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Abstract

In this paper, we present the notion of geodesic sub-b-s-convex function on the Riemannian manifolds. A non-trivial
example of geodesic sub-b-s-convex function but not geodesic convex function is also discussed. Some fundamental properties
of geodesic sub-b-s-convex functions are investigated. Moreover, we derive the optimality conditions of unconstrained and
constrained programming problems under the sub-b-s-convexity.
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1. Introduction

Convexity plays a significant part in numerous disciplines such as mathematics, management science,
economics, engineering, and various applied sciences. It is mostly vital to the analysis of optimization
problems where convexity is determined by different appropriate properties. However, so far all real-life
problems can not be described by a convex mathematical model. That’s why we generalized convex func-
tion because it gives more accurate results of reality in many cases. Hanson [6] introduced a new concept
of invexity as a generalization of convexity. For more information on generalized convex functions, see
[3, 5, 7, 11, 15].

On the other hand, geodesic convex function is a natural generalization of convex function on Rieman-
nian manifolds proposed by Rapcsak [13] and Udriste [14]. In these work, a line segment is replaced by a
geodesic and a linear space is replaced by a Riemannian manifold. Further, Ahmad et al. [2] , Iqbal et al.
[8, 10], and Agarwal et al. [1] presented the notions of geodesic η-preinvex, strong geodesic α-preinvexity,
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geodesic E-convex sets and preinvex functions on Riemannian manifolds. Many authors studied the
various results of generalized convexity on Riemannian manifolds (see, for example [4, 9, 10, 16]).

Incentive by the work of [12], we extend these results on Riemannian manifolds under the sub-b-
s-convexity. The content of this paper is arranged as follows. In Section 2, we present some known
notations and definitions, which will help us to study this paper. In Section 3, a new class of functions and
sets namely, geodesic sub-b-s-convex function and geodesic sub-b-s-convex set are introduced. Several
properties of these functions are also discussed. We study the optimality conditions of unconstrained
and constrained programming problems under the sub-b-s-convexity in Section 4. Finally, we present our
conclusion in Section 5.

2. Preliminaries

Let N be a finite dimensional Riemannian manifold and D ⊆ N be a non-empty set with a Riemannian
metric 〈., .〉 on the TvN, where TvN denotes the tangent space of N at v for v ∈ N. The associated norm is
denoted by ‖.‖v , where the subscript v is sometimes skipped. Suppose TN =

⋃
v∈N TvN is tangent bundle

of N. Consider u and v are points in Riemannian manifold N. We denote the geodesic joining u ∈ N and
v ∈ N by γuv : [0, 1]→ N such that γuv(0) = v to γuv(1) = u .

Definition 2.1 ([14]). A subset D of N is called geodesic convex set, if D contains every geodesic γuv of
N whose end points u and v belong to D.

Definition 2.2 ([14]). Let D be geodesic convex set in N. A function ψ : D→ R is called geodesic convex
if

ψ(γuv(t)) 6 tψ(u) + (1 − t)ψ(v)

for every geodesic γuv : [0, 1]→ D, γuv(0) = v , γuv(1) = u for all t ∈ [0, 1] and u, v ∈ D.

3. Geodesic sub-b-s-convex functions and properties

We present the concept of geodesic sub-b-s-convex function on D with respect to b which is general-
ization of a function defined by Liao and Du [12].

Definition 3.1. A function ψ : D→ R is said to be geodesic sub-b-s-convex function with respect to map
b : D×D× [0, 1]→ R on the geodesic convex set D ⊂ N, if

ψ(γuv(t)) 6 t
sψ(u) + (1 − t)sψ(v) + b(u, v, t)

holds for each u, v ∈ D, t ∈ [0, 1] and for some fixed s ∈ (0, 1].

Remark 3.2. When s = 1 and b(u, v, t) = 0, then geodesic sub-b-s-convex function reduces to the geodesic
convex function.

Example 3.3. Let N =
{
eiθ : 0 < θ < π

2

}
and ψ : N → R be a function defined as ψ(eiθ) = cos θ with

u, v ∈ N, u = eiα and v = eiβ. Suppose γuv(t) = (cos((1− t)β+ tα), sin((1− t)β+ tα)) and b(u, v, t) = 1
t ,

where b : N ×N × [0, 1] → R. Then, ψ(γuv(t)) = cos((1 − t)β + tα), ψ(u) = ψ(eiα) = cosα, and
ψ(v) = ψ(eiβ) = cosβ. Now we shall show that function ψ is a geodesic sub-b-s-convex function for all
u, v ∈ N, t ∈ [0, 1] and for some fixed s = 0.1, because

ψ(γuv(t)) − t
sψ(u) − (1 − t)sψ(v) − b(u, v, t)

= cos((1 − t)β+ tα) − t0.1 cosα− (1 − t)0.1 cosβ−
1
t
6 0.

But it is not geodesic convex function when s = 1 and b(u, v, t) = 0 at t = 1
2 , α = π

4 , and β = π
6 . Clearly,

ψ(γuv(t)) − tψ(u) − (1 − t)ψ(v) = cos((1 − t)β+ tα) − t cosα− (1 − t) cosβ = 0.0068 6< 0.



I. Ahmad, A. Jayswal, B. Kumari, J. Nonlinear Sci. Appl., 11 (2018), 189–197 191

Now, we discuss several basic properties of geodesic sub-b-s-convex functions as follows.

Theorem 3.4. Let ψ : D → R be a geodesic sub-b-s-convex function with respect to b on the geodesic convex set
D and Φ : R → R be an increasing function. Then Φ o ψ is a geodesic sub-b-s-convex function with respect to
Φ o b.

Proof. Since ψ is a geodesic sub-b-s-convex function with respect to b, we have

ψ(γuv(t)) 6 t
sψ(u) + (1 − t)sψ(v) + b(u, v, t)

holds for each u, v ∈ D, t ∈ [0, 1] and for some fixed s ∈ (0, 1]. As Φ is an increasing function, it becomes

Φ(ψ(γuv(t))) 6 Φ(tsψ(u) + (1 − t)sψ(v) + b(u, v, t)),
Φ(ψ(γuv(t))) 6 t

sΦ(ψ(u)) + (1 − t)sΦ(ψ(v)) +Φ(b(u, v, t)),
(Φ o ψ)(γuv(t)) 6 t

s(Φ o ψ)(u) + (1 − t)s(Φ o ψ)(v) + (Φ o b)(u, v, t).

Hence this completes the proof.

Theorem 3.5. If ψj, j = 1, . . . ,m are geodesic sub-b-s-convex functions with respect to bj, j = 1, . . . ,m on D and
aj > 0, j = 1, . . . ,m, then ψ =

∑
j ajψj is a geodesic sub-b-s-convex function with respect to b =

∑
j ajbj on D.

Proof. By the hypothesis, we have

ψj(γuv(t)) 6 t
sψj(u) + (1 − t)sψj(v) + bj(u, v, t)

holds for any u, v ∈ D, t ∈ [0, 1] and for some fixed s ∈ (0, 1]. It follows that

ajψj(γuv(t)) 6 t
sajψj(u) + (1 − t)sajψj(v) + ajbj(u, v, t),∑

j

ajψj(γuv(t)) 6 t
s
∑
j

ajψj(u) + (1 − t)s
∑
j

ajψj(v) +
∑
j

ajbj(u, v, t).

Hence the theorem holds.

Theorem 3.6. If ψj : D→ R, j = 1, . . . ,m are geodesic sub-b-s-convex functions with respect to bj, j = 1, . . . ,m,
then ψ = max{ψj, j = 1, . . . ,m} is a geodesic sub-b-s-convex function with respect to b = max{bj, j = 1, . . . ,m}.

Proof. For each u, v ∈ D, t ∈ [0, 1] and for some fixed s ∈ (0, 1], according to the geodesic sub-b-s-convex
functions ψj with respect to bj, we obtain

ψj(γuv(t)) 6 t
sψj(u) + (1 − t)sψj(v) + bj(u, v, t),

max{ψj(γuv(t))} 6 max{tsψj(u) + (1 − t)sψj(v) + bj(u, v, t)}
= tsmax{ψj}(u) + (1 − t)smax{ψj}(v) + max{bj}(u, v, t)
= tsψ(u) + (1 − t)sψ(v) + b(u, v, t),

or
ψ(γuv(t)) 6 t

sψ(u) + (1 − t)sψ(v) + b(u, v, t).

Hence, ψ is a geodesic sub-b-s-convex function with respect to b.

In the following, we introduce a new notion of set, which is a geodesic sub-b-s-convex set and we
study some properties.

Definition 3.7. Let U ⊂ N×R. U is said to be geodesic sub-b-s-convex set with respect to b : D×D×
[0, 1]→ R. Then for each pair of (u,α) and (v,β) ∈ U,

(γuv(t), (1 − t)sβ+ tsα+ b(u, v, t)) ∈ U

for all t ∈ [0, 1] and for some fixed s ∈ (0, 1].
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Now, we characterize a geodesic sub-b-s-convex function ψ : D→ R in term of epigraph E(ψ), which
is defined as

E(ψ) = {(u,α)|u ∈ D,α ∈ R, ψ(u) 6 α}.

Theorem 3.8. A function ψ : D→ R is a geodesic sub-b-s-convex function with respect to b : D×D× [0, 1]→ R

if and only if E(ψ) is a geodesic sub-b-s-convex set with respect to b.

Proof. Let (u,α), (v,β) ∈ E(ψ). Then
ψ(u) 6 α, ψ(v) 6 β.

Since ψ is geodesic sub-b-s-convex function with respect to b for all u, v ∈ D, t ∈ [0, 1] and some fixed
s ∈ (0, 1], we have

ψ(γuv(t)) 6 t
sψ(u) + (1 − t)sψ(v) + b(u, v, t) 6 tsα+ (1 − t)sβ+ b(u, v, t).

From the above inequality, it is easy to see that

(γuv(t), (1 − t)sβ+ tsα+ b(u, v, t)) ∈ E(ψ).

Thus, by Definition 3.7, E(ψ) is a geodesic sub-b-s-convex set with respect to b.
Conversely, if E(ψ) is a geodesic sub-b-s-convex set with respect to b and u, v ∈ D, then

(u,ψ(u)), (v,ψ(v)) ∈ E(ψ).

Thus, for all t ∈ [0, 1] and some fixed s ∈ (0, 1], we have

(γuv(t), (1 − t)sβ+ tsα+ b(u, v, t)) ∈ E(ψ).

This implies that
ψ(γuv(t)) 6 t

sψ(u) + (1 − t)sψ(v) + b(u, v, t),

which shows that ψ is a geodesic sub-b-s-convex function with respect to b.

Theorem 3.9. Suppose that Uj, j ∈ J = {1, . . . ,m} is a family of geodesic sub-b-s-convex sets with respect to b.
Then their intersection ∩j∈JUj is also a geodesic sub-b-s-convex set with respect to b.

Proof. Let (u,α), (v,β) ∈ ∩j∈JUj. Then for any j ∈ J, (u,α), (v,β) ∈ Uj. By using Uj being a geodesic
sub-b-s-convex set with respect to b for each j ∈ J, it follows that for all t ∈ [0, 1] and some fixed s ∈ (0, 1]

(γuv(t), (1 − t)sβ+ tsα+ b(u, v, t)) ∈ Uj.

Thus,
(γuv(t), (1 − t)sβ+ tsα+ b(u, v, t)) ∈ ∩j∈JUj.

Therefore, ∩j∈JUj is a geodesic sub-b-s-convex set with respect to b.

Theorem 3.10. Let D ⊂ N be a geodesic convex set and ψj, j ∈ J = {1, . . . ,m} be a family of real valued functions
which are geodesic sub-b-s-convex functions with respect to b and bounded from above on D. Then function
ψ(u) = supj∈Jψj(u) is a geodesic sub-b-s-convex function with respect to b on D.

Proof. Since ψj is a geodesic sub-b-s-convex function with respect to b, then its epigraph

E(ψj) = {(u,α)|u ∈ D,α ∈ R,ψj(u) 6 α, j ∈ J}

is a geodesic sub-b-s-convex set with respect to b. Therefore,

∩j∈JE(ψj) = {(u,α)|u ∈ D,α ∈ R,ψj(u) 6 α, j ∈ J} = {(u,α)|u ∈ D,α ∈ R,ψ(u) 6 α},

where ψ(u) = supj∈Jψj(u). According to Theorem 3.9, we get their intersection is the epigraph of ψ.
Hence by Theorem 3.8, ψ is a geodesic sub-b-s-convex with respect to b.
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We assume now that ψ is geodesic sub-b-s-convex function with respect to b which is continuously
differentiable function. For fixed u, v ∈ D, b(u, v, t) is a continuously decreasing function on t. Then,
b(u,v,t)
t is a continuously decreasing function about t. Moreover, we suppose that the limt→0+

b(u,v,t)
t

exists and the limit is the maximum of b(u,v,t)−o(t)
t for each t ∈ (0, 1] and u, v ∈ D.

Theorem 3.11. Let ψ : D → R be a non-negative differentiable geodesic sub-b-s-convex function with respect to
b. Then

(i) dψv(γ ′uv(0)) 6 ts−1(ψ(u) +ψ(v)) + limt→0+
b(u,v,t)
t ,

(ii) dψv(γ ′uv(0)) 6 ts−1(ψ(u) − ψ(v)) +
ψ(v)
t + limt→0+

b(u,v,t)
t , where dψv is the differential of ψ at the

point v.

Proof.

(i) By the Taylor’s expansion of ψ, we have

ψ(γuv(t)) = ψ(γuv(0)) + tdψγuv(0)(γ
′
uv(0)) + o(t).

Since γuv(0) = v, therefore
ψ(γuv(t)) = ψ(v) + tdψv(γ

′
uv(0)) + o(t). (3.1)

By the geodesic sub-b-s-convexity of ψ with respect to b,

ψ(γuv(t)) 6 t
sψ(u) + (1 − t)sψ(v) + b(u, v, t). (3.2)

As (1 − t)s 6 (1 + ts),
ψ(γuv(t)) 6 t

sψ(u) + (1 + ts)ψ(v) + b(u, v, t). (3.3)

The inequalities (3.1) and (3.3) yield

ψ(v) + tdψv(γ
′
uv(0)) + o(t) 6 t

sψ(u) + (1 + ts)ψ(v) + b(u, v, t)
6 ψ(v) + ts(ψ(u) +ψ(v)) + b(u, v, t),

or

tdψv(γ
′
uv(0)) + o(t) 6 t

s(ψ(u) +ψ(v)) + b(u, v, t).

On dividing the above inequality by t and using the fact that limt→0+
b(u,v,t)
t is maximum of b(u,v,t)

t −
o(t)
t , we have

dψv(γ
′
uv(0)) 6 t

s−1(ψ(u) +ψ(v)) + lim
t→0+

b(u, v, t)
t

.

(ii) Combining the inequalities (3.1) and (3.2), we obtain

ψ(v) + tdψv(γ
′
uv(0)) + o(t) 6 t

sψ(u) + (1 − t)sψ(v) + b(u, v, t)
= tsψ(u) + (1 − t)sψ(v) − tsψ(v) + tsψ(v) + b(u, v, t)
6 ts(ψ(u) −ψ(v)) + b(u, v, t) +ψ(v)((1 − t)s + ts).

(3.4)

Obviously, ((1 − t)s + ts) 6 2 for all t ∈ [0, 1] and some fixed s ∈ (0, 1]. Using the fact that ψ is a
non-negative function, inequality (3.4) reduces to

ψ(v) + tdψv(γ
′
uv(0)) + o(t) 6 t

s(ψ(u) −ψ(v)) + b(u, v, t) + 2ψ(v),

or

tdψv(γ
′
uv(0)) + o(t) 6 t

s(ψ(u) −ψ(v)) + b(u, v, t) +ψ(v).
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By dividing above inequality by t and similarly using the fact limt→0+
b(u,v,t)
t is maximum of b(u,v,t)

t −
o(t)
t , we get

dψv(γ
′
uv(0)) 6 t

s−1(ψ(u) −ψ(v)) +
ψ(v)

t
+ lim
t→0+

b(u, v, t)
t

.

Hence the proof is completed.

Theorem 3.12. Let ψ : D → R be a negative differentiable geodesic sub-b-s-convex function with respect to map
b(u, v, t). Then

dψv(γ
′
uv(0)) 6 t

s−1(ψ(u) −ψ(v)) + lim
t→0+

b(u, v, t)
t

.

Proof. By the Taylor’s expansion and the geodesic sub-b-s-convexity of ψ, we have

ψ(γuv(t)) = ψ(γuv(0)) + tdψγuv(0)(γ
′
uv(0)) + o(t), (3.5)

ψ(γuv(t)) 6 t
sψ(u) + (1 − t)sψ(v) + b(u, v, t). (3.6)

Since for all t ∈ [0, 1] and some fixed s ∈ (0, 1], we have (1 − ts) 6 (1 − t)s. Therefore, inequality (3.6)
reduces to

ψ(γuv(t)) 6 t
sψ(u) + (1 − ts)ψ(v) + b(u, v, t). (3.7)

The inequalities (3.5) and (3.7) along with γuv(0) = v gives

tdψγuv(0)(γ
′
uv(0)) + o(t) 6 t

s(ψ(u) −ψ(v)) + b(u, v, t).

Dividing the above inequality by t and using the fact that limt→0+
b(u,v,t)
t is maximum of b(u,v,t)

t −
o(t)
t ,

it reduces to

dψv(γ
′
uv(0)) 6 t

s−1(ψ(u) −ψ(v)) + lim
t→0+

b(u, v, t)
t

.

Corollary 3.13. Suppose that ψ : D→ R is a differentiable geodesic sub-b-s-convex function with respect to map
b. For t ∈ (0, 1] and γ ′vu(0) = −γ ′uv(0),

(i) if ψ is a non-negative function, then

(dψv − dψu)(γ
′
uv(0)) 6

ψ(v)

t
+
ψ(u)

t
+ lim
t→0+

b(u, v, t)
t

+ lim
t→0+

b(v,u, t)
t

;

(ii) if ψ is negative function, then

(dψv − dψu)(γ
′
uv(0)) 6 lim

t→0+

b(u, v, t)
t

+ lim
t→0+

b(v,u, t)
t

.

Proof.

(i) Since ψ is non-negative function, we have

dψv(γ
′
uv(0)) 6 t

s−1(ψ(u) −ψ(v)) +
ψ(v)

t
+ lim
t→0+

b(u, v, t)
t

. (3.8)

Interchanging u and v in the above inequality, it reduces to

dψu(γ
′
vu(0)) 6 t

s−1(ψ(v) −ψ(u)) +
ψ(u)

t
+ lim
t→0+

b(v,u, t)
t

. (3.9)

Adding inequalities (3.8) and (3.9) and using γ ′vu(0) = −γ ′uv(0), we obtain

(dψv − dψu)(γ
′
uv(0)) 6

ψ(v)

t
+
ψ(u)

t
+ lim
t→0+

b(u, v, t)
t

+ lim
t→0+

b(v,u, t)
t

.

(ii) Similarly, if ψ is a negative function, we get

(dψv − dψu)(γ
′
uv(0)) 6 lim

t→0+

b(u, v, t)
t

+ lim
t→0+

b(v,u, t)
t

.

The proof is completed.
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4. Optimality conditions

In this section, we use the above results to obtain the solution of non-linear programming problems.
Now we consider the unconstrained problem:

Min{ψ(u),u ∈ D}. (P)

Theorem 4.1. Let ψ : D → R be a negative differentiable geodesic sub-b-s-convex function with respect to b. If
u? ∈ D and the inequality

dψu?(γuu?(0)) > lim
t→0+

b(u, v, t)
t

(4.1)

holds for all u ∈ D, t ∈ (0, 1] and some fixed s ∈ (0, 1], then u? is the optimal solution to the problem (P).

Proof. Since ψ is a negative differentiable geodesic sub-b-s-convex function with respect to b, then accord-
ing to Theorem 3.12, we have

dψv(γ
′
uv(0)) 6 t

s−1(ψ(u) −ψ(v)) + lim
t→0+

b(u, v, t)
t

(4.2)

holds for each u ∈ D, t ∈ (0, 1] and some fixed s ∈ (0, 1].
On the other hand, we get

dψu?(γuu?(0)) > lim
t→0+

b(u, v, t)
t

.

Using above relation in inequality (4.2), we obtain

ts−1(ψ(u) −ψ(u?)) > 0,

i.e.,
ψ(u) −ψ(u?) > 0,

which implies u? is the optimal solution to the problem (P).

Theorem 4.2. Suppose that ψ : D → R is a strictly negative differentiable geodesic sub-b-s-convex function with
respect to b. If u? ∈ D satisfies the condition (4.1), then u? is the unique optimal solution to the problem (P).

Proof. Since ψ is strictly negative geodesic sub-b-s-convex function with respect to b, then Theorem 3.12
is reduced to

dψv(γ
′
uv(0)) < t

s−1(ψ(u) −ψ(v)) + lim
t→0+

b(u, v, t)
t

. (4.3)

Suppose u1,u2 ∈ D are two different optimal solution of problem (P). Without loss of generality, we can
assume that

ψ(u1) = ψ(u2). (4.4)

Now, for all u1,u2 ∈ D, t ∈ (0, 1] and for some fixed s ∈ (0, 1], the inequality (4.3) can also be written as

dψu2(γu1u2(0)) − lim
t→0+

b(u1,u2, t)
t

< ts−1(ψ(u1) −ψ(u2)),

hence from inequality (4.1), it yields

ts−1(ψ(u1) −ψ(u2)) > 0,

that is,
ψ(u1) −ψ(u2) > 0,

which contradicts to (4.4). This completes the proof .
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We now derive the sufficient optimality conditions for the following constrained programming prob-
lem:

Min {ψ(u)|u ∈ D,gj(u) 6 0, j ∈ J}, J = {1, 2, . . . ,m}. (Ps)

Let S denote the set of all feasible solution to the problem (Ps), i.e.,

S = {u ∈ D|gj(u) 6 0, j ∈ J}.

Theorem 4.3 (Karush-Kuhn-Tucker sufficient optimality conditions). Let ψ : D → R be a negative differ-
entiable geodesic sub-b-s-convex function with respect to b : D×D× [0, 1] → R and gj : D → R (j ∈ J) be
differentiable sub-b-s-convex function with respect to bj. Suppose that ū ∈ S is a KKT point of (Ps), that is, there
exist multipliers λj > 0 (j ∈ J) such that

dψū +
∑
j∈J

λjdgjū = 0, λjgj(ū) = 0. (4.5)

If

lim
t→o+

b(u, ū, t)
t

6 −
∑
j∈J

λj lim
t→0+

bj(u, ū, t)
t

, (4.6)

then ū is an optimal solution to the problem (Ps).

Proof. For any u ∈ S, we have

gj(u) 6 0 = gj(ū), j ∈ J(ū) = {j ∈ J|gj(ū) = 0}.

By the geodesic sub-b-s-convexity of gj with respect to bj and the Theorem 3.12, for j ∈ J(ū), we obtain

dgjū(γ
′
uū(0)) − lim

t→0+

b(u, ū, t)
t

6 ts−1(gj(u) − gj(ū)) 6 0. (4.7)

From inequality (4.5), we get

dψū(γ
′
uū(0)) = −

∑
j∈J

λjdgjū(γ
′
uū(0)) = −

∑
j∈J(ū)

λjdgjū(γ
′
uū(0)).

The above equation along with inequality (4.6) gives

dψū(γ
′
uū(0)) − lim

t→0+

b(u, ū, t)
t

> −
∑
j∈J

λjdgjū(γ
′
uū(0)) +

∑
j∈J

λj lim
t→0+

b(u, ū, t)
t

= −
∑
j∈J(ū)

λj

(
dgjū(γ

′
uū(0)) − lim

t→0+

b(u, ū, t)
t

)
.

Combining the inequality (4.7) with the above inequality, yields

dψū(γ
′
uū(0)) − lim

t→0+

b(u, ū, t)
t

> 0.

From Theorem 4.1, it becomes
ψ(u) −ψ(ū) > 0

for each u ∈ S. Hence ū is an optimal solution to the problem (Ps).
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5. Conclusion

In this paper, we have introduced a new class of functions and sets, called geodesic sub-b-s-convex
function and geodesic sub-b-s-convex set, and studied their properties for general and differentiable cases.
Furthermore, the optimality conditions for a non-linear programming problem are also derived. We can
also study duality results of aforesaid class of functions, which builds the future work of authors.
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