 1)\delta_{n,p,k}] \right\} \leq p(A - B). \tag{1.3}$$

Then

$$\frac{p(1 - \lambda) f_{p,k}(z) - \lambda zf'(z)}{pf(z)} < \frac{1 + Az}{1 + Bz} \quad (z \in U), \tag{1.4}$$

where

$$f_{p,k}(z) = \frac{1}{k} \sum_{j=0}^{k-1} \varepsilon_k^j f(\varepsilon_k^j z), \quad \varepsilon_k = \exp \left(\frac{2\pi i}{k} \right) \tag{1.5}$$

and

$$\delta_{n,p,k} = \begin{cases} 0, & \left(\frac{n+p}{k} \notin \mathbb{N} \right), \\ 1, & \left(\frac{n+p}{k} \in \mathbb{N} \right). \end{cases} \tag{1.6}$$

Proof. The function $f_{p,k}$ in (1.5) can be expressed as

$$f_{p,k}(z) = z^{-p} + \sum_{n=p}^{\infty} \delta_{n,p,k} a_n z^n \tag{1.7}$$

with

$$\delta_{n,p,k} = \frac{1}{k} \sum_{j=0}^{k-1} \varepsilon_k^j \left(\frac{n+p}{k} \right) = \left\{ \begin{array}{ll} 0, & \left(\frac{n+p}{k} \notin \mathbb{N} \right), \\ 1, & \left(\frac{n+p}{k} \in \mathbb{N} \right). & \end{array} \right.$$

According to (1.1) and (1.6), we see that

$$pA - B[p(1 - \lambda)\delta_{n,p,k} - \lambda n] \leq -B[p - p(\lambda - 1)\delta_{n,p,k} - \lambda n] \leq 0 \quad (n \geq p). \tag{1.8}$$

Let the inequality (1.3) hold. Then from (1.7) and (1.8), we deduce that

$$\left| \frac{p(1 - \lambda) f_{p,k}(z) - \lambda zf'(z)}{pf(z)} - 1 \right| \leq \frac{-\sum_{n=p}^{\infty} [p(\lambda - 1)\delta_{n,p,k} + \lambda n + p] a_n z^{n+p}}{p(A - B) + \sum_{n=p}^{\infty} [pA - B[p(1 - \lambda)\delta_{n,p,k} - \lambda n]] a_n z^{n+p}} \leq 1.$$

Hence, by the maximum modulus theorem, we have (1.4). The proof is completed. \[\square\]
We now introduce the following two subclasses of Σ_p.

Definition 1.2. A function $f \in \Sigma_p$ defined by (1.2) is said to be in the class $M_{p,k}(\lambda, A, B)$ if and only if it satisfies the coefficient inequality (1.3).

Definition 1.3. A function $f \in \Sigma_p$ defined by (1.2) is said to be in the class $R_{p,k}(\lambda, A, B)$ if and only if it satisfies the coefficient inequality

$$\sum_{n=p}^{\infty} n[p(1-A)+(1-B)[\lambda n + p(\lambda -1)\delta_n,p,k]] \leq p^2(A-B).$$

For $f \in \Sigma_p$, we have

$$2z^{-p} + \frac{zf'(z)}{p} = z^{-p} + \sum_{n=p}^{\infty} \frac{n}{p} \alpha_n z^n,$$

which implies that

$$f \in R_{p,k}(\lambda, A, B) \quad \text{if and only if} \quad 2z^{-p} + \frac{zf'(z)}{p} \in M_{p,k}(\lambda, A, B). \quad (1.9)$$

If we write

$$\alpha_n = \frac{p(1-A)+(1-B)[\lambda n + p(\lambda -1)\delta_n,p,k]}{p(A-B)} \quad \text{and} \quad \beta_n = \frac{n}{p} \alpha_n \quad (n \geq p), \quad (1.10)$$

then it is easy to verify that

$$\frac{\partial \beta_n}{\partial \lambda} = \frac{n}{p} \frac{\partial \alpha_n}{\partial \lambda} > 0, \quad \frac{\partial \beta_n}{\partial A} = \frac{n}{p} \frac{\partial \alpha_n}{\partial A} < 0, \quad \text{and} \quad \frac{\partial \beta_n}{\partial B} = \frac{n}{p} \frac{\partial \alpha_n}{\partial B} \geq 0.$$

Thus, we obtain the following inclusion relations. If

$$1 \leq \lambda_0 \leq \lambda, \quad -1 \leq B_0 < B < A \leq -B, \quad \text{and} \quad A \leq A_0 \leq -B_0,$$

then

$$R_{p,k}(\lambda, A, B) \subset M_{p,k}(\lambda, A, B) \subset M_{p,k}(\lambda_0, A_0, B_0) \subset M_{p,k}(1,1,-1) \subseteq S_p^* = \left\{ f \in \Sigma_p : \Re \frac{zf'(z)}{f(z)} < 0, z \in U \right\}.$$

Therefore, by Lemma 1.1, we see that each function in the classes $M_{p,k}(\lambda, A, B)$ and $R_{p,k}(\lambda, A, B)$ is meromorphically p-valent starlike function. Meromorphic (and analytic) functions which are starlike have been extensively investigated by several authors (see, e.g., [1–22] and the references therein). In this paper we study some properties such as inclusion relation, integral transforms, and partial sums for the above-defined classes $M_{p,k}(\lambda, A, B)$ and $R_{p,k}(\lambda, A, B)$.

2. Inclusion relation

In this section we shall generalize the above mentioned inclusion relation

$$R_{p,k}(\lambda, A, B) \subset M_{p,k}(\lambda, A, B). \quad (2.1)$$

Theorem 2.1. If $-1 \leq D \leq B$, then

$$R_{p,k}(\lambda, A, B) \subset M_{p,k}(\lambda, C(D), D),$$

where

$$C(D) = D + \frac{(1-D)(A-B)}{1-B}.$$

The number $C(D)$ cannot be decreased for each D.

Proof. Since $-1 \leq D < B < 0$ and $B < A \leq -B$, we see that

$$D < C(D) \leq D - \frac{2B(1-D)}{1-B} \leq -D.$$

Let $f \in \mathbb{R}_{p,k}(\lambda, A, B)$. In order to prove that $f \in \mathbb{M}_{p,k}(\lambda, C(D), D)$, we need only to find the smallest C ($D < C \leq -D$) such that

$$\frac{p(1-C) + (1-D)[\lambda n + p(\lambda - 1)\delta_{n,p,k}]}{p(C-D)} \leq \frac{n[p(1-A) + (1-B)[\lambda n + p(\lambda - 1)\delta_{n,p,k}]]}{p(A-B)}$$

for all $n \geq p$, that is, that

$$\frac{(1-D)[\lambda n + p + p(\lambda - 1)\delta_{n,p,k}]}{p(C-D)} - 1 \leq \frac{n}{p} \left\{ \frac{(1-B)[\lambda n + p + p(\lambda - 1)\delta_{n,p,k}]}{p(A-B)} - 1 \right\}. \quad (2.3)$$

For $n \geq p$ and $\frac{n+p}{k} \notin \mathbb{N}$, (2.3) becomes

$$C \geq D + \frac{1-D}{\frac{n(1-B)}{p(A-B)} - \frac{n-\lambda n + p}{\lambda n + p}} := \varphi(n).$$

Noting that (1.1), a simple calculation shows that $\varphi(n)$ ($n \geq p$) is decreasing in n. Therefore,

$$\varphi(n) \leq \begin{cases} \varphi(p+1), & \left(\frac{2p+1}{k} \in \mathbb{N} \right) \\ \varphi(p), & \left(\frac{2p}{k} \notin \mathbb{N} \right) \end{cases}.$$

For $n \geq p$ and $\frac{n+p}{k} \in \mathbb{N}$, (2.3) is equivalent to

$$C \geq D + \frac{1-D}{\frac{n(1-B)}{p(A-B)} - \frac{n-p}{(n+p)}} := \psi(n).$$

Also, $\psi(n)(n \geq p)$ is decreasing in n. Thus

$$\psi(n) \leq \begin{cases} \psi(p), & \left(\frac{2p+1}{k} \in \mathbb{N} \right) \\ \psi \left(k \left[\frac{2p}{k} \right] + 1 \right) - p, & \left(\frac{2p}{k} \notin \mathbb{N} \right) \end{cases}, \quad (2.4)$$

where $[x]$ in (2.4) denotes the integer part of a given real number x. Consequently, by taking

$$C = \varphi(p) = \psi(p) = D + \frac{(1-D)(A-B)}{1-B} = C(D),$$

it follows from (2.2) to (2.5) that $f \in \mathbb{M}_{p,k}(\lambda, C(D), D)$. Furthermore, for $\frac{2p}{k} \in \mathbb{N}$ and $D < C_0 < C(D)$, we see that

$$\frac{1-C_0 + (2\lambda - 1)(1-D)}{C_0 - D} \cdot \frac{A-B}{1-A + (2\lambda - 1)(1-B)} \geq \frac{1-C(D) + (2\lambda - 1)(1-D)}{C(D) - D} \cdot \frac{A-B}{1-A + (2\lambda - 1)(1-B)} = 1,$$

which implies that the function

$$f(z) = z^p + \frac{A-B}{1-A + (2\lambda - 1)(1-B)} z^p \in \mathbb{R}_{p,k}(\lambda, A, B).$$
is not in the class $M_{p,k}(\lambda, C_0, D)$. Also, for $\frac{2p}{k} \notin \mathbb{N}$ and $D < C_0 < C(D)$, we have
\[
\frac{1 - C_0 + \lambda(1 - D)}{C_0 - D} \cdot \frac{A - B}{1 - A + \lambda(1 - B)} > \frac{1 - C_0 + \lambda(1 - D)}{C_0 - D} \cdot \frac{A - B}{1 - A + \lambda(1 - B)} = 1,
\]
which implies that the function
\[
f(z) = z^{-p} + \frac{A - B}{1 - A + \lambda(1 - B)} z^p \in R_{p,k}(\lambda, A, B)
\] (2.6)
is not in the class $M_{p,k}(\lambda, C_0, D)$. The proof of the theorem is completed. \qed

Remark 2.2. Putting $D = B$ in Theorem 2.1, we have the inclusion relation (2.1).

3. Integral transforms

Theorem 3.1. Let $p < \mu < p(2\lambda + 1)$. Suppose that $f \in M_{p,k}(\lambda, A, B)$ and
\[
I_{\mu}(z) = \frac{\mu - p}{z^\mu} \int_0^z t^{\mu - 1} f(t) \, dt.
\] (3.1)
Then $I_{\mu} \in M_{p,k}(\lambda, C_1(D), D)$, where $-1 \leq D \leq B$ and
\[
C_1(D) = D + \frac{(\lambda + 1)(\mu - p)(A - B)(1 - D)}{[\lambda + 1](\mu + p)(1 - B) - 2p(A - B)}.
\]
The number $C_1(D)$ cannot be decreased for each D.

Proof. Since $-1 \leq D \leq B < 0, B < A \leq -B$ and $p < \mu < p(2\lambda + 1)$, we can see that
\[
D < C_1(D) \leq D + \frac{(\lambda + 1)(\mu - p)(A - B)(1 - D)}{[\lambda + 1](\mu + p)(1 - B) - 2p(A - B)} \leq D - \frac{2B(1 - D)}{1 - B} \leq -D.
\]
For
\[
f(z) = z^{-p} + \sum_{n=p}^{\infty} a_n z^n \in M_{p,k}(\lambda, A, B),
\]
it follows from (3.1) that
\[
I_{\mu}(z) = z^{-p} + \sum_{n=p}^{\infty} \frac{\mu - p}{\mu + n} a_n z^n.
\] (3.2)

In order to prove that $I_{\mu} \in M_{p,k}(\lambda, C_1(D), D)$, we need only to find the smallest C $(D < C \leq -D)$ such that
\[
\frac{p(1 - C) + (1 - D) \lambda n + p(\lambda - 1) \delta_{n,p,k}}{p(C - D)} \cdot \frac{\mu - p}{\mu + n} \leq \frac{p(1 - A) + (1 - B) \lambda n + p(\lambda - 1) \delta_{n,p,k}}{p(A - B)}
\] (3.3)
for all $n \geq p$.

For $n \geq p$ and $\frac{n + p}{k} \notin \mathbb{N}$, (3.3) becomes
\[
C \geq D + \frac{1 - D}{\frac{p(n + p)}{[\mu - p][A - B]} - \frac{p(n + p)}{[\mu - p][\lambda n + p]}} := \varphi_1(n).
\]
It is easy to show that $\varphi_1(n)$ $(n \geq p)$ is a decreasing function of n and so
\[
\varphi_1(n) \leq \begin{cases}
\varphi_1(p + 1), & \left(\frac{2p}{k} \in \mathbb{N}\right), \\
\varphi_1(p), & \left(\frac{2p}{k} \notin \mathbb{N}\right).
\end{cases}
\]
For \(n \geq p \) and \(\frac{n+p}{k} \in \mathbb{N} \), (3.3) reduces to
\[
C \geq D + \frac{1 - D}{\frac{(\mu+n)(1-B)}{\mu-p}(A-B)} \frac{p}{\lambda(p-m)} := \psi_1(n)
\]
and we have
\[
\psi_1(n) \leq \begin{cases} \psi_1(p), & \left(\frac{2p}{k} \in \mathbb{N} \right) \\ \psi_1 \left(k \left(\frac{2p}{k} + 1 \right) - p \right), & \left(\frac{2p}{k} \notin \mathbb{N} \right) \end{cases} \quad (3.4)
\]
A simple calculation shows that \(\psi_1(p) \leq \varphi_1(p) \). Therefore, by taking
\[
C = \psi_1(p) = C_1(D),
\]
it follows from (3.3) to (3.4) that \(I_{\mu} \in M_{p,k}(\lambda, C_1(D), D) \).

Furthermore, the number \(C_1(D) \) is best possible for the function defined by (2.6). The proof of the
theorem is completed. \(\square \)

Theorem 3.2. Let \(p < \mu < p(2\lambda + 1) \). Also let \(I_{\mu} \) and \(C_1(D) \) be the same as in Theorem 3.1. If \(f \in R_{p,k}(\lambda, A, B) \),
then \(I_{\mu} \in R_{p,k}(\lambda, C_1(D), D) \) and the number \(C_1(D) \) cannot be decreased for each \(D \).

Proof. By (3.2) we have
\[
I_{\mu}(z) = \left(z^{-p} + \sum_{n=p}^{\infty} \frac{\mu-p}{\mu+n} z^n \right) * f(z)
\]
and so
\[
2z^{-p} + \frac{z[I_{\mu}(z)]'}{p} = \left(z^{-p} + \sum_{n=p}^{\infty} \frac{\mu-p}{\mu+n} z^n \right) * \left(2z^{-p} + \frac{zf'(z)}{p} \right). \quad (3.5)
\]
In view of (3.5) and (1.9), an application of Theorem 3.1 yields Theorem 3.2. The proof of the theorem is
completed. \(\square \)

4. Partial sums

In this section, we let \(f \in \Sigma_p \) be given by (1.2) and define the partial sums \(s_1(z) \) and \(s_m(z) \) by
\[
s_1(z) = z^{-p} \quad \text{and} \quad s_m(z) = z^{-p} + \sum_{n=p}^{p+m-2} a_n z^n \quad (m \in \mathbb{N} \setminus \{1\}).
\]
For simplicity we use the notation \(\alpha_n \) (\(n \geq p \)) defined by (1.10).

Theorem 4.1. Let \(p \geq 2 \) and \(1 \leq \lambda \leq \frac{p}{p-1} \). Suppose that \(f \in M_{p,k}(\lambda, A, B) \). Then for \(m \in \mathbb{N} \), we have
\[
\text{Re} \left(\frac{f(z)}{s_m(z)} \right) > 1 - \frac{1}{\alpha_{p+m-1}} \quad (z \in \mathbb{U}) \quad (4.1)
\]
and
\[
\text{Re} \left(\frac{s_m(z)}{f(z)} \right) > \frac{\alpha_{p+m-1}}{1 + \alpha_{p+m-1}} \quad (z \in \mathbb{U}). \quad (4.2)
\]
The bounds in (4.1) and (4.2) are sharp for each \(m \).

Proof. In view of the assumptions of the theorem, we see that
\[
\alpha_n = \frac{p(1-A) + (1-B)\lambda n + p(\lambda-1)\delta_{n,p,k}}{p(A-B)} \geq \frac{2-A-B}{A-B} \geq 1 \quad (4.3)
\]
and
\[
\alpha_{n+1} = \alpha_n + \frac{(1-B)[\lambda + p(\lambda-1)(\delta_{n+1,p,k} - \delta_{n,p,k})]}{p(A-B)} \geq \alpha_n + \frac{(1-B)[\lambda - p(\lambda-1)]}{p(A-B)} \geq \alpha_n. \quad (4.4)
\]
Let \(f \in M_{p,k}(\lambda, \Lambda, B) \). Then it follows from (4.3) and (4.4) that
\[
\sum_{n=p}^{p+m-2} |a_n| + \alpha_{p+m-1} \sum_{n=p+m-1}^{\infty} |a_n| \leq \sum_{n=p}^{\infty} \alpha_n |a_n| \leq 1 \quad (m \in \mathbb{N} \setminus \{1\}). \tag{4.5}
\]

If we put
\[
p_1(z) = 1 + \alpha_{p+m-1} \left(\frac{f(z)}{s_m(z)} - 1 \right)
\]
for \(z \in \mathbb{U} \) and \(m \in \mathbb{N} \setminus \{1\} \), then \(p_1(0) = 1 \) and we deduce from (4.5) that
\[
\frac{|p_1(z) - 1|}{|p_1(z) + 1|} \leq \frac{\alpha_{p+m-1} \sum_{n=p+m-1}^{\infty} a_n z^{n+p}}{2 \left(1 + \sum_{n=p}^{p+m-2} a_n z^{n+p} \right) + \alpha_{p+m-1} \sum_{n=p+m-1}^{\infty} a_n z^{n+p}} \leq 1.
\]
This implies that \(\text{Re} \; p_1(z) > 0 \) (\(z \in \mathbb{U} \)), and so (4.1) holds for \(m \in \mathbb{N} \setminus \{1\} \).

Similarly, by setting
\[
p_2(z) = (1 + \alpha_{p+m-1}) \frac{s_m(z)}{f(z)} - \alpha_{p+m-1},
\]
it follows from (4.5) that
\[
\frac{|p_2(z) - 1|}{|p_2(z) + 1|} \leq \frac{(1 + \alpha_{p+m-1}) \sum_{n=p+m-1}^{\infty} a_n z^{n+p}}{2 \left(1 + \sum_{n=p}^{p+m-2} a_n z^{n+p} \right) + (1 - \alpha_{p+m-1}) \sum_{n=p+m-1}^{\infty} a_n z^{n+p}} \leq 1.
\]
Hence, we have (4.2) for \(m \in \mathbb{N} \setminus \{1\} \).

For \(m = 1 \), replacing (4.5) by
\[
\alpha_p \sum_{n=p}^{\infty} |a_n| \leq \sum_{n=p}^{\infty} \alpha_n |a_n| \leq 1
\]
and proceeding as the above, we see that (4.1) and (4.2) are also true.

Furthermore, taking the function
\[
f(z) = z^{-p} + \frac{z^{p+m-1}}{\alpha_{p+m-1}} \in M_{p,k}(\lambda, \Lambda, B),
\]
we have \(s_m(z) = z^{-p} \),
\[
\text{Re} \frac{f(z)}{s_m(z)} \to 1 - \frac{1}{\alpha_{p+m-1}} \quad \text{as} \quad z \to \exp \left(\frac{\pi i}{2p + m - 1} \right)
\]
and
\[
\text{Re} \frac{s_m(z)}{f(z)} \to \frac{\alpha_{p+m-1}}{1 + \alpha_{p+m-1}} \quad \text{as} \quad z \to 1.
\]
The proof of the theorem is completed. \(\square \)
Theorem 4.2. Let $p \geq 2$ and $1 \leq \lambda \leq \frac{p}{p-1}$. Suppose that $f \in \mathcal{R}_{p,k}(\lambda, A, B)$. Then for $m \in \mathbb{N}$, we have

$$\text{Re} \frac{f(z)}{s_m(z)} > 1 - \frac{p}{(p + m - 1)\alpha_{p+m-1}} \quad (z \in \mathbb{U})$$

(4.6)

and

$$\text{Re} \frac{s_m(z)}{f(z)} > \frac{(p + m - 1)\alpha_{p+m-1}}{p + (p + m - 1)\alpha_{p+m-1}} \quad (z \in \mathbb{U}).$$

(4.7)

The bounds in (4.6) and (4.7) are sharp for the function

$$f(z) = z^{-p} + \frac{pz^{p+m-1}}{(p + m - 1)\alpha_{p+m-1}} \in \mathcal{R}_{p,k}(\lambda, A, B).$$

(4.8)

Proof. According to the assumptions of the theorem, it follows from (4.3) and (4.4) that

$$\sum_{n=p}^{p+m-2} |a_n| + \frac{(p + m - 1)\alpha_{p+m-1}}{p} \sum_{n=p+m-1}^{\infty} |a_n| \leq \sum_{n=p}^{\infty} \frac{n}{p} \alpha_n |a_n| \leq 1 \quad (m \in \mathbb{N} \setminus \{1\})$$

(4.9)

and

$$\alpha_p \sum_{n=p}^{\infty} |a_n| \leq \sum_{n=p}^{\infty} \frac{n}{p} \alpha_n |a_n| \leq 1.$$

(4.10)

If we put

$$p_1(z) = 1 + \frac{(p + m - 1)\alpha_{p+m-1}}{p} \left[\frac{f(z)}{s_m(z)} - 1 \right]$$

and

$$p_2(z) = \left[1 + \frac{(p + m - 1)\alpha_{p+m-1}}{p} \right] \frac{s_m(z)}{f(z)} - \frac{(p + m - 1)\alpha_{p+m-1}}{p},$$

then (4.9) and (4.10) lead to $\text{Re} p_j(z) > 0$ ($z \in \mathbb{U}; m \in \mathbb{N}; j = 1, 2$). The proof of the theorem is completed.

\[\Box \]

Theorem 4.3. Let $p \geq 2$ and $1 \leq \lambda \leq \frac{p}{p-1}$. Suppose that $f \in \mathcal{R}_{p,k}(\lambda, A, B)$. Then for $m \in \mathbb{N}$, we have

$$\text{Re} \frac{f'(z)}{s_m'(z)} > 1 - \frac{1}{\alpha_{p+m-1}} \quad (z \in \mathbb{U})$$

(4.11)

and

$$\text{Re} \frac{s_m'(z)}{f'(z)} > \frac{\alpha_{p+m-1}}{1 + \alpha_{p+m-1}} \quad (z \in \mathbb{U}).$$

(4.12)

The bounds in (4.11) and (4.12) are sharp.

Proof. By virtue of the assumptions of the theorem, it follows from (4.3) and (4.4) that

$$\frac{1}{p} \sum_{n=p}^{p+m-2} n|a_n| + \frac{\alpha_{p+m-1}}{p} \sum_{n=p+m-1}^{\infty} n|a_n| \leq \sum_{n=p}^{\infty} \frac{n}{p} \alpha_n |a_n| \leq 1 \quad (m \in \mathbb{N} \setminus \{1\})$$

(4.13)

and

$$\frac{\alpha_p}{p} \sum_{n=p}^{\infty} n|a_n| \leq \sum_{n=p}^{\infty} \frac{n}{p} \alpha_n |a_n| \leq 1.$$

(4.14)
By considering the functions

\[\begin{align*}
p_1(z) &= 1 + \alpha_{p+m-1} \left(\frac{f'(z)}{s_m(z)} - 1 \right) \quad \text{and} \quad p_2(z) = \left(1 + \alpha_{p+m-1} \right) \frac{s_m(z)}{f'(z)} - \alpha_{p+m-1},
\end{align*}\]

we deduce from (4.13) and (4.14) that \(\text{Re} \ p_1(z) > 0 \) \((z \in U; m \in \mathbb{N}; j = 1, 2)\). Thus (4.11) and (4.12) hold true.

Furthermore, the bounds in (4.11) and (4.12) are best possible for the function defined by (4.8). The proof of the theorem is completed. \(\square\)

Acknowledgment

We would like to express sincere thanks to the referees for careful reading and suggestions which helped us to improve the paper. This work is supported by National Natural Science Foundation of China (Grant No. 11571299) and Natural Science Foundation of Jiangsu Province (Grant No. BK20151304).

References