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Abstract
This paper mainly studies the dynamics of a Lotka-Volterra reaction-diffusion-advection model for two competing species

which disperse by both random diffusion and advection along environmental gradient. In this model, the species are assumed to
be identical except spatial variation: one lives in the heterogeneity environment, the other lives in the homogeneity environment.
The main results of this paper are two fold: (i) The species living in homogeneous environment can never wipe out their
competitor; (ii) Explore the condition on the diffusion and advection rates for exclusion and coexistence. It is proved that for
fixed dispersal rates, when the strength of the advection is sufficiently strong, the two competitive species coexist. This is a
remarkable different result with that obtained by He and Ni recently for corresponding systems without advection [X. He,
W.-M. Ni, J. Differential Equations, 254 (2013), 528–546]. c©2017 All rights reserved.
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1. Introduction

The question of how the interactions between spatial heterogeneity and the organism’s dispersing
affect the evolution of the population has fascinated ecologists and evolutionary biologists for many
decades. For reaction-diffusion model, Hastings [13] and Dockery et al. [10] showed that, for two com-
peting species with different (random) dispersal rate but otherwise identical in a heterogeneous envi-
ronments, the slower diffuser always wins. To be more precise, consider the following Lotka-Volterra
competition-diffusion system ([10])

Ut = d1∆U+U(m(x) −U− V), in Ω×R+,
Vt = d2∆V + V(m(x) −U− V), in Ω×R+,
∂νU = ∂νV = 0, on ∂Ω×R+,
U(x, 0) = U0(x),V(x, 0) = V0(x), in Ω,

(1.1)

where the migration rates d1,d2 are two positive constants, U(x, t), V(x, t) represent the densities of two
species at location x and time t, and m(x) represents the intrinsic growth rates of species, which also
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reflects the environmental richness of the resources at location x. The habitat Ω is a bounded region in
RN with smooth boundary ∂Ω, ∂ν = ν ·∇, where ν denotes the unit normal vector on ∂Ω, and the no-flux
boundary condition means no individuals cross the boundary. For simplicity, we will assume throughout
this paper that the initial data U0 and V0 are nonnegative and nontrivial, i.e., not identically zero.

Let r(x) ∈ Cα(Ω̄)(α ∈ (0, 1)) with
∫
Ω r(x)dx > 0 and r(x) 6≡ 0. It is well-known that the problem

d∆θ+ θ(r(x) − θ) = 0 in Ω, ∂νθ = 0 on ∂Ω,

has a unique positive solution (see, e.g., [3]), which is denoted by θd,r.
Then the following remarkable result is established by Hastings [13] and Dockery et al. [10].

Theorem 1.1. Suppose that 0 < m(x) 6≡const on Ω̄ and m(x) ∈ Cα(Ω̄) (α ∈ (0, 1)). Then the semitrivial steady
state (θd1,m, 0) of (1.1) is globally asymptotically stable when d1 < d2; i.e., every solution (U,V) of (1.1) converges
to (θd1,m, 0) as t→∞ regardless of initial values (U0,V0).

An intuitive explanation for this surprising result is that slow diffusion helps species to better track
favorable regions whereas fast diffusion will move individuals away from such ideal regions and in so
doing lose certain competitive advantages.

Recently, by allowing the species U and V to have different intrinsic growth rates or to different
distributions of resources, in a series of works, He and Ni [14–17] studied the following Lotka-Volterra
model of competition-diffusion system:

Ut = d1∆U+U(m1(x) −U− cV), in Ω×R+,
Vt = d2∆V + V(m2(x) − bU− V), in Ω×R+,
∂νU = ∂νV = 0, on ∂Ω×R+,
U(x, 0) = U0(x), V(x, 0) = V0(x), in Ω,

(1.2)

where m1(x) and m2(x) represent the carrying capacities or intrinsic growth rates, which reflect the
environmental influence on the species U and V , respectively. The positive constants b and c are inter-
specific competition coefficients, while both intra-specific competition coefficients are normalized to 1.

On the other hand, reaction-diffusion-advection equations nowadays seem more and more popular
in spatial population dynamics. Belgacem and Cosner in [2] firstly proposed the single species model in
the situation where individuals are very smart so that they can sense and follow gradients in resource
distribution, and then Cantrell et al. [4] analyzed the corresponding two-species model. This topic has
received considerable research attention; see, e.g., [3–9, 12, 22–24, 28] and the references therein, for some
latest advances, see [1].

Motivated by the previous works, we introduce the following coupled reaction-diffusion-advection
system 

Ut = ∇ · (d1∇U−αU∇m1) +U(m1(x) −U− cV), in Ω×R+,
Vt = ∇ · (d2∇V −βV∇m2) + V(m2(x) − bU− V), in Ω×R+,
(d1∇U−αU∇m1) · ν = (d2∇V −βV∇m2) · ν = 0, on ∂Ω×R+,
U(x, 0) = U0(x), V(x, 0) = V0(x) in Ω,

(1.3)

where α,β which are positive constants measure the speed of movement upward along the gradient of
resourcesm1(x) andm2(x), respectively. Our main concern in this paper is to pursue the dynamics system
(1.3), especially the affect of advection rate α,β on the dynamics of this system.

When α = β = 0, system (1.3) becomes the system (1.2), which is studied by He and Ni [14–17]
recently. By detailed computation and analysis, He and Ni [14–17] obtained some dramatic picture of
global dynamics of (1.2) based on diffusion rates d1 and d2. Especially, for the case of heterogeneity
vs. homogeneity with equal amount of total resources and b = 1, c = 1, He and Ni [14, 17] obtained
thoroughly complete global dynamics of (1.2). More precisely, in [14, 17], He and Ni proposed the
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following system 
Ut = d1∆U+U(m(x) −U− V), in Ω×R+,
Vt = d2∆V + V(m−U− V), in Ω×R+,
∂νU = ∂νV = 0, on ∂Ω×R+,
U(x, 0) = U0(x),V(x, 0) = V0(x), in Ω,

(1.4)

where m(x) is non-constant in Ω and m is the average density of the resources m(x), i.e.,

m =
1
|Ω|

∫
Ω

m(x)dx.

The following notations of subsets of the first quadrant of the d1d2-plane for (1.4) is also used in
[14, 17]:

ΣU := {(d1,d2) ∈ Q | (θd1,m, 0) is linearly stable},
ΣV := {(d1,d2) ∈ Q | (0,m) is linearly stable},
Σ− := {(d1,d2) ∈ Q | both (θd1,m, 0) and (0,m) are linearly unstable},

where
Q := R+ ×R+ and R+ := (0,∞).

For the precise definition of linear stability/instability of a steady state and their characterization, see
e.g., [3]. We refer the readers to the beginning of Section 2 where the concept is defined via the sign
of appropriate principal eigenvalues. He and Ni obtained the following remarkable characterization of
global dynamics result for system (1.4).

Theorem 1.2 ([14, 17]). Assume that m(x) ∈ Cγ(Ω̄) (γ ∈ (0, 1)), m 6≡ const and m > 0 on Ω̄, then

(i) ΣV = ∅, namely, (0,m) is always linearly unstable for all (d1,d2) ∈ Q;
(ii) ΣU 6= ∅, and (θd1,m, 0) is globally asymptotically stable for all (d1,d2) ∈ ΣU, where ΣU denotes the closure

of ΣU in Q, moreover, ΣU can be characterized by

ΣU = {(d1,d2) ∈ Q | d2 > d̂
∗
2(d1)},

where d̂∗2(d1) is a continuous function of d1 defined in R+ with the property

d̂∗2(d1)→∞, as d1 → 0; d̂∗2(d1)→ 0, as d1 →∞;

(iii) Σ− 6= ∅, and Q = ΣU ∪Σ−, moreover, (1.4) has a unique coexistence steady state which is globally asymptoti-
cally stable for all (d1,d2) ∈ Σ− = Q\ΣU.

Theorem 1.2 implies that for two competitive species having identical competition abilities and the
same amount of total resources, the species with spatial heterogeneous distribution are always in a supe-
rior position to their homogeneous counterpart: it is always guaranteed to survive, and it will often wipe
out its competitor, so long as the diffusion point (d1,d2) is above the critical line d2 = d̂∗2(d1).

Following the idea of [15, 17], let m1(x) = m(x), m2(x) = m = 1
|Ω|

∫
Ωm(x)dx, and b = c = 1, then

system (1.3) changes to the following coupled reaction-diffusion-advection system
Ut = ∇ · (d1∇U−αU∇m) +U(m(x) −U− V), in Ω×R+,
Vt = d2∆V + V(m−U− V), in Ω×R+,
(d1∇U−αU∇m) · ν = ∂νV = 0, on ∂Ω×R+,
U(x, 0) = U0(x), V(x, 0) = V0(x), in Ω.

(1.5)

Note that since m2(x) = m is a constant, the gradient ∇m ≡ 0, and then advection rate β has no effect to
the system (1.5). As in [15, 17], we assume m(x) satisfies the assumption (M).

We assume that the initial data U0, V0 of (1.5) are non-negative and not identically zero, then by
maximum principle [29], we can obtain U > 0,V > 0.

We assume that
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(M) m(x) ∈ C2+γ(Ω̄) (γ ∈ (0, 1)), m 6≡ const and m > 0 on Ω̄.

Under assumption (M), (1.5) has two semi-trivial steady states for all d1,d2 > 0 and α > 0 ([3]),
denoted by (ũ, 0), (0,m), respectively, where ũ is the unique positive solution of{

∇ · (d1∇ũ−α ũ∇m) + ũ(m(x) − ũ) = 0, in Ω,
(d1∇ũ−α ũ∇m) · ν = 0, on ∂Ω,

and m is the unique positive solution of{
d2∆ṽ+ ṽ(m− ṽ) = 0, in Ω,
∂νṽ = 0, on ∂Ω.

Now we state our first result.

Theorem 1.3. Suppose that assumption (M) holds. Then (0,m) is unstable for every d1,d2, and α > 0.

Theorem 1.3 implies that for every α > 0, the species V can never exclude the species U.

Theorem 1.4. Suppose that assumption (M) holds. Then for every fixed d1 > 0, (ũ, 0) is globally asymptotically
stable for all d2 sufficiently large and α sufficiently small.

Theorem 1.4 implies that for small α and large d2, species U always prevails.

Theorem 1.5. Suppose that assumptions (M) holds. Then for any fixed d1 > 0, there exists a constant α∗ =
α∗(d1) > 0, such that if α > α∗, (ũ, 0) is unstable for every d2 > 0.

Since the system (1.5) is a monotone system, by the theory of monotone system [20], we have the
following coexistence result.

Theorem 1.6. Suppose that assumptions (M) holds. Then for fixed d1 > 0 and α sufficiently large, the problem
(1.5) has at least one stable positive coexistence steady state for all d2 > 0.

Theorem 1.6 implies that for fixed d1 > 0, species U can never wipe out its competitor V for all d2 > 0,
if species U adopts sufficiently strong advection. This is a different phenomenon to that obtained in [14]
as stated in the previous passages.

The rest of this paper is organized as follows. In Section 2 we collect some preliminaries that will be
used in the following sections. The main results, Theorems 1.3-1.6, are proved in Section 3. Finally, some
concluding remarks are included in Section 4.

2. Preliminaries

To study the dynamics of system (1.5), we should study the stability of semi-trivial steady states
(ũ, 0), (0,m). Mathematically, the stability of (ũ, 0) is determined by the principal eigenvalue, denoted by
µ1(d2,m− ũ), of the elliptic eigenvalue problem{

d2∆ψ+ (m− ũ)ψ+ µψ = 0, in Ω,
∂νψ = 0, on ∂Ω.

Similarly, the stability of (0,m) is determined by the principal eigenvalue, denoted by λ1(d1,α,m−m),
of the linear problem as follows:{

∇ · (d1∇ψ−αψ∇m) +ψ(m−m) + λψ = 0, in Ω,
(d1∇ψ−αψ∇m) · ν = 0, on ∂Ω. (2.1)

More precisely, we have the following well-known criterion.
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Lemma 2.1 ([3]). (ũ, 0) is linearly stable if µ1(d2,m− ũ) > 0 and is linearly unstable if µ1(d2,m− ũ) < 0.
Similarly, (0,m) is linearly stable if λ1(d1,α,m−m) > 0 and is linearly unstable if λ1(d1,α,m−m) < 0.

The following result is due to [1, Lemma 4.1] some similar results can be seen in [26] for more general
m.

Lemma 2.2. Assume that m(x) ∈ C2(Ω̄), m 6≡ constant, and
∫
Ωm(x)dx > 0 (m may change sign). Then the

steady state problem {
∇ · (d∇ũ−α ũ∇m) + ũ(m− ũ) = 0, in Ω,
(d∇ũ−α ũ∇m) · ν = 0, on ∂Ω.

has a unique positive solution ũ. Moreover, for fixed d > 0,

lim sup
α→∞

∫
Ω

(ũ−m) 6 −

∫
{x∈Ω:|∇m|6=0}

m < 0.

For monotone dynamical systems, we state the standard fact that linear stability (resp., linear instabil-
ity) implies asymptotic stability (resp., instability) ([30]).

Lemma 2.3 ([25, 30]). If a steady state (Ũ, Ṽ) of (1.5) is linearly stable (resp., linearly unstable), then it is
asymptotically stable (resp., unstable).

Next, we have the following lemma derived from the theory of monotone dynamical systems.

Lemma 2.4 ([18, 25]). For any d1,d2 > 0, assume every coexistence steady state of (1.5), if it exists, is asymptoti-
cally stable, then one of the following alternatives holds:

(a) there exists a unique coexistence steady state of (1.5) which is globally asymptotically stable;
(b) system (1.5) has no coexistence steady state, and one of (ũ, 0) or (0,m) is globally asymptotically stable, while

the other one is unstable.

3. Proofs of the main results

In this section, we establish the our main results.

Proof of Theorem 1.3. Let λ1 = λ1(d1,α,m −m) be the principal eigenvalue of (2.1) and ψ > 0 be the
corresponding eigenfunction, then{

∇ · (d1∇ψ−αψ∇m) +ψ(m−m) + λ1ψ = 0, in Ω,
(d1∇ψ−αψ∇m) · ν = 0, on ∂Ω,

Set ϕ = e−(α/d1)mψ, then ϕ satisfies{
d1∇(e(α/d1)m∇ϕ) + e(α/d1)m(m−m)ϕ+ λ1e

(α/d1)mϕ = 0, in Ω,
∂νϕ = 0, on ∂Ω.

(3.1)

Dividing (3.1) by ϕ, integrating in Ω, we have

d1

∫
Ω

e(α/d1)m|∇ϕ|2

ϕ2 +

∫
Ω

(m−m)e(α/d1)m + λ1

∫
Ω

e(α/d1)m = 0. (3.2)

Define
Ω+ = {x ∈ Ω | m(x) > m}, Ω− = {x ∈ Ω | m(x) < m},
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then Ω = Ω+
⋃
Ω−, and∫

Ω

(m−m)e(α/d1)m =

∫
Ω+

(m−m)e(α/d1)m +

∫
Ω−

(m−m)e(α/d1)m

>

∫
Ω+

(m−m)e(α/d1)m +

∫
Ω−

(m−m)e(α/d1)m

= e(α/d1)m

[∫
Ω+

(m−m) +

∫
Ω−

(m−m)

]
= e(α/d1)m

∫
Ω

(m−m) = 0.

(3.3)

It follows from (3.2) and (3.3) that λ1 < 0, and then by Lemma 2.1, (0,m) is always linearly unstable.

Before we prove Theorem 1.4, we propose the following boundedness lemma.

Lemma 3.1. Suppose that m ∈ C2+γ(Ω̄), and (Ũ, Ṽ) is a positive steady state solution of (1.5), then

‖Ũ‖L∞ 6 ‖m‖L∞eα/d1‖m‖L∞ , ‖Ṽ‖L∞ 6 m.

Proof. (Ũ, Ṽ) satisfies the following elliptic system
∇ · (d1∇Ũ−α Ũ∇m) + Ũ(m(x) − Ũ− Ṽ) = 0, in Ω,
d2∆Ṽ + Ṽ(m− Ũ− Ṽ) = 0, in Ω,
(d1∇Ũ−α Ũ∇m) · ν = ∂νṼ = 0, on ∂Ω,

By the maximal principle and comparison theorem ([11, 29]), we have that ‖Ṽ‖L∞ 6 m, and

‖Ũ‖L∞ 6 ‖ũ‖L∞ ,

where ũ is the unique positive solution of the equation

∇ · (d1∇ũ−α ũ∇m) + ũ(m(x) − ũ) = 0 in Ω, (d1∇ũ−α ũ∇m) · ν = 0 on ∂Ω. (3.4)

Let w(x) = e−α/d1m(x)ũ(x), then (3.4) becomes

d1∇ · (eα/d1m∇w) + eα/d1mw(m− ũ) = 0 in Ω, ∂νw = 0 on ∂Ω.

Let x0 be the global maximum point of w(x), we have ũ(x0) 6 m(x0) and hence supw = w(x0) =
e−α/d1m(x0)ũ(x0) 6 e−α/d1m(x0)m(x0). Hence

‖ũ(x)‖L∞ 6 sup[eα/d1m(x)w(x)] 6 sup[eα/d1(m(x)−m(x0))m(x0)] 6 ‖m‖L∞eα/d1‖m‖L∞ .

This completes the proof.

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. By Theorem 1.3, the semi-trivial steady state solution (0,m) is linearly unstable for
all d1,d2,α > 0, then by Lemma 2.3 and Lemma 2.4, to show that (ũ, 0) is globally asymptotically stable,
it suffices to show that (1.5) has no co-existence steady state for all d2 sufficiently large and α sufficiently
small. Suppose this is not true, then there exist some d1 > 0, a positive sequence d(k)2 of d2 with d(k)2 →∞,
a positive sequence α(k) of α with α(k) → 0, such that (1.5) has a positive coexistence steady state
(Ũ
α(k),d(k)

2
, Ṽ
α(k),d(k)

2
).

∇ · (d1∇Ũα(k),d(k)
2

−α(k) Ũ
α(k),d(k)

2
∇m) + Ũ

α(k),d(k)
2

(m(x) − Ũ
α(k),d(k)

2
− Ṽ

α(k),d(k)
2

) = 0, in Ω,

d
(k)
2 ∆Ṽ

α(k),d(k)
2

+ Ṽ
α(k),d(k)

2
(m− Ũ

α(k),d(k)
2

− Ṽ
α(k),d(k)

2
) = 0, in Ω,

(d1∇Ũα(k),d(k)
2

−α(k) Ũ
α(k),d(k)

2
∇m) · ν = ∂νṼ

α(k),d(k)
2

= 0, on ∂Ω,

(3.5)
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By Lemma 3.1, both Ũ
α(k),d(k)

2
and Ṽ

α(k),d(k)
2

are uniformly bounded on Ω̄ independent of d1, d(k)2 and

α(k). By standard Lp regularity theory for elliptic equation, passing to their subsequences of d(k)2 and
α(k) if necessary, we may assume that

lim
k→∞(Ũα(k),d(k)

2
, Ṽ
α(k),d(k)

2
) = (Ũ∞, Ṽ∞) in W1,p(Ω)×W1,p(Ω) for any p > 1.

Then the Sobolev imbedding theorems and the Schauder regularity theory imply that

lim
k→∞(Ũα(k),d(k)

2
, Ṽ
α(k),d(k)

2
) = (Ũ∞, Ṽ∞) in C2(Ω)×C2(Ω).

Dividing the second equation of (3.5) by d(k)2 and letting k→∞, we conclude that the limiting function
Ṽ∞ satisfies that

∆Ṽ∞ = 0 in Ω, ∂νṼ∞ = 0 on ∂Ω.

Thus Ṽ∞ ≡ C for some constant C > 0. Setting V∗
α(k),d(k)

2
:=

Ṽ
α(k) ,d(k)2

‖Ṽ
α(k) ,d(k)2

‖L∞(Ω)
, then V∗

α(k),d(k)
2

satisfies

∆V∗
α(k),d(k)

2
+
m− Ũ

α(k),d(k)
2

− Ṽ
α(k),d(k)

2

d
(k)
2

V∗
α(k),d(k)

2
= 0 in Ω, ∂νV

∗
α(k),d(k)

2
= 0 on ∂Ω.

By similar arguments as before, V∗
α(k),d(k)

2
converges to some non-negative constant V∗∞ as k → ∞. Since

‖V∗
α(k),d(k)

2
‖L∞(Ω) = 1, V∗∞ ≡ 1.

Integrating the second equation of (3.5) and then dividing by ‖Ṽ
α(k),d(k)

2
‖L∞(Ω), we have∫

Ω

V∗
α(k),d(k)

2
(m− Ũ

α(k),d(k)
2

− Ṽ
α(k),d(k)

2
) = 0.

Letting k→∞, we obtain that ∫
Ω

(m− Ũ∞ −C) = 0. (3.6)

Thus
∫
Ω(m− C) =

∫
Ω(m− C) =

∫
Ω Ũ∞ > 0. By letting k → ∞ in the first equation of (3.5), we have

d1∆Ũ∞+ Ũ∞(m− Ũ∞−C) = 0, by Proposition 2.5 (a) in [25], U∞ = θd1,m−C. Sincem−C is non-constant,
by the remarkable result obtained by Lou ([27, Theorem 1.2]), we get

∫
Ω θd1,m−C >

∫
Ω(m−C) for any

d1 > 0, which is a contradiction to (3.6).

Next, we prove Theorem 1.5.

Proof of Theorem 1.5. It suffices to show that the principal eigenvalue µ1 for the problem{
d2∆ψ+ (m− ũ)ψ+ µ1ψ = 0, in Ω,
∂ψ
∂n = 0, on ∂Ω,

(3.7)

is negative for α sufficiently large. Dividing (3.7) by ψ, integrating in Ω, we obtain∫
Ω

(ũ−m) − d2

∫
Ω

|∇ψ|2

ψ2 =

∫
Ω

µ1.

By Lemma 2.2, for any fixed d1 > 0, there exists a constant α∗ = α∗(d1) > 0, such that for any α > α∗,∫
Ω (ũ−m) =

∫
Ω (ũ−m) < 0, and hence µ1 < 0. This completes the proof.

Finally, we prove Theorem 1.6.

Proof of Theorem 1.6. Since system (1.5) is a strongly monotone system (Lemma 2.2 of [5]), it follows from
Theorem 1.3, Theorem 1.5, and theory for monotone systems (see, e.g., Corollary 7.6 and Theorem 10.2 of
[19]) that system (1.5) has at least one stable coexistence state.
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4. Concluding remarks

We study the dynamics of the Lotka-Volterra reaction-diffusion-advection model (1.3), in which the
two competing species have equal total resources but different resource distribution. The two species
adopt the dispersal strategy of a combination of random dispersal and biased movement upward along
the resource gradient (moving to the location with better resource). Similar model defined in the whole
space Rn with periodic resource environment is proposed in [21].

In this paper, we mainly study the situation that one species, species V , adopts the homogeneous
distribution, and the competitor, species U, adopts heterogeneous distribution. In this way we obtain the
system (1.5).

We are interested to understand how the resource distribution, the random dispersal rate, and the
advection rate affect the dynamics of the system. We investigate this question by the sign of eigenvalue
of two semi-trivial steady state. We show that the species U with heterogeneous distribution is always
in a better position than its competitor V with homogeneous distribution (Theorem 1.3). If the random
diffusion rate of V is large (with U′s advection being weak), then species U prevails. Theorem 1.5 and
Theorem 1.6 tell us that strong advection of U may be of benefit to V . For any fixed random diffusion, the
two competition species always coexist for strong advection of U.

Recently, in their wonderful works [1], Averill et al. found out the critical values 1/minΩ̄m and
1/maxΩ̄m for the ratio of advection and random diffusion (see Lemma 4.1 and Remark 4.3 in [1]). These
values turned out to be crucial to determine the dynamics with intermediate advection (see, for example
Theorems 2.2 and 2.4 in [1]). Using these new observations, the main results in this paper can be restated
and refined by the term of the ratio of advection and diffusion. In the other hand, motivated by the series
of works of He and Ni ([14–17]), the models suggested in this paper remain many questions to be studied.
Part of the results in this direction are contained in our next paper.
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