Infinitely many periodic solutions for second-order discrete Hamiltonian systems

Da-Bin Wang*, Qin Xiao, Wen Guan

Department of Applied Mathematics, Lanzhou University of Technology, 730050 Lanzhou, People's Republic of China.

Communicated by K. Q. Lan

Abstract

Infinitely many periodic solutions are obtained for a second-order discrete Hamiltonian systems by using the minimax methods in critical point theory. Our results extend and improve previously known results. ©2017 All rights reserved.

Keywords: Minimax methods, periodic solutions, sublinear, discrete Hamiltonian systems, critical point.

2010 MSC: 34C25, 58E50.

1. Introduction

Consider the following second order discrete Hamiltonian system

\[
\begin{aligned}
\triangle^2 u(t-1) + \nabla F(t, u(t)) &= 0, \quad t \in \mathbb{Z}[1, T], \\
u(0) &= u(T),
\end{aligned}
\] (1.1)

where \(T \in \mathbb{Z}, \mathbb{Z}[1, T] \) denotes the discrete interval \(\{1, 2, \cdots, T\} \), \(\triangle u(t) = u(t+1) - u(t) \), \(\triangle^2 u(t) = \triangle(\triangle u(t)) \) and \(\nabla F(t, x) \) denotes the gradient of \(F \) with respect to the second variable. \(F \) satisfies the following assumption:

(A) \(F(t, x) \in C^1(\mathbb{R}^N, \mathbb{R}) \) for any \(t \in \mathbb{Z}[0, T] \) and \(F \) is \(T \)-periodic in the first variable.

Since Guo and Yu developed a new method to study the existence and multiplicity of periodic solutions of difference equations by using critical point theory (see [4–6, 18], the existence and multiplicity of periodic solutions for problem (1.1) have been extensively studied and lots of interesting results have been worked out, see [1–3, 7, 8, 10–17] and the references therein. In particular, when the nonlinearity \(\nabla F(t, x) \) is bounded, that is, there exists \(M > 0 \) such that \(|\nabla F(t, x)| \leq M \) for all \((t, x) \in \mathbb{Z}[0, T] \times \mathbb{R}^N \), and that

\[
\sum_{t=0}^{T} F(t, x) \to +\infty \quad \text{as} \quad |x| \to \infty.
\]

Guo and Yu [6] obtained one periodic solution to problem (1.1).

*Corresponding author

Email addresses: wangdb96@163.com (Da-Bin Wang), 1063838122@qq.com (Qin Xiao), mathguanw@163.com (Wen Guan)

doi:10.22436/jnsa.010.11.26

Received 2017-07-28
In [12, 13], Xue and Tang generalized these results to the sublinear case:

$$|\nabla F(t, x)| \leq M_1 |x|^{\alpha} + M_2, \quad \forall (t, x) \in \mathbb{Z}[0, T] \times \mathbb{R}^N,$$

and

$$|x|^{-2\alpha} \sum_{t=0}^{T} F(t, x) \to \pm \infty \text{ as } |x| \to \infty,$$

where $M_1 > 0$, $M_2 > 0$ and $\alpha \in [0, 1)$.

In [10], Tang and Zhang considered the nonlinearity $\nabla F(t, x)$ satisfies the following condition:

$$|\nabla F(t, x)| \leq f(t) |x|^{\alpha} + g(t), \quad \forall (t, x) \in \mathbb{Z}[0, T] \times \mathbb{R}^N, \quad (1.2)$$

or

$$|\nabla F(t, x)| \leq f(t) |x| + g(t), \quad \forall (t, x) \in \mathbb{Z}[0, T] \times \mathbb{R}^N, \quad (1.3)$$

where $f, g : \mathbb{Z}[0, T] \to \mathbb{R}^+, \alpha \in (0, 1)$. Under these conditions, periodic solutions of problem (1.1) have been obtained, which completed and extended the results in [12, 13].

Recently, Che and Xue [1] obtained infinitely many periodic solutions for problem (1.1) when (1.2) holds, and

$$\limsup_{r \to +\infty} \inf_{x \in \mathbb{R}^N, |x|=r} \sum_{t=0}^{T} F(t, x) = +\infty, \quad (1.4)$$

and

$$\liminf_{R \to +\infty} \sup_{x \in \mathbb{R}^N, |x|=R} |x|^{-2\alpha} \sum_{t=0}^{T} F(t, x) = -\infty, \quad (1.5)$$

where $\alpha \in (0, 1)$.

In this paper, motivated by the results mentioned above, we will further investigate infinitely many periodic solutions to the problem (1.1) under conditions (1.2) or (1.3).

Let H_T be a Hilbert space defined by

$$H_T = \{u : \mathbb{Z} \to \mathbb{R}^N \mid u(t) = u(t + T), \forall t \in \mathbb{Z}\},$$

with the inner product

$$\langle u, v \rangle = \sum_{t=0}^{T} (u(t), v(t)),$$

and the norm

$$\|u\| = \left(\sum_{t=0}^{T} |u(t)|^2\right)^{\frac{1}{2}}.$$

Let

$$\|u\|_\infty = \max_{t \in \mathbb{Z}[0, T]} |u(t)|.$$

Since H_T is finite dimensional, one has that:

$$\frac{1}{\sqrt{T}} \|u\| \leq \|u\|_\infty \leq \|u\|.$$

Let

$$\Phi(u) = \frac{1}{2} \sum_{t=0}^{T} |\Delta u(t)|^2 - \sum_{t=0}^{T} F(t, u(t)), \quad \forall u \in H_T.$$

It is well-known that the solutions of problem (1.1) correspond to the critical points of Φ (see [9]).
Lehman 1.2. Suppose that \(\lambda \) where \(\lambda \) is defined by
\[
N_k = \{ u \in H_1 | -\Delta^2 u(t-1) = \lambda_k u(t) \},
\]
where \(\lambda_k = 2 - 2 \cos k\omega, \omega = \frac{2\pi}{T}, k \in \mathbb{Z}[0,\left[\frac{T}{2} \right]] \) (where \([c] \) denotes the largest integer less than \(c \)). Then we have

1. \(N_k \perp N_j \) for \(k \neq j \) and \(j, k \in \mathbb{Z}[0,\left[\frac{T}{2} \right]] \).
2. \(H_T = \oplus_{k=0}^{\left[\frac{T}{2} \right]} N_k \).

Set \(H_1 = N_0 \) and \(H_2 = \oplus_{k=1}^{\left[\frac{T}{2} \right]} N_k \). Then \(H_T = H_1 \oplus H_2 \) and
\[
\sum_{t=0}^{T} |\nabla u(t)|^2 \geq \lambda_1 \|u\|, \quad \forall u \in H_2.
\]

The element \(u \) of \(H_T \) is just the eigenvector corresponding to \(\lambda_0 = 0 \) which satisfies \(u(t) \equiv u(0) \) for \(t \in \mathbb{Z}[0,T] \).

Our main results are the following theorems.

Theorem 1.2. Suppose that (A), (1.2) and (1.4) hold, and
\[
\liminf_{r \to +\infty} \sup_{x \in \mathbb{R}^N, |x| = r} |x|^{-2\alpha} \sum_{t=0}^{T} F(t, x) < -\frac{\left(\sum_{t=0}^{T} f(t) \right)^2}{2\lambda_1}. \tag{1.6}
\]

Then

(i) the problem (1.1) has infinitely many periodic solutions \(\{u_n\} \) such that \(\Phi(u_n) \to +\infty \) as \(n \to \infty \);

(ii) the problem (1.1) has infinitely many periodic solutions \(\{u_n^*\} \) such that \(\Phi(u_n^*) \to -\infty \) as \(m \to \infty \).

Theorem 1.3. Suppose that (A), (1.3) with \(\sum_{t=0}^{T} f(t) < \frac{\lambda_1}{4} \) and (1.4) hold, and
\[
\liminf_{r \to +\infty} \sup_{x \in \mathbb{R}^N, |x| = r} |x|^{-2} \sum_{t=0}^{T} F(t, x) < -\frac{\left(\sum_{t=0}^{T} f(t) \right)^2}{2\left(\lambda_1 - 2\sum_{t=0}^{T} f(t) \right)}. \tag{1.7}
\]

Then

(i) the problem (1.1) has infinitely many periodic solutions \(\{u_n\} \) such that \(\Phi(u_n) \to +\infty \) as \(n \to \infty \);

(ii) the problem (1.1) has infinitely many periodic solutions \(\{u_n^*\} \) such that \(\Phi(u_n^*) \to -\infty \) as \(m \to \infty \).

Remark 1.4. Obviously, the condition (1.6) is different from condition (1.5) that of in [1]; Theorem 1.3 is completely new comparing with main result of [1] since we allow \(\alpha = 1 \) although the method using in this paper is same as that of in [1].

2. Proof of main results

Since the proof of Theorem 1.2 is similar to that of Theorem 1.3, we only prove Theorem 1.3.

For the sake of convenience, we denote
\[
\gamma = \sum_{t=0}^{T} f(t), \quad \beta = \sum_{t=0}^{T} g(t).
\]
Lemma 2.1. Suppose that (1.3) with $\sum_{t=0}^{T} f(t) < \frac{\lambda_1}{4}$ holds, then
\[
\Phi(u) \to +\infty \text{ as } \|u\| \to \infty \text{ in } H_2.
\]

Proof. From (1.3), for all $u \in H_2$ we have
\[
\Phi(u) = \frac{1}{2} \sum_{t=0}^{T} |\triangle u(t)|^2 - \sum_{t=0}^{T} F(t, u(t))
\]
\[
\geq \frac{\lambda_1}{2} |u|^2 - \sum_{t=0}^{T} f(t)|u|^2 - \sum_{t=0}^{T} |g(t)|u(t)|
\]
\[
\geq \frac{\lambda_1}{2} |u|^2 - \|u\|^2 \sum_{t=0}^{T} f(t) - \|u\| \sum_{t=0}^{T} g(t)
\]
\[
\geq \frac{\lambda_1}{2} |u|^2 - \|u\|^2 \sum_{t=0}^{T} f(t) - \|u\| \sum_{t=0}^{T} g(t)
\]
\[
= (\frac{\lambda_1}{2} - \gamma) |u|^2 - \beta |u|.
\]
So, $\Phi(u) \to +\infty$ as $\|u\| \to \infty$ in H_2. \qed

Lemma 2.2. Suppose that (1.4) holds. Then there exists positive real sequence (a_n) such that
\[
\lim_{n \to \infty} a_n = +\infty,
\]
\[
\lim_{n \to \infty} \sup_{u \in H_2, \|u\| = a_n} \Phi(u) = -\infty.
\]

Proof. By (1.4), it is easy to obtain this result, so we omit the detail here. \qed

Lemma 2.3. Suppose that (1.3) with $\sum_{t=0}^{T} f(t) < \frac{\lambda_1}{4}$ and (1.7) hold. Then there exists positive real sequence (b_m) such that
\[
\lim_{m \to \infty} b_m = +\infty,
\]
\[
\lim_{m \to \infty} \inf_{u \in H_{b_m}} \Phi(u) = +\infty,
\]
where $H_{b_m} = \{u \in H_1 : \|u\| = b_m\} \bigoplus H_2$.

Proof. By (1.7), let $a > \frac{1}{\lambda_1 - 2\gamma}$ such that
\[
\lim_{r \to +\infty} \sup_{x \in \mathbb{R}^N, |x| = r} |x|^{-2} \sum_{t=0}^{T} F(t, x) < \frac{a}{2} \gamma^2.
\]
Let $u \in H_{b_m}$, $u = \overline{u} + \tilde{u}$, where $\overline{u} \in H_1$, $\tilde{u} \in H_2$. So, we have
\[
\left| \sum_{t=0}^{T} F(t, u(t)) - \sum_{t=0}^{T} F(t, \overline{u}) \right| = \left| \sum_{t=0}^{T} \int_{0}^{1} \nabla F(t, \overline{u}(t) + s\tilde{u}(t), \tilde{u}(t)) ds \right|
\]
\[
\leq \sum_{t=0}^{T} \int_{0}^{1} f(t)|\overline{u}(t)| + s\tilde{u}(t)|\tilde{u}(t)| ds + \sum_{t=0}^{T} \int_{0}^{1} |g(t)|\tilde{u}(t)| ds
\]
\[
\leq \sum_{t=0}^{T} f(t) (|\overline{u}(t)| + |\tilde{u}(t)|) + \sum_{t=0}^{T} g(t)|\tilde{u}(t)|
for all \(u \in H_{b_m} \). Therefore, one has that

\[
\Phi(u) = \frac{1}{2} \sum_{t=0}^{T} |\triangle u(t)|^2 - \sum_{t=0}^{T} F(t, u(t)) \\
= \frac{1}{2} \sum_{t=0}^{T} |\triangle \tilde{u}(t)|^2 - \left(\sum_{t=0}^{T} F(t, u(t)) - \sum_{t=0}^{T} F(t, \tilde{u}(t)) \right) - \sum_{t=0}^{T} F(t, \tilde{u}(t)) \\
\geq \left(\frac{\lambda_1}{2} - \frac{1}{2\alpha} - \gamma \right) ||\tilde{u}||^2 - ||\tilde{u}|| \\
- ||\tilde{u}||^2 \left(||\tilde{u}||^{-2} \sum_{t=0}^{T} F(t, \tilde{u}(t)) + \frac{a}{2} \gamma^2 \right)
\]

for all \(u \in H_{b_m} \). From condition (1.7) and the above inequality the proof is finished. \(\square \)

Now we give the proof of Theorem 1.3.

The proof of Theorem 1.3. Let \(B_{a_n} \) be a ball in \(H_1 \) with radius \(a_n \). Set

\[
\Gamma_n = \{ \gamma \in C(B_{a_n}, H_1), \gamma|_{\partial B_{a_n}} = \text{Id} |_{\partial B_{a_n}} \},
\]

and

\[
c_n = \inf_{\gamma \in \Gamma_n} \max_{x \in B_{a_n}} \Phi(\gamma(x)).
\]

It is easy to obtain that \(\Phi \) is coercive on \(H_2 \) from Lemma 2.1. So, there is a constant \(M \) such that

\[
\max_{x \in B_{a_n}} \Phi(\gamma(x)) \geq \inf_{u \in H_2} \Phi(u) \geq M.
\]

On the other hand, it is easy to see that \(\gamma(B_{a_n}) \cap H_2 \neq \emptyset \) for any \(\gamma \in \Gamma_n \). Therefore

\[
c_n \geq \inf_{u \in H_2} \Phi(u) \geq M.
\]

By Lemma 2.2, for any large value of \(n \), one has that

\[
c_n > \max_{u \in \partial B_{a_n}} \Phi(u).
\]

For such \(n \), there exists a sequence \(\{\gamma_k\} \) in \(\Gamma_n \) such that

\[
\max_{x \in B_{a_n}} \Phi(\gamma_k(x)) \to c_n, \quad k \to \infty.
\]

Applying [9, Theorem 4.3 and Corollary 4.3], there exists a sequence \(\{v_k\} \) in \(H_1 \) satisfying

\[
\Phi(v_k) \to c_n, \quad \text{dist}(v_k, \gamma_k(B_{a_n})) \to 0, \quad \Phi'(v_k) \to 0,
\]

as \(k \to \infty \). So, for any large enough \(k \), one has that

\[
c_n \leq \max_{x \in B_{a_n}} \Phi(\gamma_k(x)) \leq c_n + 1,
\]
and there exists \(w_k \in \gamma_k(B_{a_n}) \) such that
\[
\|v_k - w_k\| \leq 1.
\]
For fix \(n \), by Lemma 2.3, let \(m \) be large enough such that
\[
b_m > a_n, \quad \text{and} \quad \inf_{u \in H_{b_m}} \Phi(u) > c_n + 1.
\]
This implies that \(\gamma(B_{a_n}) \) cannot intersect the hyperplane \(H_{b_m} \) for each \(k \).

Let \(w_k = \bar{w}_k + \tilde{w}_k \), where \(\bar{w}_k \in H_1 \) and \(\tilde{w}_k \in H_2 \). Then we have \(|\bar{w}_k| < b_m \) for each \(k \).

From (1.3), we have that
\[
\begin{align*}
c_n + 1 & \geq \Phi(w_k) = \frac{1}{2} \sum_{t=0}^{T} |\triangle w_k(t)|^2 - \sum_{t=0}^{T} F(t, w_k(t)) \\geq & \frac{\lambda_1}{2} \|\tilde{w}_k\|^2 - \sum_{t=0}^{T} f(t)|w_k(t)|^2 - \sum_{t=0}^{T} g(t)|w_k(t)| \\geq & \frac{\lambda_1}{2} \|\tilde{w}_k\|^2 - 2 \sum_{t=0}^{T} f(t)|\bar{w}_k(0)|^2 + |\tilde{w}_k(t)|^2 - \sum_{t=0}^{T} g(t)(|\bar{w}_k(0)| + |\tilde{w}_k(t)|)) \\geq & \left(\frac{\lambda_1}{2} - 2\gamma \right) \|\tilde{w}_k\|^2 - 2b_m^2 \gamma - \|\tilde{w}_k\| \beta - b_m \beta.
\end{align*}
\]
Therefore \(\tilde{w}_k(t) \) is bounded. Hence, \(w_k \) is bounded since \(\|w_k\| \leq C(\|\tilde{w}_k\| + \|\bar{w}_k\|) \). Also, \(\{v_k\} \) is bounded in \(H_T \).

From the fact that \(H_T \) is finite dimensional, we know there is a subsequence, which is still be denoted by \(\{v_k\} \) such that \(\{\tilde{w}_k\} \) converges to some point \(u_n \). Therefore, in view of the continuity of \(\Phi \) and \(\Phi' \), it is easy to see that accumulation point \(u_n \) of \(\{v_k\} \) is a critical point and \(c_n \) is a critical value of \(\Phi \).

Let \(n \) large enough such that \(a_n > b_m \), then \(\gamma(B_{a_n}) \) intersects the hyperplane \(H_{b_m} \) for any \(\gamma \in \Gamma_n \). It follows that
\[
\max_{x \in \gamma(B_{a_n})} \Phi(x) \geq \inf_{u \in H_{b_m}} \Phi(u).
\]
In view of above inequality and Lemma 2.3, we get \(\lim_{n \to \infty} c_n = +\infty \). So, the proof of first result of Theorem 1.3 is finished.

Next, we prove (ii) of Theorem 1.3.

For fixed \(m \), let
\[
P_m = \{u \in H_T : u = \tau + \tilde{u}, |\tau| \leq b_m, \tilde{u} \in H_2 \}.
\]
For \(u \in P_m \), one has that
\[
\Phi(u) = \frac{1}{2} \sum_{t=0}^{T} |\triangle u(t)|^2 - \sum_{t=0}^{T} F(t, u(t)) \geq \frac{\lambda_1}{2} \|\tilde{u}\|^2 - \sum_{t=0}^{T} f(t)|u(t)|^2 - \sum_{t=0}^{T} g(t)|u(t)| \geq \frac{\lambda_1}{2} \|\tilde{u}\|^2 - \sum_{t=0}^{T} f(t)|\tau(0)|^2 + |\tilde{u}(t)|^2 - \sum_{t=0}^{T} g(t)(|\tau(0)| + |\tilde{u}(t)|)) \geq \left(\frac{\lambda_1}{2} - 2\gamma \right) \|\tilde{u}\|^2 - 2b_m^2 \gamma - \|\tilde{u}\| \beta - b_m \beta.
\]
So, \(\Phi \) is bounded below on \(P_m \). Let
\[
\mu_m = \inf_{u \in P_m} \Phi(u),
\]
and choose a minimizing sequence \(\{u_k\} \) in \(P_m \), that is
\[
\Phi(u_k) \to \mu_m \text{ as } k \to \infty.
\]

According to (2.1), \(\{u_k\} \) is bounded in \(H_T \). Then there exists a subsequence, which is still be denoted by \(\{u_k\} \) such that
\[
u_k \rightharpoonup \nu^*_m \text{ weakly in } H_T.
\]
Since \(P_m \) is a convex closed subset of \(H_T \) and \(\Phi \) is weakly lower semicontinuous, \(\nu^*_m \in P_m \) and
\[
\mu_m = \lim_{k \to \infty} \Phi(u_k) \geq \Phi(\nu^*_m).
\]

By \(\nu^*_m \in P_m \),
\[
\nu^*_m = v^*_m + \tilde{u}^*_m.
\]
In view of Lemma 2.2 and Lemma 2.3, \(|v^*_m| \neq b_m \) for large \(m \), i.e., \(\nu^*_m \) is in the interior of \(P_m \). Then \(\nu^*_m \) is a local minimum of functional. So, we have
\[
\Phi(\nu^*_m) = \inf_{u \in P_m} \Phi(u) \leq \sup_{|u| = b_m} \Phi(u).
\]

Then from Lemma 2.2 we see that \(\Phi(\nu^*_m) \to -\infty \) as \(m \to \infty \). Therefore, the proof is finished.

Acknowledgment

The authors express their sincere thanks to the reviewers and editor for the useful suggestions to improve the paper.

References

