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Abstract
Samet et al. in [S. Samet, C. Vetro, H. Yazidi, J. Nonlinear Sci. Appl., 6 (2013), 162–169] proved some fixed point theorem

for contractions of rational type. In order to clarify the mathematical structure of contractions of rational type, we generalize
this theorem in a general setting.
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1. Introduction

In 2013, Samet et al. proved the following interesting fixed point theorem.

Theorem 1.1 ([14, Theorem 2.1]). Let (X,d) be a complete metric space and let T be a mapping on X. Assume
that for any ε > 0, there exists δ > 0 such that

2 ε 6 d(y, Ty)
1 + d(x, Tx)
1 + d(x,y)

+ d(x,y) < 2 ε+ δ

implies d(Tx, Ty) < ε. Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

We recently call such a mapping T a contraction of rational type. The idea of Theorem 1.1 comes from
Dass and Gupta [4] and Meir and Keeler [12].

Theorem 1.2 ([4, Theorem 1]). Let (X,d) be a complete metric space and let T be a mapping on X. Assume that
there exist α,β ∈ (0, 1) satisfying α+β < 1 and

d(Tx, Ty) 6 αd(y, Ty)
1 + d(x, Tx)
1 + d(x,y)

+βd(x,y)

for all x,y ∈ X. Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.
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Theorem 1.3 ([12]). Let (X,d) be a complete metric space and let T be a mapping on X. Assume that for any ε > 0,
there exists δ > 0 such that

d(x,y) < ε+ δ implies d(Tx, Ty) < ε

for all x,y ∈ X. Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

We note that Theorems 1.2 and 1.3 are generalizations of the Banach contraction principle [1, 2].
However, unfortunately, Theorem 1.1 is not a generalization of Theorems 1.2 and 1.3. Motivated by this
fact, in this paper, we study the mathematical structure of contractions of rational type. Also we modify
Theorem 1.1 in order to become a generalization of Theorems 1.2 and 1.3.

2. Preliminaries

Throughout this paper we denote by N the set of all positive integers. For an arbitrary set X, we define
X(2) by

X(2) = {(x,y) ∈ X×X : x 6= y}.

In this section, we give some preliminaries.
Let (X,d) be a metric space and let T be a mapping on X. Define functions K and L from X× X into

[0,∞) by

K(x,y) = max
{
d(x,y),

d(x, Ty) + d(Tx,y)
2

,
d(x, Tx) + d(y, Ty)

2

}
,

L(x,y) = max
{
d(x,y),

d(x, Ty) + d(Tx,y)
2

,d(x, Tx),d(y, Ty)
}

.

Let p be a function from X(2) into [0,∞) and let c ∈ [0, 1). We introduce the following conditions.

(P1:p) x 6= y and d(x, Tx) 6 d(x,y) imply p(x,y) 6 L(x,y).

(P2:p, c) x 6= yn, limn d(x,yn) = 0 and limn d(yn, Tyn) = 0 imply

lim sup
n→∞ p(x,yn) 6 c d(x, Tx).

The following lemma plays an important role in this paper, though its proof is easy.

Lemma 2.1. Let p1 and p2 be functions from X(2) into [0,∞) and let {qi : i ∈ I} be a family of functions from X(2)

into [0,∞). Let c ∈ [0, 1). Define functions p3, p4, and p5 by

p3(x,y) = sup{qi(x,y) : i ∈ I}, p4(x,y) = max{p1(x,y),p2(x,y)}, p5(x,y) = αp1(x,y) +βp2(x,y)

for (x,y) ∈ X(2), where α,β ∈ (0, 1) with α+β = 1. Then the following hold.

(i) If p1 6 p2 holds and p2 satisfies (P1:p2), then p1 also satisfies (P1:p1).
(ii) If p1 6 p2 holds and p2 satisfies (P2:p2, c), then p1 also satisfies (P2:p1, c).

(iii) If p3(x,y) <∞ holds for (x,y) ∈ X(2) and qi satisfies (P1:qi) for i ∈ I, then p3 also satisfies (P1:p3).
(iv) If p1 and p2 satisfy (P2:p1, c) and (P2:p2, c), then p4 also satisfies (P2:p4, c).
(v) If p1 and p2 satisfy (P1:p1) and (P1:p2), then p5 also satisfies (P1:p5).

(vi) If p1 and p2 satisfy (P2:p1, c) and(P2:p2, c), then p5 also satisfies (P2:p5, c).

Proof. From the definition of the conditions (P1) and (P2), we can easily prove (i)-(iv). (v) follows from (i)
and (iii). (vi) follows from (ii) and (iv).

We give examples which satisfy (P1) and (P2).
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Example 2.2. The following hold.

(i) (P1:d) and (P2:d, 0) hold.
(ii) (P1:K) and (P2:K, 1/2) hold.

(iii) (P1:L) holds.

Proof. Since d 6 K 6 L and L 6 L hold, we obtain (P1:d), (P1:K), and (P1:L). (P2:d, 0) obviously holds. If
x 6= yn, limn d(x,yn) = 0 and limn d(yn, Tyn) = 0 hold, then we have

lim sup
n→∞ K(x,yn) = (1/2)d(Tx, x),

thus, (P2:K, 1/2) holds.

Example 2.3. Define functions p1-p6 from X(2) into [0,∞) by

p1(x,y) = d(y, Ty)
1 + d(x, Tx)
1 + d(x,y)

, p2(x,y) = max{p1(x,y),d(x,y)},

p3(x,y) = (1/2)
(
p1(x,y) + d(x,y)

)
, p4(x,y) =

d(x, Tx)d(y, Ty)
d(x,y)

,

p5(x,y) = max{p1(x,y),p4(x,y),d(x,y)}, p6(x,y) = (1/3)
(
p1(x,y) + p4(x,y) + d(x,y)

)
.

Then (P1:p1), (P2:p1, 0), (P1:p2), (P2:p2, 0), (P1:p3), (P2:p3, 0), (P1:p4), (P1:p5), and (P1:p6) hold.

Proof. We assume x 6= y and d(x, Tx) 6 d(x,y). Then we have

p1(x,y) 6 d(y, Ty) 6 L(x,y).

Therefore (P1:p1) holds. Similarly we can prove (P1:p4).
We assume x 6= yn, limn d(x,yn) = 0 and limn d(yn, Tyn) = 0. Then we have

lim sup
n→∞ p1(x,yn) 6 lim sup

n→∞ d(yn, Tyn)
(
1 + d(x, Tx)

)
= 0.

Therefore (P2:p1, 0) holds.
So by Lemma 2.1 (iii) and (iv) and Example 2.2 (i), we obtain (P1:p2) and (P2:p2, 0). By Lemma 2.1

(v) and (vi), we obtain (P1:p3) and (P2:p3, 0). (P1:p5) and (P1:p6) follow from Lemma 2.1 (iii) and (v),
respectively.

We can easily prove the following lemma. However, we give a proof because Lemma 2.4 is important
in this paper.

Lemma 2.4. Let (X,d) be a metric space and let T be a mapping on X. Let p be a function from X×X into [0,∞)
such that p(x,y) = 0 implies d(Tx, Ty) = 0. Then the following are equivalent.

(i) For any ε > 0, there exists δ > 0 such that

x 6= y, ε 6 p(x,y) < ε+ δ imply d(Tx, Ty) < ε.

(ii) For any ε > 0, there exists δ > 0 such that

x 6= y, p(x,y) < ε+ δ imply d(Tx, Ty) < ε.

(iii) For any ε > 0, there exists δ > 0 such that

ε 6 p(x,y) < ε+ δ implies d(Tx, Ty) < ε.
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(iv) For any ε > 0, there exists δ > 0 such that

p(x,y) < ε+ δ implies d(Tx, Ty) < ε.

Remark 2.5. We note that the values of p(x, x) have no influence in this context. Indeed, if p satisfies (i),
then q also satisfies (i) provided p(x,y) = q(x,y) holds for all (x,y) ∈ X(2).

Proof. (iv) ⇒ (ii) ⇒ (i) obviously holds. It is also obvious that (iv) ⇒ (iii) ⇒ (i) holds. Let us prove (i)
⇒ (iv). Fix ε > 0 and choose δ > 0 appearing in (i). Fix x,y ∈ X with p(x,y) < ε+ δ. We consider the
following four cases.

(a) x 6= y and ε 6 p(x,y).
(b) x 6= y and 0 < p(x,y) < ε.
(c) x 6= y and p(x,y) = 0.
(d) x = y.

In the case of (a), d(Tx, Ty) < ε obviously holds. In the cases of (c) and (d), we have d(Tx, Ty) = 0 < ε. In
the case of (b), we put ε2 := p(x,y) > 0. Then there exists δ2 > 0 such that

u 6= v, ε 6 p(u, v) < ε2 + δ2 imply d(Tu, Tv) < ε2.

Since ε2 6 p(x,y) < ε2 + δ2 holds, we have d(Tx, Ty) < ε2 < ε.

3. Fixed point theorems

In this section, we prove fixed point theorems.

Theorem 3.1. Let (X,d) be a complete metric space and let T be a mapping on X. Let p be a function from X(2)

into [0,∞) satisfying (P1:p) and (P2:p, c) for some c ∈ [0, 1). Assume the following.

(i) For any ε > 0, there exists δ(ε) > 0 such that x 6= y and p(x,y) < ε+ δ(ε) imply d(Tx, Ty) 6 ε.
(ii) x 6= y and p(x,y) > 0 imply d(Tx, Ty) < p(x,y).

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Proof. Without loss of generality, we may assume δ(ε) < ε.
We will show

p(x,y) = 0 ⇒ Tx = Ty. (3.1)

Let x,y ∈ X satisfy p(x,y) = 0. In the case where x = y, it is obvious that Tx = Ty holds. In the other case,
where x 6= y, from (i), we have d(Tx, Ty) 6 ε for any ε > 0. Since ε > 0 is arbitrary, we obtain Tx = Ty.
We have shown (3.1). Next we show

x 6= Tx ∧ p(x, Tx) > 0 ⇒ d(Tx, T 2x) < p(x, Tx) 6 L(x, Tx) = d(x, Tx). (3.2)

Let x ∈ X satisfy x 6= Tx and p(x, Tx) > 0. Then we have by (P1:p),

p(x, Tx) 6 L(x, Tx) = max
{
d(x, Tx),

d(x, T 2x)

2
,d(Tx, T 2x)

}
= max

{
d(x, Tx),

d(x, Tx) + d(Tx, T 2x)

2
,d(Tx, T 2x)

}
= max{d(x, Tx),d(Tx, T 2x)}.

If d(x, Tx) < d(Tx, T 2x) holds, then we have by (ii)

d(Tx, T 2x) < p(x, Tx) 6 max{d(x, Tx),d(Tx, T 2x)} = d(Tx, T 2x),

which implies a contradiction. So we have p(x, Tx) 6 L(x, Tx) = d(x, Tx). By (ii), we obtain (3.2).
Fix u ∈ X. We consider the following two cases.
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(a) Tνu = Tν+1u for some ν ∈N.
(b) Tnu 6= Tn+1u for any n ∈N.

In the case of (a), we put z = Tνu. Then it is obvious that z is a fixed point of T and {Tnu} converges to z.
In the case of (b), noting (3.1), we have p(Tnu, Tn+1u) > 0 for any n ∈N. So by (3.2), {d(Tnu, Tn+1u)}

is strictly decreasing. So we note that Tnu (n ∈ N) are all different. Also, {d(Tnu, Tn+1u)} converges to
some α ∈ [0,∞). We note α < d(Tnu, Tn+1u) for any n ∈N. Arguing by contradiction, we assume α > 0.
Then for sufficiently large n ∈N, we have by (3.2)

p(Tnu, Tn+1u) 6 d(Tnu, Tn+1u) < α+ δ(α)

and hence
α < d(Tn+1u, Tn+2u) 6 α,

which implies a contradiction. Therefore we have shown

lim
n→∞d(Tnu, Tn+1u) = 0. (3.3)

In order to show that {Tnu} is a Cauchy sequence, we fix ε > 0. By (3.3), we can choose ` ∈N satisfying

d(T `u, T `+1u) < δ(ε)/2.

By induction, we will show
d(T `u, T `+ku) < ε+ δ(ε)/2 (3.4)

for any k ∈ N. It is obvious that (3.4) holds for k := 1. We assume that (3.4) holds for some k ∈ N. Then
we consider the following two cases.

• d(T `u, T `+ku) 6 ε.

• d(T `u, T `+ku) > ε.

In the first case, we have by (3.2)

d(T `u, T `+k+1u) 6 d(T `u, T `+ku) + d(T `+ku, T `+k+1u) < ε+ d(T `u, T `+1u) < ε+ δ(ε)/2.

In the second case, we have

d(T `u, T `+1u) < δ(ε)/2 < δ(ε) < ε < d(T `u, T `+ku)

and hence p(T `u, T `+ku) 6 L(T `u, T `+ku) by (P1:p). We also have

d(T `u, T `+k+1u) + d(T `+1u, T `+ku) 6 d(T `u, T `+ku) + d(T `+ku, T `+k+1u)

+ d(T `+1u, T `u) + d(T `u, T `+ku) < 2 ε+ 2 δ(ε)

and hence

p(T `u, T `+ku) 6 L(T `u, T `+ku) < max{ε+ δ(ε)/2, ε+ δ(ε), δ(ε)/2, δ(ε)/2} = ε+ δ(ε).

So we have by (i)
d(T `+1u, T `+k+1u) 6 ε

and hence
d(T `u, T `+k+1u) 6 d(T `u, T `+1u) + d(T `+1u, T `+k+1u) < δ(ε)/2 + ε.

We have shown (3.4) for k := k+ 1 in both cases. By induction, we have (3.4) for any k ∈ N. Since ε > 0
is arbitrary and ε+ δ(ε)/2 < (3/2) ε holds, we obtain

lim
n→∞ sup{d(Tnu, Tmu) : m > n} = 0,

which implies that {Tnu} is Cauchy. Since X is complete, {Tnu} converges to some z ∈ X. Since Tnu
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(n ∈ N) are all different, we note z 6= Tnu for sufficiently large n ∈ N. Since limn d(z, Tnu) = 0 and
limn d(Tnu, Tn+1u) = 0 hold, we have by (P2:p, c)

lim sup
n→∞ p(z, Tnu) 6 c d(z, Tz).

We have by (ii) and (3.1)

d(Tz, z) = lim
n→∞d(Tz, Tnu) 6 lim sup

n→∞ p(z, Tn−1u) 6 c d(z, Tz)

and hence z is a fixed point of T .
Therefore we have shown that {Tnu} converges to a fixed point z of T in the cases of (a) and (b). Let

w ∈ X be a distinct fixed point of T . Then if p(z,w) = 0 holds, then we have by (3.1)

0 < d(z,w) = d(Tz, Tw) = 0,

which implies a contradiction. Therefore p(z,w) > 0 holds. From (P1:p), we have

p(z,w) 6 L(z,w) = d(z,w).

We have by (ii)
d(z,w) = d(Tz, Tw) < p(z,w) 6 d(z,w),

which implies a contradiction. Therefore the fixed point z is unique.

Theorem 3.2. Let (X,d) be a complete metric space and let T be a continuous mapping on X. Let p be a function
from X(2) into [0,∞) satisfying (P1:p). Assume (i) and (ii) of Theorem 3.1. Then T has a unique fixed point z.
Moreover {Tnx} converges to z for all x ∈ X.

Proof. Fix u ∈ X. Then as in the proof of Theorem 3.1, we can prove that {Tnu} converges to some z ∈ X.
Since T is continuous, we have

Tz = T
(

lim
n→∞ Tnu

)
= lim
n→∞ T ◦ Tnu = z,

thus, z is a fixed point of T . We can prove the uniqueness of the fixed point as in the proof of Theorem
3.1.

4. Contractive condition

In this section, we discuss the contractive condition on Theorems 3.1 and 3.2.
Let (X,d) be a metric space and let T be a mapping on X. Then using subsets Q of [0,∞)2 defined by

Q =
{(
d(x,y),d(Tx, Ty)

)
: x,y ∈ X

}
, (4.1)

Hegedüs and Szilágyi in [6] studied some contractive conditions. See [8, 15] and references therein. The
merit of the usage of Q is to hide the mapping T and the inequality, in particular, the right hand side of
the inequality. In other words, we can concentrate only on contractive conditions.

Definition 4.1. Let Q be a subset of [0,∞)2. Then Q is said to be CJM if the following hold.

(i) For any ε > 0, there exists δ > 0 such that u 6 ε holds for any (t,u) ∈ Q with t < ε+ δ.
(ii) u < t holds for any (t,u) ∈ Q with t > 0.

It is obvious that Q defined by (4.1) is CJM iff T satisfies (i) and (ii) of Theorem 5.1 below.
We prove the following.
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Lemma 4.2. Let (X,d) be a metric space and let T be a mapping on X. Let p be a function from X×X into [0,∞).
Then (c)⇒ (b)⇔ (ii) of Theorem 3.1 holds.

(b) p(x,y) > 0 implies d(Tx, Ty) < p(x,y).
(c) x 6= y implies d(Tx, Ty) < p(x,y).

Moreover, we assume p(x,y) = 0⇒ x = y additionally, then (c), (b), and (ii) of Theorem 3.1 are equivalent.

Proof. It is obvious that the disjunction of (b) and (c) implies (ii) of Theorem 3.1.
Let us prove that (ii) of Theorem 3.1 implies (b). Fix x,y ∈ X with p(x,y) > 0. In the case where

x 6= y, we have d(Tx, Ty) < p(x,y) by (ii) of Theorem 3.1. In the other case, where x = y, we have
d(Tx, Ty) = 0 < p(x,y). Thus, (b) holds.

Now we assume p(x,y) = 0 ⇒ x = y additionally. Then x 6= y implies p(x,y) > 0 holds. So we can
prove (b)⇒ (c).

Lemma 4.3. Let (X,d) be a metric space and let T be a mapping on X. Let p be a function from X×X into [0,∞).
Then the conjunction of (i) and (ii) of Theorem 3.1 is equivalent to the conjunction of the following (a) and (b).

(a) For any ε > 0, there exists δ > 0 such that

p(x,y) < ε+ δ implies d(Tx, Ty) 6 ε.

(b) p(x,y) > 0 implies d(Tx, Ty) < p(x,y).

Remark 4.4. We note that the values of p(x, x) have no influence in this context.

Proof. By Lemma 4.2, we have proved that (b) is equivalent to (ii) of Theorem 3.1. It is obvious that (a)
implies (i) of Theorem 3.1. As in the proof of Lemma 4.2, we can prove that (i) of Theorem 3.1 implies
(a).

By Lemma 4.3, we can prove the following.

Proposition 4.5. Let (X,d) be a metric space and let T be a mapping on X. Let p be a function from X× X into
[0,∞). Define a subset R of [0,∞)2 by

R =
{(
p(x,y),d(Tx, Ty)

)
: x,y ∈ X

}
.

Then the following are equivalent.

(i) T satisfies (i) and (ii) of Theorem 3.1.
(ii) R is CJM.

By Lemma 4.3 again, we obtain the following.

Corollary 4.6. Let (X,d) be a complete metric space and let T be a mapping on X. Let p be a function from X×X
into [0,∞) satisfying (P1:p) and (P2:p, c) for some c ∈ [0, 1). Assume the following.

(i) For any ε > 0, there exists δ > 0 such that p(x,y) < ε+ δ implies d(Tx, Ty) 6 ε.
(ii) p(x,y) > 0 implies d(Tx, Ty) < p(x,y).

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Corollary 4.7. Let (X,d) be a complete metric space and let T be a continuous mapping on X. Let p be a function
from X× X into [0,∞) satisfying (P1:p). Assume (i) and (ii) of Corollary 4.6. Then T has a unique fixed point z.
Moreover {Tnx} converges to z for all x ∈ X.
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5. Deduced theorems

In this section, we state some theorems, which can be deduced by Theorems 3.1 and 3.2. The following
are known results.

Theorem 5.1 ([3, 7, 10, 11]). Let (X,d) be a complete metric space and let T be a mapping on X. Assume the
following.

(i) For any ε > 0, there exists δ > 0 such that d(x,y) < ε+ δ implies d(Tx, Ty) 6 ε.
(ii) x 6= y implies d(Tx, Ty) < d(x,y).

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Proof. It is obvious that (ii) is equivalent to the following:

(ii’) d(x,y) > 0 implies d(Tx, Ty) < d(x,y).

We obtain the desired result by Example 2.2 (i) and Corollary 4.6.

Theorem 5.2. Let (X,d) be a complete metric space and let T be a mapping on X. Assume the following.

(i) For any ε > 0, there exists δ > 0 such that K(x,y) < ε+ δ implies d(Tx, Ty) 6 ε.
(ii) x 6= y implies d(Tx, Ty) < K(x,y).

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Remark 5.3. The author does not know who first proved Theorem 5.2.

Proof. It is obvious that K(x,y) = 0⇒ x = y holds. So by Lemma 4.2, (ii) is equivalent to the following.

(ii’) K(x,y) > 0 implies d(Tx, Ty) < K(x,y).

We obtain the desired result by Example 2.2 (ii) and Corollary 4.6.

Theorem 5.4 ([7, Theorem 2]). Let (X,d) be a complete metric space and let T be a continuous mapping on X.
Assume the following.

(i) For any ε > 0, there exists δ > 0 such that L(x,y) < ε+ δ implies d(Tx, Ty) 6 ε.
(ii) L(x,y) > 0 implies d(Tx, Ty) < L(x,y).

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Proof. We obtain the desired result by Example 2.2 (iii) and Corollary 4.7.

The following is a generalization of Theorems 1.1-1.3. See also [9].

Theorem 5.5. Let (X,d) be a complete metric space and let T be a mapping on X. Define a function p from X×X
into [0,∞) by

p(x,y) = max
{
d(y, Ty)

1 + d(x, Tx)
1 + d(x,y)

, d(x,y)
}

.

Assume the following.

(i) For any ε > 0, there exists δ > 0 such that p(x,y) < ε+ δ implies d(Tx, Ty) 6 ε.
(ii) x 6= y implies d(Tx, Ty) < p(x,y).

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Proof. It is obvious that p(x,y) = 0⇒ x = y holds. So by Lemma 4.2, (ii) is equivalent to the following:

(ii’) p(x,y) > 0 implies d(Tx, Ty) < p(x,y).
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We note that p is identical to p2 in Example 2.3. So the conclusion follows from Corollary 4.6.

In order to show that Theorem 5.5 is a generalization of Theorem 1.1, we prove the following.

Lemma 5.6. If all the assumptions of Theorem 1.1 hold, then all the assumptions of Theorem 5.5 hold.

Proof. We assume all the assumptions of Theorem 1.1. Let p be as in Theorem 5.5 and define a function q
from X×X into [0,∞) by

q(x,y) =
1
2

(
d(y, Ty)

1 + d(x, Tx)
1 + d(x,y)

+ d(x,y)
)

.

It is obvious that q 6 p holds. We note that if q(x,y) = 0 holds, then x = y holds and hence d(Tx, Ty) = 0
holds. So by Lemma 2.4, the following holds:

(a) For any ε > 0, there exists δ > 0 such that

q(x,y) < ε+ δ implies d(Tx, Ty) < ε.

Since q 6 p holds, we obtain (i) of Theorem 5.5. From (a), the following holds:

(b) q(x,y) > 0 implies d(Tx, Ty) < q(x,y).

Since q 6 p holds, we obtain (ii’) in the proof of Theorem 5.5, which is equivalent to (ii) of Theorem
5.5.

We also obtain the following.

Theorem 5.7. Let (X,d) be a complete metric space and let T be a continuous mapping on X. Define a function p
from X(2) into [0,∞) by

p(x,y) = max
{
d(y, Ty)

1 + d(x, Tx)
1 + d(x,y)

,
d(x, Tx)d(y, Ty)

d(x,y)
, d(x,y)

}
.

Assume (i) and (ii) of Theorem 3.1. Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Proof. We note that p is identical to p5 in Example 2.3. So the conclusion follows from Theorem 3.2.

We finally prove Theorem 2.1 in [13] by using Theorem 5.7. In other words, Theorem 5.7 is a general-
ization of Theorem 5.8. See also [5].

Theorem 5.8 ([13, Theorem 2.1]). Let (X,d) be a complete metric space and let T be a continuous mapping on X.
Define a function q from X(2) into [0,∞) by

q(x,y) =
1
3

(
d(y, Ty)

1 + d(x, Tx)
1 + d(x,y)

+
d(x, Tx)d(y, Ty)

d(x,y)
+ d(x,y)

)
.

Assume that for any ε > 0, there exists δ > 0 such that

x 6= y, ε 6 q(x,y) < ε+ δ imply d(Tx, Ty) < ε.

Then T has a unique fixed point z. Moreover {Tnx} converges to z for all x ∈ X.

Proof. Let p be as in Theorem 5.7. Putting p(x, x) = q(x, x) = 1, we extend the domains of p and q to
X× X. It is obvious that q 6 p holds. We note that q(x,y) = 0 cannot be possible. Thus, q(x,y) = 0
implies d(Tx, Ty) = 0. So by Lemma 2.4, the following holds:

(a) For any ε > 0, there exists δ > 0 such that

x 6= y, q(x,y) < ε+ δ imply d(Tx, Ty) < ε.

Hence we obtain (i) of Theorem 3.1. From (a), the following holds:

(b) x 6= y and q(x,y) > 0 imply d(Tx, Ty) < q(x,y).

Hence we obtain (ii) of Theorem 3.1. By Theorem 5.7, we obtain the desired result.
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