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Abstract

This paper considers an uncertain variational inequality problem (UVIP). We first establish UVIP as an optimization problem
(ERM model) which minimizes the expected residual of the so-called regularized gap function. Then, we make some assumptions
about a UVIP subclass in which the function involved is affine. Thus the priority in our paper is to discuss the properties of the
ERM problem and comprehensive convergence analysis under uncertainty theory. In the end, we make a conclusion. c©2017 All
rights reserved.
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1. Introduction

The variational inequality problem (VIP for short) is such important in mathematics that trigger many
scholars to research. nowadays, people mainly studies three aspects of VIP including solution to the
existence and uniqueness, effective solution algorithms and application such as optimization theory, eco-
nomics, engineering, game theory and networks and the like [4, 10–14]. From the classical VIP of Rn, we
here consider the finite dimensional Euclidean space Rn, finding a point x ∈ S ⊂ Rn such that

(y− x)T f(x) > 0, x ∈ S,

where S is a nonempty closed convex subset of Rn, and f : S→ Rn is a mapping. If there exists an element
x∗ satisfying the variational inequality, then x∗ is called a solution of it for every y ∈ S, which is denoted
by VIP(f,S). The set of solutions to this problem is denoted by Sol(S, f). VIP(f,S) is transformed to the
following complementarity problem:

x∗ > 0, f(x∗) > 0, (x∗)T f(x∗) = 0.
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This problem has been used to study various equilibrium models in economics, operations research,
transportation and regional science and many algorithms have been developed. For more details, see
the monograph [4] and the references therein. In particular, Fukushima [5, 6] defined a regularized gap
function

g(x) := max
y∈S

{(x− y)T f(x) −
α

2
‖x− y‖2

G},

where α is a positive parameter, G is an n× n symmetric positive-definite matrix, and ‖.‖G means the
G-norm defined by ‖x‖G =

√
xTGx for x ∈ Rn. It has been shown that g(x) > 0, for every x ∈ S, for

x ∈ S, g(x) = 0 if and only if x solves VIP(f,S). Based on these facts, VIP(f,S) is transformed into the
following minimization problem:

min g(x),
s.t. x ∈ S.

(1.1)

As stated in [5, 6], H(x) := ProjS.G(x−α
−1G−1f(x)) is the unique solution of g(x), where ProjS.G denotes

the projection operator onto S under the G-norm. Moreover, if f is continuously differentiable, then g is
also continuously differentiable and

∇g(x) = f(x) − [∇xf(x) −αG](H(x) − x).

Note that what the underlying mapping f in (1.1) reflects is deterministic, it does not involve uncertainties.
However, there are many instances in practice that the underlying problem not only involves deterministic
data, but also contains some uncertain factors in those data. For example, during the transmission of one
signal, say sound signal from the base station through relays to the user, it may be interfered by other
signals. Therefore, many researchers make a great deal of research for the stochastic variational inequality
problem (SVIP for short) in which they can reflect those uncertainties. Finding a vector x∗ ∈ S ⊂ Rn such
that

(x− x∗)TF(x∗,ω) > 0, ∀x ∈ S, ω ∈ Ω a.s.,

where Ω is the underlying sample space, F : Rn ×Ω → Rn is a mapping, and a.s. is the abbreviation
for almost surely under the given probability measure. SVIP based on probability theory was studied in
references such as [1], etc. And its applications can be found in inventory or pricing competition among
several firms that provide substitutable goods or services, a supply chain network model, stochastic user
equilibrium traffic network and wireless network. A basic premise of using probability theory is that the
actual frequency is close enough to probability. In other words, if we want to use probability we must get
a mass of historical data. However in some cases, it is very difficult for us to get enough data such that
we estimate the probability distribution through statistics. For example, it is impossible for us to estimate
a probability distribution of a new stock or devastating military experiments. In this situation, it makes
sense to invite some experts to evaluate the belief degree that the event will happen. Here the belief
degree represents the degree that we believe the indeterminacy quantity falls into the left side of a given
point about the indeterminacy phenomena. There also exist the cases that people’s viewpoints may vary
from person to person for the same event; even for the same person, his/her view to the event may vary
from time to time. Hence, in order to deal with those uncertainty phenomena, Liu [8] found a new theory
- uncertainty theory which is quite different from probability theory. Chen and Zhu [3] presented the
uncertain variational inequality problem (UVIP for short) based on uncertainty theory. Finding a vector
x∗ ∈ S ⊂ Rn such that

(x− x∗)TF(x∗, ξ) > 0, ∀x ∈ S, ξ ∈ Ξ a.s., (1.2)

where Ξ is the uncertain space, F : Rn × Ξ → Rn is a mapping, and a.s. is the abbreviation for almost
surely under the given uncertain measure. There is no doubt that both of them are natural extensions of
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deterministic VIP. Therefore, in this paper, our focus is on developing model to solve UVIP. The remainder
of this paper is organized as follows. Some basic concepts and properties were reviewed in Section
2, including uncertain variable, uncertain expectation, inverse uncertainty distribution. In Section 3, the
ERM model is established based on uncertainty theory. In Section 4, we give some properties including the
differentiability of the function θ and some results for level sets and error bounds. Then, the convergence
analysis is investigated in Section 5. Finally, we discuss conclusions in Section 6.

2. Preliminaries

In this section, we will introduce some fundamental concepts and properties concerning uncertain
variables, expectation, inverse uncertainty distribution. Let Γ be a nonempty set, and L a σ-algebra over
Γ . Each element Λ in L is called an event and assigned a number M {Λ} to indicate the belief degree
with which we believe Λ will happen. In order to deal with belief degrees rightly, Liu put forward the
following three axioms:

Axiom 1. (Normality Axiom) M {Γ } = 1 for the universal set Γ ;

Axiom 2. (Duality Axiom) M {Λ}+M {Λc} = 1 for any event Λ;

Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1,Λ2, · · · , we have

M

{ ∞⋃
i=1

Λi

}
6
∞∑
i=1

M {Λi}.

Definition 2.1 (Liu [8]). The set function M is called an uncertain measure if it satisfies the normality,
duality, and subadditivity axioms.

The triplet (Γ , L , M ) is called an uncertainty space. Furthermore, the product uncertain measure on the
product σ-algebra L was defined by Liu as follows:

Axiom 4. (Product Axiom) Let (Γk, Lk, Mk) be uncertainty spaces for k = 1, 2, · · · . The product uncertain
measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk are arbitrary events chosen from Lk for k = 1, 2, · · · , respectively.

Definition 2.2 (Liu [8]). An uncertain variable is a measurable function ξ from an uncertainty space
(Γ , L , M ) to the set of real numbers, for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B},

is an event.

Theorem 2.3. Let ξ1, ξ2, · · · , ξn be uncertain variables, and f be a real-valued measurable function. Then ξ =
f(ξ1, ξ2, · · · , ξn) is an uncertain variable defined by

ξ(γ) = f(ξ1(γ), ξ2(γ), · · · , ξn(γ)), ∀γ ∈ Γ .

Definition 2.4. (Liu [8]) Suppose ξ is an uncertain variable. Then the uncertainty distribution of ξ is
defined by

Φ(x) = M {ξ 6 x}

for any real number x.
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An uncertainty distributionΦ(x) is said to be regular if its inverse functionΦ−1(α) exists and is unique for
each α ∈ (0, 1). Inverse uncertainty distribution plays an important role in the operations of independent
uncertain variables. In the following, the concept of inverse uncertainty distribution will be presented.

Definition 2.5 (Liu [8]). Suppose ξ is an uncertain variable with regular uncertainty distribution Φ(x).
Then the inverse function Φ−1(α) is called the inverse uncertainty distribution of ξ.

Theorem 2.6 (Liu [9]). A function Φ−1(α) : (0, 1) → < is an inverse uncertainty distribution if and only if it is
a continuous and strictly increasing function with respect to α.

The operational law of independent uncertain variables was given by [2] in order to calculate the
uncertainty distribution of a strictly increasing or decreasing function of uncertain variables. Before in-
troducing the operational law, the concept of independence of uncertain variables is presented as follows.

Definition 2.7 (Liu [9]). The uncertain variables ξ1, ξ2, · · · , ξn are said to be independent if

M

{
n⋂
i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M {ξi ∈ Bi}

for any Borel sets B1,B2, · · · ,Bn.

Theorem 2.8 (Liu [9]). Let ξ1, ξ2, · · · , ξn be independent uncertain variables with continuous uncertainty dis-
tributions Φ1,Φ2, · · · ,Φn, respectively. If the function f(x1, x2, · · · , xn) is strictly increasing with respect to
x1, x2, · · · , xm and strictly decreasing with respect to xm+1, xm+2, · · · , xn, then the uncertain variable

ξ = f(ξ1, ξ2, · · · , ξn),

has an uncertainty distribution

Φ(x) = sup
f(x1,x2,··· ,xn)=x

(
min

16i6m
Φi(x)∧ min

m+16i6n
(1 −Φi(x))

)
.

Moreover, if Φ1,Φ2, · · · ,Φn are regular, then ξ has an inverse uncertainty distribution

Φ−1(α) = f(Φ−1
1 (α), · · · ,Φ−1

m (α),Φ−1
m+1(1 −α) · · · ,Φ−1

n (1 −α)).

For ranking uncertain variables, the concept of expected value was proposed by Liu [8] as follows.

Definition 2.9 (Liu [8]). Let ξ be an uncertain variable. Then the expected value of ξ is defined by

E[ξ] =

∫+∞
0

M {ξ > x}dx−
∫ 0

−∞M {ξ 6 x}dx,

provided that at least one of the two integrals is finite.

Theorem 2.10 (Liu [8]). Let ξ be an uncertain variable with uncertainty distribution Φ. If the expected value
exists, then

E[ξ] =

∫+∞
−∞ tdΦ(t).

3. Establishment of ERM model

We considered an expected residual minimization uncertain affine variational inequality problem on
the basis of uncertainty theory. Following [5, 6], we define a regularized gap function.

Definition 3.1. A regularized gap function satisfying g : Rn × Ξ → R for uncertain variational inequality
problem (denoted by UVIP(F,S)) is defined such as

g(x, ξ) := max
y∈S

{(x− y)TF(x, ξ) −
α

2
‖x− y‖2

G}. (3.1)
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Lemma 3.2. Let S be a closed convex set in Rn. Then for each f(x, ξ) ∈ Rn, where f : Rn × Ξ → Rn, there is a
unique point z ∈ S such that ‖f(x, ξ) − z‖G 6 ‖f(x, ξ) − y‖G, for all y ∈ S, z is the orthogonal projection of x on
the set S with respect to the Euclidean G norm, that is,

z = ProjS,Gf(x, ξ) = arg min
y∈S
‖f(x, ξ) − y‖G.

Proof. Let (x, ξ) be fixed and let t ∈ S. Minimizing ‖f(x, ξ)−y‖G over all y ∈ S is equivalent to minimizing
the same function over all y ∈ S such that ‖f(x, ξ)−y‖G 6 ‖f(x, ξ)− t‖G, S is a compact set. The function g
defined by g(y) = ‖f(x, ξ) − y‖2

G is continuous. Existence of a minimizing z follows because a continuous
function on a compact set always attains its minimum. To prove that z is unique, we only need to prove
that the square of the Euclidean G norm is a strictly convex function. Because of its Hessian matrix is
equal to 2G. Here G is an n× n symmetric positive-definite matrix. Hence, g is strictly convex and its
minimum is unique.

Theorem 3.3. The problem max
y∈S

{(x− y)TF(x, ξ) − α
2 ‖x− y‖

2
G} is essentially equivalent to the below problem

min
y∈S
‖y− (x−α−1G−1F(x, ξ)‖2

G}.

Proof.

max
y∈S

{(x− y)TF(x, ξ) −
α

2
‖x− y‖2

G}

⇔ max
y∈S

{2α−1(x− y)TF(x, ξ) − ‖x− y‖2
G}

⇔ max
y∈S

{2α−1(x− y)TF(x, ξ) − ‖x− y‖2
G −α−2FT (x, ξ)G−1F(x, ξ)}

⇔ min
y∈S

{‖x− y‖2
G − 2α−1(x− y)TF(x, ξ) +α−2FT (x, ξ)G−1F(x, ξ)}

⇔ min
y∈S

{‖x− y‖2
G − 2α−1(x− y)TF(x, ξ) +α−2FT (x, ξ)G−1F(x, ξ)}

⇔ min
y∈S

{‖x− y‖2
G −α−1(x− y)TF(x, ξ) −α−1(x− y)TF(x, ξ) +α−2FT (x, ξ)G−1F(x, ξ)}

⇔ min
y∈S

{(x− y)TG(x− y) −α−1(x− y)TF(x, ξ) −α−1FT (x, ξ)(x− y) +α−2FT (x, ξ)G−1F(x, ξ)}

⇔ min
y∈S

{(x− y)TG−α−1FT (x, ξ)}{(x− y) −α−1G−1F(x, ξ)}

⇔ min
y∈S

{(x− y)T −α−1FT (x, ξ)G−1}G{(x− y) −α−1G−1F(x, ξ)}

⇔ min
y∈S

{(x− y)T − (α−1G−1F(x, ξ))T }G{(x− y) −α−1G−1F(x, ξ)}

⇔ min
y∈S
‖(x− y) −α−1G−1F(x, ξ))‖2

G

⇔ min
y∈S
‖y− (x−α−1G−1F(x, ξ))‖2

G.

The optimal solution of (3.1) is precisely ProjS,G(x−α
−1G−1F(x, ξ)), the projection of the point

x−α−1G−1F(x, ξ) is onto the set Swith respect to the norm ‖ · ‖G. Thus for each x, we uniquely determine
the optimal solution of (3.1). Hereafter we shall denote it by H(x, ξ) for notational simplicity. Namely we
define the mapping H : Rn × Ξ → Rn as H(x, ξ) = ProjS,G(x− α

−1G−1F(x, ξ)). So it is not difficult to see
that for any x ∈ Rn and any ξ ∈ Ξ,

g(x, ξ) = (x−H(x, ξ))TF(x, ξ) −
α

2
‖x−H(x, ξ)‖2

G, (3.2)
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where
H(x, ξ) := ProjS.G(x−α

−1G−1F(x, ξ)), ∀x ∈ S, ξ ∈ Ξ a.s.,

where Ξ is uncertain space, F : Rn × Ξ→ Rn is a mapping.

Theorem 3.4. Let S be a closed convex set. Then z = ProjS,Gf(x, ξ) if and only if

zT (y− z) > fT (x, ξ)(y− z), ∀y ∈ S,

or
(z− f(x, ξ))T (y− z) > 0, ∀y ∈ S,

where f : Rn × Ξ→ Rn.

Proof. Note that z = ProjS,Gf(x, ξ) is the minimizer of g(y) over all y ∈ S. Since5g(y) = −2G(f(x, ξ) −y),
the result follows from the optimality conditions for constrained optimization problems.

Proposition 3.5. For each x ∈ Rn, let H(x, ξ) be the unique optimal solution of problem (3.1), or equivalently, let
H : Rn × Ξ→ Rn be the mapping defined by Theorem 3.3. Then x solves the variational inequality problem (1.2) if
and only if x∗ is a fixed point of the mapping H, i.e., x∗ = H(x∗, ξ).

Proof. Suppose that x∗ is a solution of the variational inequality, i.e., F(x∗, ξ)T (x− x∗) > 0. Multiplying
the above inequality by −α−1G−1 < 0, and adding x∗T (x− x∗) to both sides of the resulting inequality,
we obtain

x∗T (x− x∗) > [x∗ −α−1G−1F(x∗, ξ)]T (x− x∗).

From Theorem 3.4 and Lemma 3.2, we conclude that

x∗ = ProjS,G(x−α
−1G−1F(x, ξ)).

Conversely, if x∗ = ProjS,G(x−α
−1G−1F(x, ξ)), for α−1G−1 > 0, then

x∗T (x− x∗) > [x∗ −α−1G−1F(x∗, ξ)]T (x− x∗),

therefore F(x∗, ξ)T (x− x∗) > 0.

The next theorem, we establish the equivalence of the variational inequality problem (1.1) and the
optimization problem (3.2).

Theorem 3.6. Let the function g(x, ξ) : Rn×Ξ→ Rn be defined by (3.1). Then g(x, ξ) > 0, for every x ∈ S, ξ ∈ Ξ,
and g(x, ξ) = 0 if and only if x solves UVIP(f,S). Hence x solves the optimization problem (3.2) if and only if it
solves the variational inequality problem (1.2).

Proof.

g(x, ξ) = (x−H(x, ξ))TF(x, ξ) −
α

2
‖x−H(x, ξ)‖2

G

=
α

2
{2α−1(x−H(x, ξ))TF(x, ξ) − ‖x−H(x, ξ)‖2

G}

=
α

2
{2α−1(x−H(x, ξ))TF(x, ξ) − ‖x−H(x, ξ)‖2

G}

=
α

2
{2α−1(x−H(x, ξ))TF(x, ξ) − ‖x−H(x, ξ)‖2

G

−α−2FT (x, ξ)G−1F(x, ξ) +α−2FT (x, ξ)G−1F(x, ξ)}

=
α

2
{−(‖x−H(x, ξ)‖2

G − 2α−1(x−H(x, ξ))TF(x, ξ) +α−2FT (x, ξ)G−1F(x, ξ))

+α−2FT (x, ξ)G−1F(x, ξ)}
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=
α

2
{−‖(x−H(x, ξ)) −α−1G−1F(x, ξ))‖2

G +α−2FT (x, ξ)G−1F(x, ξ)}

=
α

2
{α−2FT (x, ξ)G−1F(x, ξ) − ‖(x−H(x, ξ)) −α−1G−1F(x, ξ)‖2

G}

=
α

2
{FT (x, ξ)α−1G−1Gα−1G−1F(x, ξ) − ‖H(x, ξ) − (x−α−1G−1F(x, ξ))‖2

G}

=
α

2
{‖α−1G−1F(x, ξ)‖2

G − ‖H(x, ξ) − (x−α−1G−1F(x, ξ))‖2
G}

=
α

2
{‖x− (x−α−1G−1F(x, ξ))‖2

G − ‖H(x, ξ) − (x−α−1G−1F(x, ξ))‖2
G}.

Since ‖x− (x−α−1G−1F(x, ξ))‖G equals the G-distance between x and x−α−1G−1F(x, ξ),

‖H(x, ξ) − (x−α−1G−1F(x, ξ))‖G,

is theG-distance between x−α−1G−1F(x, ξ) and its projectionH(x, ξ) onto S, we have g(x, ξ) > 0, for every
x ∈ S, ξ ∈ Ξ.. Moreover, the definition of H(x, ξ) implies that those distances are equal, i.e., g(x, ξ) = 0 if
and only if x = H(x, ξ). This along with Proposition 3.5 proves the first part of the theorem.

In what follows, we suppose that g(x, ·) is integrable on Ξ for each x ∈ S. Motivated by the work of
Chen and Fukushima [1], we propose the following deterministic formulation for UVIP(F,S), called it as
the ERM problem, in which we try to find a vector x ∈ S that minimizes an expected residual,

min θ(x) := E[g(x, ξ)] =
∫
Ξ

g(x, ξ)dΦ(ξ),

s.t. x ∈ S.
(3.3)

Here, E stands for the expectation with respect to the uncertain variable ξ ∈ Ξ and Φ(ξ) stands for the
uncertain distribution function. If Ξ has only one realization, then problem (3.3) reduces to (1.2). In the
rest of this paper, we assume that F is affine, that is,

F(x,w) :=M(ξ)x+ q(ξ),

where M : Ξ→ Rn×n and q : Ξ→ Rn are continuous and integrable on Ξ. We further suppose that

‖M(ξ)‖+ ‖q(ξ)‖ < +∞,

we can easily get
(‖M(ξ)‖+ ‖q(ξ)‖+ 1)2 < +∞, (3.4)

where ‖ · ‖ means the Euclidean norm. Moreover, we denote

f(x) := M̄x+ q̄,

with
M̄ := E[M(ξ)],

q̄ := E[q(ξ)].

Note that √
λmin‖x‖ 6 ‖x‖G 6

√
λmax‖x‖, (3.5)

where λmin and λmax indicate the smallest and largest eigenvalues of G, respectively. Therefore, if M̄ is
positive definite, then f is strongly monotone in the sense that

(x− y)T (f(x) − f(y)) > µminλ
−1
max‖x− y‖2

G, (3.6)

where µmin is the smallest eigenvalue of M
T+M
2 .
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4. Properties of the function θ

We first discuss the differentiability of the function θ

Lemma 4.1. Suppose that f(ξ, x) is a measurable and integrable function of ξ, for each x in (a,b). Let

ψ(x) =

∫
f(ξ, x)dφ(ξ).

Suppose that for ξ ∈ Ξ, f(ξ, x) has a derivative in (a,b). For the given f(ξ, x) and g(ξ), we suppose further that

|f ′(ξ, x)| 6 g(ξ)

for ξ ∈ A and x ∈ (a,b), where g is integrable. Then ψ(x) has derivative
∫
f ′x(ξ, x)dφ(ξ) on (a,b).

Proof. To prove this part, consider a fixed x. If ξ ∈ Ξ, then by the mean-value theorem,

f(ξ, x+ h) − f(ξ, x)
h

= f ′x(ξ, s),

where s lies between x and x + h. The ratio on the left goes to f ′x(ξ, x) as h → 0 and f ′x(ξ, x) is by
hypothesis dominated by the integrable function g(ξ). Therefore,

ψ(x+ h) −ψ(x)

h
=

∫
f(ξ, x+ h) − f(ξ, x)

h
dφ(ξ)→

∫
f ′x(ξ, x)dφ(ξ).

The condition involving g in this part can be weakened. It suffices to assume that for each x there is an
integrable g(ξ, x) such that |f ′x(ξ, x)| 6 g(ξ, x) for ξ ∈ A and all s in some neighborhood of x.

Theorem 4.2. Both g and θ are differentiable with respect to x. In particular, for any x ∈ S, we have

∇θ(x) = E[∇xg(x, ξ)]. (4.1)

Proof. Since F is differentiable with respect to x, in a similar way to [5], we can show that g is differentiable
with respect to x and

∇xg(x, ξ) = F(x, ξ) − (∇xF(x, ξ) −αG)(H(x, ξ) − x). (4.2)

On the other hand, note that g(x, ξ) > 0 for any x ∈ S and ξ ∈ Ξ. We then have from (3.2) and (3.5) that

α

2
‖x−H(x, ξ)‖2

G 6 (x−H(x, ξ))TF(x, ξ)

6 ‖(x−H(x, ξ))TF(x, ξ)‖
6 ‖(x−H(x, ξ))‖‖F(x, ξ)‖

6
1√
λmin
‖x−H(x, ξ)‖G‖F(x, ξ)‖.

It follows that
‖x−H(x, ξ)‖G 6

2
α
√
λmin
‖F(x, ξ)‖,

and hence
‖x−H(x, ξ)‖ 6 1√

λmin
‖x−H(x, ξ)‖G 6

2
αλmin

‖F(x, ξ)‖. (4.3)

Then, we have from (4.2) and (4.3) that

‖∇xg(x, ξ)‖ = ‖F(x, ξ) + (∇xF(x, ξ) −αG)(x−H(x, ξ))‖
6 ‖F(x, ξ)‖+ ‖(∇xF(x, ξ) −αG)‖‖x−H(x, ξ)‖



C. L. Li, Z. F. Jia, L. Zhang, J. Nonlinear Sci. Appl., 10 (2017), 5958–5975 5966

6 ‖F(x, ξ)‖+ (‖∇xF(x, ξ)‖+α‖G‖)‖x−H(x, ξ)‖

6 (1 +
2

αλmin
(‖M(ξ) +α‖G‖))‖F(x, ξ)‖

= (1 +
2

αλmin
(‖M(ξ) +α‖G‖))‖M(ξ)x+ q(ξ)‖

6 (1 +
2

αλmin
(‖M(ξ) +α‖G‖))(‖x‖+ 1)(‖M(ξ)‖+ ‖q(ξ)‖)2

6
2(‖x‖+ 1)
αλmin

(‖M(ξ)‖+ ‖q(ξ)‖)2 + (1 +
2‖G‖
λmin

)(‖x‖+ 1)(‖M(ξ)‖+ ‖q(ξ)‖).

By Lemma 4.1, we get the function θ is differentiable and (4.1) holds.

We next investigate the conditions for the boundedness of the level set defined by

(Lθ(c̄))
S := {x ∈ S|θ(x) 6 c},

where c is a nonnegative number. In the rest of this section, we suppose that M̄ is positive definite and
µmin > 0 is the smallest eigenvalue of M̄

T+M̄
2 . As a result, the function f is strongly monotone and (3.6)

holds. It has a unique solution [7] from the strong monotonicity of f. We denote by x∗ ∈ S the solution
below. Therefore, we have

(x− x∗)T f(x∗) > 0, ∀x ∈ S. (4.4)

Theorem 4.3. Let α ∈ (0, 2µminλ
−1
max). Then, the level set (Lθ(c))S is bounded for any c > 0.

Proof. Suppose that there is a nonnegative number c such that (Lθ(c̄))S is unbounded. This implies that
there exists a sequence xk ⊆ (Lθ(c̄))

S such that

lim
k→∞ ‖xk‖ = +∞.

We have

c̄ > θ(xk) = E[max
y∈S

{(xk − y)TF(x, ξ) −
α

2
‖xk − y‖2

G}],

from Jensen’s inequality we can get

E[max
y∈S

{(xk − y)TF(x, ξ) −
α

2
‖xk − y‖2

G}] > max
y∈S

{(xk − y)TE[F(x, ξ)] −
α

2
‖xk − y‖2

G}.

So we further get

c̄ > max
y∈S

{(xk − y)TE[F(x, ξ)] −
α

2
‖xk − y‖2

G}

> (xk − x∗)TE[F(xk, ξ)] −
α

2
‖xk − x∗‖2

G

> (xk − x∗)T f(xk) −
α

2
‖xk − x∗‖2

G.

From (3.6) we can get
(xk − x∗)T (f(xk) − f(x∗)) > µminλ

−1
max‖x− y‖2

G.

So we have

(xk − x∗)T f(xk) −
α

2
‖xk − x∗‖2

G > (xk − x∗)T f(x∗) + (µminλ
−1
max −

α

2
)‖xk − x∗‖2

G.



C. L. Li, Z. F. Jia, L. Zhang, J. Nonlinear Sci. Appl., 10 (2017), 5958–5975 5967

From (4.4) we can get

(xk − x∗)T f(x∗) + (µminλ
−1
max −

α

2
)‖xk − x∗‖2

G > (µminλ
−1
max −

α

2
)‖xk − x∗‖2

G.

Finally we get

c̄ >(µminλ
−1
max −

α

2
)‖xk − x∗‖2

G, k→∞−−−→ +∞.

This is a contradiction. Hence (Lθ(c))
S is bounded for any number c > 0.

We further have the following result.

Theorem 4.4. Let α ∈ (0, 2µminλ
−1
max) and let x∗ be the unique solution of VI(f,S). We have

‖x− x∗‖G 6

√
(µminλ

−1
max −

α

2
)−1θ(x).

Proof. Let x ∈ S. We can obtain

µminλ
−1
max‖x− x∗‖2

G 6 (x− x∗)T (f(x) − f(x∗))

6 (x− x∗)T f(x).

Therefore, we have

(µminλ
−1
max −

α

2
)‖x− x∗‖2

G 6 (x− x∗)T f(x) −
α

2
‖x− x∗‖2

G

6 max
y∈S

{(x− y)T f(x) −
α

2
‖xk − y‖2

G}

= E[max
y∈S

{(x− y)TF(x, ξ) −
α

2
‖xk − y‖2

G}]

= θ(x),

where the last inequality follows from Jensen’s inequality. This completes the proof of the theorem.

5. Convergence analysis

Because there dose not exist the density function of uncertain variable, so the distribution function
Φ(x) is not differentiable in uncertain theory. Then we consider the following approximation problem of
(3.3) by the differentiable properties of g(x, ξ). Let Tk = {ti|i = 1, 2, · · · ,Nk} be a set satisfying Nk → ∞
as k→∞.

min θk(x) = g(x, t)Φ(t)|t∈T −
1
Nk

∑
ti∈Tk

Φ(t)g
′
(x, ti),

s.t. x ∈ S.

(5.1)

5.1. Limiting behavior of global optimal solutions
From now on, we denote by S∗ and S∗k the sets of optimal solutions of problems (3.3) and (5.1),

respectively. We first give some lemmas.

Lemma 5.1. For any fixed x ∈ S, there holds that

θ(x) = lim
k→∞ θk(x).
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Proof. Since

θ(x) = E[g(x, ξ)] =
∫
T

(x, t)dΦ(t)

= g(x, t)Φ(t)|t∈T −

∫
T

Φ(t)dg(x, t)

= g(x, t)Φ(t)|t∈T −

∫
T

Φ(t)g
′
(x, t)dt,

while

θk(x) = g(x, t)Φ(t)|t∈T −
1
Nk

∑
ti∈Tk

Φ(t)g
′
(x, ti).

Owing to lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(t)g
′
(x, ti) =

∫
T Φ(t)g

′
(x, t)dt, so

θ(x) = lim
k→∞ θk(x).

Lemma 5.2. Assume that M̄ is positive definite and that Mk ∈ Rn×n tends to M̄ as k→∞. Then, there exists a
number k0 such that Mk is positive definite for every k > k0.

Proof. Suppose that {Mk} has a subsequence {Mkj}, each member of which is not positive definite. This
implies that, for each j,

(xj)TMkjx
j 6 0, (5.2)

holds for some xj ∈ Rn with ‖xj‖ = 1. Since {xj} is bounded, without loss of generality, we may assume
that lim

j→∞ xj = x̄. Noting that

(xj)TMkjx
j − (x̄)TM̄x̄ = (xj)T (Mkj − M̄)xj

+ (xj)TM̄(xj − x̄) + (xj − x̄)TM̄x̄
j→∞−−−→ 0,

we have that
lim
j→∞(xj)TMkjx

j = (x̄)TM̄x̄.

It follows from (5.2) that
(x̄)TM̄x̄ 6 0, ‖x̄‖ = 1,

which contradicts the fact that M̄ is a positive definite matrix. This completes the proof.

Lemma 5.3. Suppose that M̄ is positive definite and lim
k→∞Mk = M̄. Let µk be the biggest eigenvalue of

(MT
k +Mk)/2 for each k. Then, we have that lim

k→∞µk = µmax.

Proof. Lemma 5.3 can be verified easily and its proof is omitted here.

We next prove the main results of this subsection.

Theorem 5.4. Assume that M̄ is positive definite. We denote k̄ =M
′
(t)Φ(t)|t∈T ,m = (Φ(t)|t∈T − 1)f(x∗) and

k̂ =
∫
T Φ(t)dt. Let λmax be the same as in (3.5) and Let µmax be the same as Lemma 5.3. Let k̄ > µmax and

α ∈ (0, min{ k̄−µmax−m

k̂λmax
, k̄−µmax+m

k̂λmax
}). Then, there exists an integer such that for each k > k0, the level set LS

θk
(c)

is bounded for any c > 0. In particular, the solution set S∗k is nonempty and bounded for every sufficiently large k.
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Proof. We denote the solution of UVIP(f,S) by x∗, we then have (4.4). It then follows that

c̄ > θk(xj) = g(xj, t)Φ(t)|t∈T −
1
Nk

∑
ti∈Tk

Φ(ti)g ′t(x
j, ti).

Owing to g(xj, t)Φ(t)|t∈T is bounded, we next prove 1
Nk

∑
ti∈Tk

Φ(ti)g
′
(xj, ti) is bounded. Let k > k0.

Suppose that there is a ĉ > 0 such that 1
Nk

∑
ti∈Tk

Φ(t)g ′t(x
j, ti) is unbounded. This implies that there exists

a sequence {xj} ⊆ LS
θk
(c) such that lim

j→∞ ‖xj‖ = +∞. Without loss of generality, we may assume that

‖xj − x∗‖ > 1 for each j. Let

Mk :=M(xj, t)Φ(t)|t∈T −
1
Nk

∑
ti∈Tk

Φ(ti)M ′t(x
j, ti).

It is easy to get that
lim
k→∞Mk = M̄.

It is also easy to get that

1
Nk

∑
ti∈Tk

Φ(ti)M ′t(x
j, ti) =M(xj, t)Φ(t)|t∈T −Mk.

It then follows that

ĉ >
1
Nk

∑
ti∈Tk

Φ(ti)g ′t(x
j, ti)

=
1
Nk

∑
ti∈Tk

Φ(ti)max
y∈S

{[M ′t(t
i)xj + q ′t(t

i)]T (xj − y) −
α

2
‖xj − y‖2

G}

>
1
Nk

∑
ti∈Tk

Φ(ti){[M ′t(t
i)xj + q ′t(t

i)]T (xj − x∗) −
α

2
‖xj − x∗‖2

G}

=
1
Nk

∑
ti∈Tk

Φ(ti){[M ′t(t
i)(xj − x∗ + x∗) + q ′t(t

i)]T (xj − x∗) −
α

2
‖xj − x∗‖2

G}

= (xj − x∗)T (M ′t(t)Φ(t)|t∈T −Mk)(x
j − x∗) + [

1
Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i))]T (xj − x∗)

−
α

2
‖xj − x∗‖2

G

1
Nk

∑
ti∈Tk

Φ(ti)

> (xj − x∗)T (M ′t(t)Φ(t)|t∈T −Mk)(x
j − x∗) − ‖ 1

Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i))‖‖(xj − x∗)‖

−
α

2
‖xj − x∗‖2

G

1
Nk

∑
ti∈Tk

Φ(ti),

where we can take ε ∈ (0, min{2k̄−2µmax−αk̂λmax+m
4+αλmax

, 2k̄−2µmax−αk̂λmax−m
4+αλmax

}) and

f(x∗) = M̄x∗ + q̄

= (M(t)Φ(t)|t∈T − (

∫
T

Φ(t)M ′t(t)dt)x
∗ + q(t)Φ(t)|t∈T −

∫
T

Φ(t)q ′t(t)dt
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= (M(t)x∗ + q(t))Φ(t)|t∈T − (

∫
T

Φ(t)M ′t(t)dt)x
∗ + q ′t(t)dt)

= f(x∗)Φ(t)|t∈T − lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i)),

so we have lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i)) = (Φ(t)|t∈T − 1)f(x∗).

There exists ε > 0 such that

|
1
Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i)) − (Φ(t)|t∈T − 1)f(x∗)| < ε.

Then
−ε <

1
Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i)) − (Φ(t)|t∈T − 1)f(x∗) < ε.

It implies

(Φ(t)|t∈T − 1)f(x∗) − ε <
1
Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i)) < (Φ(t)|t∈T − 1)f(x∗) + ε.

We use the same ε in next two inequalities, then

1
Nk

∑
ti∈Tk

Φ(ξ) < k̂+ ε,

µk < µmax + ε.

If 1
Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i)) > 0, then

−‖ 1
Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i))‖ > −‖(Φ(t)|t∈T − 1)f(x∗) + ε‖ = −(m+ ε),

so

ĉ > (k̄− µk)‖xj − x∗‖2 − (m+ ε)‖xj − x∗‖− α(k̂+ ε)
2

‖xj − x∗‖2
G

> [(k̄− µmax − ε−
α(k̂+ ε)λmax

2
)‖xj − x∗‖−m− ε]‖xj − x∗‖

>
1
2
[2k̄− 2µmax −αk̂λmax −m− (4 +αλmax)ε]‖xj − x∗‖

j→∞−−−→ +∞,

while
1
Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i)) < 0,

then
−‖ 1
Nk

∑
ti∈Tk

Φ(ti)(M ′t(t
i)x∗ + q ′t(t

i))‖ > −‖(Φ(t)|t∈T − 1)f(x∗) − ε‖ = m− ε,

so

ĉ > (k̄− µk)‖xj − x∗‖2 + (m− ε)‖xj − x∗‖− α(k̂+ ε)
2

‖xj − x∗‖2
G

> [(k̄− µmax − ε−
α(k̂+ ε)λmax

2
)‖xj − x∗‖+m− ε]‖xj − x∗‖

>
1
2
[2k̄− 2µmax −αk̂λmax +m− (4 +αλmax)ε]‖xj − x∗‖

j→∞−−−→ +∞.
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This is a contradiction, so 1
Nk

∑
ti∈Tk

Φ(t)g ′t(x
j, ti) is bounded and hence LS

θk
(c) is bounded for any

c > 0.

Theorem 5.5. Assume that M̄ is positive definite, α ∈ (0, 2µminλ
−1
max). Let xk ∈ S∗k for each sufficiently large k.

Then, every accumulation point of the sequence {xk} is contained in S∗.

Proof. Let x∗ be an accumulation point of {xk}. Without loss of generality, let {xk} converge to x∗. It is
obvious that x∗ ∈ S, we first show that

lim
k→∞(θk(xk) − θk(x∗)) = 0. (5.3)

In fact, since xk → x∗ as k → +∞, there exists a constant C > 0 such that ‖x∗‖ 6 C and ‖xk‖ 6 C. It
follows from the mean-value theorem and Theorem 4.2 that, for any t ∈ T and any k,

|g(xk, t) − g(x∗, t)| = |∇xg(yk, t)(xk − x∗)|

6 C
′
((‖M(t)‖+ ‖q(t)‖+ 1)2)‖xk − x∗‖,

so |g ′t(x
k, t) − g ′t(x

∗, t)| 6 C
′∇t((‖M(t)‖+ ‖q(t)‖+ 1)2)‖xk − x∗‖, where yk is between {xk} and x∗,

C
′
= (C+ 1)max{

2
αλmin

, 1 +
2‖G‖
λmin

}.

Then, we have

|θk(xk) − θk(x∗)| = |g(xk, t)Φ(t)|t∈T −
1
Nk

∑
ti∈Tk

Φ(t)g ′t(x
k, ti)

− g(x∗, t)Φ(t)|t∈T −
1
Nk

∑
ti∈Tk

Φ(ti)g ′t(x
∗, ti)|

6 |g(xk, t)Φ(t)|t∈T − g(x
∗, t)Φ(ti)|t∈T |

+ |
1
Nk

∑
ti∈Tk

Φ(t)(g ′t(x
k, ti) − g ′t(x

∗, ti))|

6 C
′‖xk − x∗‖ 1

Nk

∑
ti∈Tk

Φ(ti)∇t((‖M(t)‖+ ‖q(t)‖+ 1)2)

6 C
′‖xk − x∗‖ 1

Nk

∑
ti∈Tk

∇t((‖M(t)‖+ ‖q(t)‖+ 1)2)
k→∞−−−→ 0,

where the limit follows from the facts that the sequence {xk} converges to x∗. By (3.4), we can get

lim
k→∞ 1

Nk

∑
ti∈Ξk

∇t((‖M(t)‖+ ‖q(t)‖+ 1)2) = (‖M(t)‖+ ‖q(t)‖+ 1)2 < +∞.

Therefore, (5.3) is valid.
On the other hand, noting that

|θk(xk) − θ(x∗)| 6 |θk(xk) − θk(x∗)|+ |θk(x∗) − θ(x∗)|.

From Lemma 5.1 and (5.3), we have

lim
k→∞ θk(xk) = θk(x∗). (5.4)

For each sufficiently large k, xk ∈ S∗k, then

θk(xk) 6 θk(x), (5.5)

holds for any x ∈ S. Letting k → +∞ in (5.5) and taking (5.4) and Lemma 5.1 into account, we get
θk(xk) 6 θ(x), which means x∗ ∈ S∗.
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5.2. Limiting behavior of stationary points
Suppose that S = {x ∈ Rn|c(x) 6 0}, where ci : Rn → R are all continuously differentiable convex

functions for i = 1, 2, · · · ,m. We next consider the limiting behavior of the stationary points of problems
(5.2). We will use the standard definition of stationarity, i.e., a point xk is said to be stationary to (5.2) if
there exists a Lagrange multiplier vector µk ∈ Rm such that

∇θk(xk) +
m∑
i=1

µki∇ci(xk) = 0, (5.6)

0 6 µk, c(xk) 6 0, and (µk)Tc(xk) = 0. (5.7)

For problem (3.3), x∗ is said to be a stationary point if there exists a Lagrange multiplier vector µ∗ ∈ Rm
such that

∇θ(x∗) +
m∑
i=1

µ∗i∇ci(x∗) = 0, (5.8)

0 6 µ∗, c(x∗) 6 0, and (µ∗)Tc(x∗) = 0. (5.9)

In addition, we say that the Slater’s constraint qualification holds, if there exists a vector y ∈ Rn such that
ci(y) < 0 for each i = 1, 2, · · · ,m.

Theorem 5.6. Suppose that lim
k→∞ xk = x∗. Then, we have

lim
k→∞∇θk(xk) = ∇θ(x∗).

Proof. From the nonexpansive property of ProjS,G and (3.5), we obtain

‖H(x∗, ti) −H(xk, ti)‖G 6 ‖(x∗ −α−1G−1F(x∗, ti)) − (xk −α−1G−1F(xk, ti))‖G
6 ‖x∗ − xk‖G +α−1‖G−1M(ti)(xk − x∗)‖G

6 λ
1
2
max(1 +α−1‖G−1‖‖M(ti)‖)‖(xk − x∗)‖.

Using (3.5) again, we have

‖H(x∗, ti) −H(xk, ti)‖ 6 λ−
1
2

min‖H(x
∗, ti) −H(xk, ti)‖G

6 λ
− 1

2
minλ

1
2
max(1 +α−1‖G−1‖‖M(ti)‖)‖(xk − x∗)‖ k→∞−−−→ 0.

Here anything that has nothing to do with x can be considered a constant.
From the nonexpansive property of ProjS,G and (3.5) again, it implies that

‖H ′(x∗, ti) −H ′(xk, ti)‖G 6 ‖(x∗ −α−1G−1F
′
(x∗, ti)) − (xk −α−1G−1F

′
(xk, ti))‖G

6 ‖x∗ − xk‖G +α−1‖G−1M
′
(ti)(xk − x∗)‖G

6 λ
1
2
max(1 +α−1‖G−1‖‖M ′

(ti)‖)‖(xk − x∗)‖.

Though (3.5) again, we obtain

‖H ′(x∗, ti) −H ′(xk, ti)‖ 6 λ−
1
2

min‖H
′
(x∗, ti) −H

′
(xk, ti)‖G

6 λ
− 1

2
minλ

1
2
max(1 +α−1‖G−1‖‖M ′

(ti)‖)‖(xk − x∗)‖ k→∞−−−→ 0.
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Here only x is the variable, others can be considered a constant. It then follows from (5.1)

lim
k→∞∇θk(xk) = lim

k→∞∇xg(xk, t)Φ(t)|t∈T − lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)g ′′xt(x
k, ti)

= ∇xg(x∗, t)Φ(t)|t∈T − lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)g ′′xt(x
k, ti),

while

lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)g ′′xt(x
k, ti)

= lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)[F ′t(x
k, ti) − F ′′xt(x

k, ti)(H(xk, ti) − xk) − (F ′x(x
k, ti) −αG)H ′t(x

k, ti)]

= lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)[M ′t(t
i)xk + q ′t(t

i) +M ′t(t
i)(xk −H(xk, ti)) − (M(ti) −αG)H ′t(x

k, ti)]

= lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)M ′t(t
i) · lim

k→∞ xk + lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)q ′t(t
i)

+ lim
k→∞[ 1

Nk

∑
ti∈Tk

Φ(ti)M ′t(t
i)]T · lim

k→∞ xk

− lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)M ′t(t
i)H(x∗, ti)

+ lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)M ′t(t
i)(H(x∗, ti) −H(xk, ti))

− lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)(M(ti) −αG)H ′t(x
∗, ti)

+ lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)(M(ti) −αG)(H ′t(x
∗, ti) −H ′t(x

k, ti))

= lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)M ′t(t
i) · lim

k→∞ x∗ + lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)q ′t(t
i)

+ lim
k→∞[ 1

Nk

∑
ti∈Tk

Φ(ti)M ′t(t
i)]T · lim

k→∞ x∗

− lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)M ′t(t
i)H(x∗, ti) − lim

k→∞ 1
Nk

∑
ti∈Tk

Φ(ti)(M(ti) −αG)H ′t(x
∗, ti)

= lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)[M ′t(t
i)x∗ + q ′t(t

i) +M ′t(t
i)(x∗ −H(x∗, ti)) − (M(ti) −αG)H ′t(x

∗, ti)]

= lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)[F ′t(x
∗, ti) − F ′′xt(x

∗, ti)(H(x∗, ti) − x∗) − (F ′x(x
∗, ti) −αG)H ′t(x

∗, ti)]

= lim
k→∞ 1

Nk

∑
ti∈Tk

Φ(ti)g ′′xt(x
∗, ti)

=

∫
T

Φ(t)g ′′xt(x
∗, t)dt.
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We know that

∇θ(x∗) = E[∇xg(x∗, t)] =
∫
T

∇xg(x∗, t)dΦ(t)

= ∇xg(x∗, t)Φ(t)|t∈T −

∫
T

Φ(t)d∇xg(x∗, t)

= ∇xg(x∗, t)Φ(t)|t∈T −

∫
T

Φ(t)g ′′xt(x
∗, t)dt.

So, we have
lim
k→∞∇θk(xk) = ∇θk(x∗).

Theorem 5.7. Let xk be stationary to (5.2) for each k and let lim
k→∞ xk = x∗. Suppose that the Slater’s constraint

qualification holds. Then, {µk} is bounded.

Proof. We denote

υk :=

m∑
i=1

µki . (5.10)

Suppose that {µk} is unbounded, which means lim
k→∞υk = +∞. Taking a subsequence, we may assume

that the limits µ̄i := lim
k→∞ µ

k
i

υk
(i = 1, 2, · · · ,m) exist. It is easy to see from (5.7) that µ̄i = 0 for every

i 6∈ Υ(x∗) := {i | ci(x
∗) = 0, 1 6 i 6 m}. Then we have from (5.10) that

∑
i∈Υ(x∗)

µ̄i =

m∑
i=1

µ̄i = 1. (5.11)

Note that ∇ci is continuous for each i, by Theorem 5.6, {∇θk(xk)} is convergent. Then, dividing (5.6) by
υk and taking a limit, we obtain

∑
i∈Υ(x∗)

µ̄i∇ci(x∗) =
m∑
i=1

µ̄i∇ci(x∗) = 0. (5.12)

Recall that the Slater’s constraint qualification holds. So, there exists a vector y ∈ Rn such that ci(y) < 0
for each i = 1, 2, · · · ,m. From ci is convex, we have

(y− x∗)T∇ci(x∗) 6 ci(y) − ci(x∗) = ci(y) < 0, ∀i ∈ Υ(x∗). (5.13)

Since µ̄i > 0 for each i, it follows from (5.12) and (5.13) that µ̄i = 0 for each i ∈ Υ(x∗). This contradicts
(5.11) and hence {µk} is bounded.

Theorem 5.8. Let xk be stationary to (5.2) for each k and let x∗ be an accumulation point of {xk}. If the Slater’s
constraint qualification holds, then x∗ is a stationary point of problem (3.3).

Proof. For simplicity, let xk converge to x∗. By Theorem 5.7, the sequence {µk} is bounded. There exists
a subsequence, still denoted by {µk} such that the limit µ∗ := lim

k→∞µk. Note that both ci and ∇ci are

continuous for each i, by Theorem 5.6, it holds lim
k→∞∇θk(xk) = ∇θ(x∗). Taking a limit in (5.6) and (5.7),

we obtain (5.8) and (5.9) immediately. That is, x∗ is stationary to problem (3.3).
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6. Conclusions

We have proposed an ERM model for the uncertain variational inequality problem which provide a
new optimization problem formulation of the variational inequality problem. Properties of the model
have been investigated. We have also completed convergence analysis about the function θ based on
uncertain theory. In addition, there have been presented a number of gap functions for the classical
variational inequality problems, see [4, 6] for details. It may be possible to extend the proposed approach
instead of the regularized gap function by other gap functions.
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