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Abstract
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1. Introduction and preliminaries

As is well-known, Banach contraction principle is one of the famous results in fixed point theory.
The generalizations of this result have been established in various settings (see [1, 11, 15, 22, 24] and the
references therein). In the meantime, a large number of contractive definitions have been put forward.
One of them is the C-contraction introduced by Chatterjea [4].

Definition 1.1 ([4]). Let (X,d) be a metric space and T : X→ X be a mapping. T is said to be a C-contraction
if there exists α ∈ (0, 1) such that for all x,y ∈ X, the following inequality holds:

d(Tx, Ty) 6 α(d(x, Ty) + d(y, Tx)).

Using the C-contraction, Chatterjea [4] obtained a fixed point theorem that each C-contraction has a
unique fixed point in a complete metric space (see Corollary 2.3).

Later, Choudhury [5] introduced the weakly C-contraction as follows.

Definition 1.2 ([5]). Let (X,d) be a metric space and T : X → X be a mapping. T is said to be a weakly
C-contraction if for all x,y ∈ X, the following inequality holds:

d(Tx, Ty) 6
1
2
(d(x, Ty) + d(y, Tx)) −ψ(d(x, Ty),d(y, Tx)),

where ψ : [0,+∞)2 → [0,+∞) is a continuous function such that ψ(x,y) = 0 if and only if x = y = 0.
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Using the weakly C-contraction, Choudhury [5] obtained the fixed point theorem that each weakly
C-contraction has a unique point in a complete metric space (see Corollary 2.4).

Harjani et al. [10] studied weakly C-contraction in ordered metric space. They obtained the following
theorem.

Theorem 1.3 ([10]). Let (X,�) be a partially ordered set and suppose that there exists a metric d in X such that
(X,d) is a complete metric space. Let T : X→ X be a continuous and nondecreasing mapping such that

d(Tx, Ty) 6
1
2
(d(x, Ty) + d(y, Tx)) −ψ(d(x, Ty),d(y, Tx))

for every comparative x and y, where ψ : [0,+∞)2 → [0,+∞) is a continuous function such that ψ(x,y) = 0 if
and only if x = y = 0. If there exists x0 ∈ X with x0 � Tx0, then T has a fixed point.

In 2011, Shatanawi [23] generalized weakly C-contraction with the help of altering distance functions
in metric spaces and in ordered metric spaces, and then obtained some fixed point theorems.

Bhaskar and Lakshmikantham [9] introduced the notion of the mixed monotone property and the
coupled fixed point of a mapping F from X×X into X and studied coupled fixed points of such mappings
in partially ordered metric spaces. Since then, many authors established coupled fixed point results (see
[6, 8, 16, 17, 20, 23] and the references therein).

Definition 1.4 ([9]). Let (X,�) be a partially ordered set and F : X× X −→ X be a mapping. We say
that F has the mixed monotone property if F(x,y) is monotone nondecreasing in x and is monotone
nonincreasing in y, that is, for any x,y ∈ X,

x1, x2 ∈ X, x1 � x2 ⇒ F(x1,y) � F(x2,y),

and
y1,y2 ∈ X,y1 � y2 ⇒ F(x,y1) � F(x,y2).

Definition 1.5 ([9]). An element (x,y) ∈ X×X is called a coupled fixed point of a mapping F : X×X −→ X

if x = F(x,y) and y = F(y, x).

Bhaskar and Lakshmikantham [9] proved the following result.

Theorem 1.6 ([9]). Let (X,�) be a partially ordered set and d be a metric on X such that (X,d) is a complete metric
space. Let F : X×X −→ X be a continuous mapping having the mixed monotone property on X. Assume that there
exists k ∈ (0, 1) for x,y,u, v ∈ X with x � u, y � v,

d(F(x,y), F(u, v)) 6
k

2
[d(x,u) + d(y, v)].

If there exists (x0,y0) ∈ X×X such that x0 � F(x0,y0) and y0 � F(x0,y0), then F has a coupled fixed point.

In 2014, Jleli and Samet [12] introduced a new type of contraction called θ-contraction. Just recently,
Zheng et al. [25] introduced the notion of θ−φ contraction which generalized θ−contraction and other
contractions (see [12, 25] and the references therein).

According to [12, 25], we denote by Θ the set of functions θ : (0,∞)→ (1,∞) satisfying the following
conditions:

(Θ1) θ is non-decreasing;

(Θ2) for each sequence {tn} ⊂ (0,∞), limn→∞ θ(tn) = 1 if and only if limn→∞ tn = 0+;

(Θ3) θ is continuous on (0,∞).
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And we denote by Φ [25] the set of functions φ : [1,∞)→ [1,∞) satisfying the following conditions:

(Φ1) φ : [1,∞)→ [1,∞) is non-decreasing;

(Φ2) for each t > 1,limn→∞φn(t) = 1;

(Φ3) φ is continuous on [1,∞).

Zheng et al. [25] obtained the following result.

Theorem 1.7 ([25]). Suppose (X,d) is a complete metric space and suppose T : X → X is a θ − φ Suzuki
contraction, i.e, there exist θ ∈ Θ and φ ∈ Φ such that for any x,y ∈ X, Tx 6= Ty,

1
2
d(x, Tx) < d(x,y)⇒ θ(d(Tx, Ty)) 6 φ[θ(N(x,y))],

where
N(x,y) = max{d(x,y),d(x, Tx),d(y, Ty)}.

Then T has a unique fixed point x∗ ∈ X such that the sequence {Tnx} converges to x∗ for every x ∈ X.

As pointed out in [25], Theorem 1.7 improved and extended the corresponding results of Banach,
Samet [21], Jleli and Samet [12], Kannan [13], Dugundji-Granas [7], Boyd-Wong [2], Matkowski [14],
Browder [3] and so on.

Inspired by [25], we introduce the notion of θ-φ C-contraction. The purpose of this paper is to prove
some fixed point and coupled fixed point theorems for θ-φ C-contraction in the setting of complete
metric spaces and ordered metric spaces. The results presented in the paper improve and extend the
corresponding results of Chatterjea [4], Choudhury [5], Harjani et al. [10], Bhaskar and Lakshmikantham
[9]. Also, we give an example to illustrate them.

We give some lemmas that will be used in the paper.

Lemma 1.8 ([25]). If φ ∈ Φ, then φ(1) = 1 and φ(t) < t for each t > 1.

Lemma 1.9. Suppose ψ : [0,+∞)2 → [0,+∞) is a continuous function such that ψ(x,y) = 0 if and only if
x = y = 0. Let φ1(t) = inf{ψ(s, 2t− s) : 0 6 s 6 t}, then φ1(t) is continuous on [0,∞) and φ1(t) = 0 if and
only if t = 0.

Proof. Let At = {(x,y) : 0 6 x 6 t, x+ y = 2t}, then At is an arc of R2. Since ψ(x,y) is continuous and
At is a connected compact subset of R2, then ψ(At) is an arc of R, that is to say, ψ(At) is a finite closed
interval. Thus,

φ1(t) = inf{ψ(s, 2t− s) : 0 6 s 6 t} = infψ(At) = minψ(At). (1.1)

Suppose t0 ∈ [0,+∞) is an arbitrary point. Let Bt0 = {(x,y) : 0 6 x 6 2t0 + 1, 0 6 y 6 2t0 + 1},
then ψ(x,y) is uniform continuous on Bt0 . So, for each ε > 0, there exists δ > 0 with δ < 1 such that
(u1, v1), (u2, v2) ∈ Bt0 , √

(u1 − u2)2 + (v1 − v2)2 < δ =⇒ |ψ(u1, v1) −ψ(u2, v2)| < ε.

Now, let |t− t0| <
δ
2 , then for each (x,y) ∈ At, there exists (x0,y0) ∈ At0 such that√

(x− x0)2 + (y− y0)2 < δ.

Therefore, |ψ(x,y) −ψ(x0,y0)| < ε. That is, ψ(x,y) > ψ(x0,y0) − ε > φ1(t0) − ε. Thus, φ1(t) > φ1(t0) − ε.
Similarly, we can get φ1(t0) > φ1(t) − ε. Then, we have |ψ(t) −ψ(t0)| < ε, which shows that ψ(t) is

continuous at t0. Since t0 is an arbitrary point, then φ1(t) is continuous on [0,∞).
If t = 0, then At = {(0, 0)}. Therefore, φ1(t) = 0.
If φ1(t) = 0, by (1.1), there exists (x,y) ∈ At such that ψ(x,y) = φ1(t) = 0. Then (x,y) = (0, 0), and

t = x+y
2 = 0.
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Lemma 1.10. Let ψ, φ1 be as in Lemma 1.9 and define φ(t) = t

eφ1(2 ln t) for t ∈ [1,+∞), then φ ∈ Φ.

Lemma 1.11 ([18, 19]). Let (X,d) be a metric space and let {yn} be a sequence in X such that

lim
n→∞d(yn,yn+1) = 0.

If {yn} is not a Cauchy sequence in (X,d), then there exist ε > 0 and two sequences {m(k)}, {n(k)} of positive
integers such that m(k) > n(k) > k and the following four sequences tend to ε+ when k→∞:

d(ym(k),yn(k)),d(ym(k),yn(k)+1),d(ym(k)−1,yn(k)),d(ym(k)−1,yn(k)+1).

2. θ-φ C-contractions

Based on the functions θ ∈ Θ and φ ∈ Φ, we give the following definition.

Definition 2.1. Let (X,d) be a metric space. A mapping T : X → X is said to be a θ-φ C-contraction if
there exist θ ∈ Θ and φ ∈ Φ such that for all x,y ∈ X

θ(d(Tx, Ty)) 6 φ[θ(
d(x, Ty) + d(y, Tx)

2
)]. (2.1)

Theorem 2.2. Let (X,d) be a complete metric space and T : X→ X be a θ-φ C-contraction with θ ∈ Θ and φ ∈ Φ.
Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx} converges to x∗.

Proof. Let x0 ∈ X be an arbitrary point. We define the sequence {xn} in X by xn+1 = Txn, for all n ∈ N. If
xn0+1 = xn0 for some n0 ∈ N, then x∗ = xn0 is a fixed point for T and the proof is done. In the next, we
assume that xn+1 6= xn for all n ∈ N. Then d(xn+1, xn) > 0 for all n ∈ N. For the sake of simplicity, take
dn = d(xn, xn+1).

Applying the inequality (2.1) with x = xn−1, y = xn, we obtain

θ(dn) = θ(d(xn, xn+1))

= θ(d(Txn−1, Txn))

6 φ[θ(
d(xn−1, Txn) + d(xn, Txn−1)

2
)]

6 φ[θ(
d(xn−1, xn) + d(xn, xn+1)

2
)]

= φ[θ(
dn−1 + dn

2
)] < θ(

dn−1 + dn
2

).

So, dn <
dn−1+dn

2 , that is dn < dn−1. Therefore, {dn} is a decreasing and bounded from below, thus
converging to some r ∈ R+. If r > 0, taking limit in the above inequality θ(dn) 6 φ[θ(

dn−1+dn
2 )], we have

θ(r) 6 φ(θ(r)). By Lemma 1.8, φ(θ(r)) < θ(r), then θ(r) 6 φ(θ(r)) < θ(r), which yields a contradiction.
Thus r = 0, that is

lim
n→∞d(xn, xn+1) = 0.

In what follows, we shall prove that {xn} is a Cauchy sequence in X .
Suppose, on the contrary, {xn} is not a Cauchy sequence. By Lemma 1.11, then there exist ε > 0

and two sequences {m(k)}, {n(k)} of positive integers such that m(k) > n(k) > k and the following four
sequences tend to ε+ when k→∞:

d(xm(k), xn(k)),d(xm(k), xn(k)+1),d(xm(k)−1, xn(k)),d(xm(k)−1, xn(k)+1).
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By (2.1), we have

θ(d(xm(k), xn(k)+1)) = θ(d(Txm(k)−1, Txn(k)))

6 φ[θ(
d(xm(k)−1, Txn(k)) + d(xn(k), Txm(k)−1)

2
)]

= φ[θ(
d(xm(k)−1, xn(k)+1) + d(xn(k), xm(k))

2
)].

By (Θ3), (Φ3) and Lemma 1.11, passing to limit as k→∞, we get θ(ε) 6 φ[θ(ε)].
By Lemma 1.8, φ[θ(ε)] < θ(ε), then θ(ε) 6 φ[θ(ε)] < θ(ε), which is a contradiction. Thus {xn} is a

Cauchy sequence in X.
Due to the completeness of (X,d), {xn} converges to some point x∗ ∈ X.
By (2.1),

θ(d(Tx∗, Txn−1)) 6 φ[θ(
d(x∗, Txn−1) + d(xn−1, Tx∗)

2
)] = φ[θ(

d(x∗, xn) + d(xn−1, Tx∗)
2

)].

Passing to limit as n→∞, then we get

θ(d(Tx∗, x∗)) 6 φ[θ(
d(x∗, Tx∗) + 0

2
)] = φ[θ(

d(x∗, Tx∗)
2

)] 6 θ(
d(x∗, Tx∗)

2
),

which yields d(x∗, Tx∗) = 0 from the very definition of φ and θ. So, x∗ is a fixed point of T .
Now, we will prove that T has at most one fixed point. Suppose, on the contrary, that there exists

another distinct fixed point y∗ of T such that Tx∗ = x∗ 6= Ty∗ = y∗, then by (2.1), we get

θ(d(x∗,y∗)) = θ(d(Tx∗, Ty∗)) 6 φ[θ(
d(x∗, Ty∗) + d(y∗, Tx∗)

2
)] = φ[θ(d(x∗,y∗))] < θ(d(x∗,y∗)),

which is a contradiction. Therefore, the fixed point of T is unique.

The following corollary is Chatterjea’s Theorem [4].

Corollary 2.3. Let (X,d) be a complete metric space and T : X → X be a C-contraction mapping, that is, there
exists α ∈ [0, 1

2) such that for all x,y ∈ X

d(Tx, Ty) 6 α(d(x, Ty) + d(y, Tx)).

Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx} converges to x∗.

Proof. If α = 0, it is easy to prove. So we suppose α ∈ (0, 1
2). Let

θ(t) = et

for all t ∈ [0,+∞), and
φ(t) = t2α

for all t ∈ [1,+∞). Obviously, θ ∈ Θ,φ ∈ Φ.
In what follows, we prove that T is a θ-φ C-contraction.

φ(θ(
d(x, Ty) + d(y, Tx)

2
)) = (e

d(x,Ty)+d(y,Tx)
2 ))2α

= eα(d(x,Ty)+d(y,Tx))

> ed(Tx,Ty)

= θ(d(Tx, Ty)).

Thus, T is a θ-φ C-contraction. Therefore, from Theorem 2.2, T has a unique fixed point x∗ ∈ X and for
every x ∈ X the sequence {Tnx} converges to x∗.
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The following corollary is Choudhury’s Theorem [5].

Corollary 2.4. Let (X,d) be a complete metric space and T : X → X be a weakly C-contraction mapping, that is,
for all x,y ∈ X, the following inequality holds:

d(Tx, Ty) 6
1
2
(d(x, Ty) + d(y, Tx)) −ψ(d(x, Ty),d(y, Tx)),

where ψ : [0,+∞)2 → [0,+∞) is a continuous function such that ψ(x,y) = 0 if and only if x = y = 0. Then T
has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {Tnx} converges to x∗.

Proof. Let
θ(t) = et, φ1(t) = inf{ψ(s, 2t− s) : 0 6 s 6 t}

for all t ∈ [0,+∞). Obviously, θ ∈ Θ, and let

φ(t) =
t

eφ1(2 ln t)

for t ∈ [1,+∞), then φ ∈ Φ by Lemma 1.9 and Lemma 1.10.
In what follows, we prove that T is a θ-φ C-contraction.

φ(θ(
d(x, Ty) + d(y, Tx)

2
)) = φ(e

d(x,Ty)+d(y,Tx)
2 )

=
e
d(x,Ty)+d(y,Tx)

2

eφ1(d(x,Ty)+d(y,Tx))

>
e
d(x,Ty)+d(y,Tx)

2

eψ(d(x,Ty),d(y,Tx))

= e[
d(x,Ty)+d(y,Tx)

2 −ψ(d(x,Ty),d(y,Tx))]

> ed(Tx,Ty)

= θ(d(Tx, Ty)).

Thus, T is a θ-φ C-contraction. Therefore, from Theorem 2.2, T has a unique fixed point x∗ ∈ X and for
every x ∈ X the sequence {Tnx} converges to x∗.

Now, we give an example to illustrate our results.

Example 2.5. Consider the sequence {Sn}n∈N as follows:

S1 = 1, S2 = 1 + 2, · · · ,

Sn = 1 + 2 + 3 + · · ·+n =
n(n+ 1)

2
, · · · .

Let X = {Sn : n ∈ N} and d(x,y) = |x− y|. Then (X,d) is a complete metric space.
Define the mapping T : X→ X by TS1 = S1 and TSn = Sn−1 for every n > 1.
Firstly, we observe that the Banach contraction principle cannot be applied since

lim
n→∞ d(TSn, TS1)

d(Sn,S1)
= lim
n→∞ Sn−1 − 1

Sn − 1
= lim
n→∞ n

2 −n− 1
n2 +n− 1

= 1.

Secondly, T is not a C-contraction map. In fact, suppose that there exists α ∈ [0, 1
2) such that

d(Tx, Ty) 6 αd(x, Ty) +αd(y, Tx)
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for all x,y ∈ X.
Now, let x = Sn, y = S1, by the above inequality we know that

n(n− 1)
2

− 1 = d(Tx, Ty) 6 αd(x, Ty) +αd(y, Tx) = αd(Sn, TS1) +αd(S1, TSn) = α(n2 − 2)

for all n ∈ N, that is, α >
n(n−1)

2 −1
n2−2 , passing to limit as n → ∞, we obtain α > 1

2 , which yields a
contradiction. So T is not a C-contraction map. Now, let the function θ : (0,∞)→ (1,∞) defined by

θ(t) = et,

and φ : [1,∞)→ [1,∞) defined by

φ(t) =

{
1, if 1 6 t 6 2,
t− 1, if t > 2.

Obviously, θ ∈ Θ, φ ∈ Φ.
In what follows, we prove that T is a θ-φ C-contraction.
We consider two cases.

Case 1. x = Sn, y = Sm, n > m > 1.

In this case, we have
d(Tx, Ty) = d(TSn, TSm) = Sn−1 − Sm−1,

d(x, Ty) = d(Sn,Sm−1) = Sn − Sm−1 = n+ Sn−1 − Sm−1,

d(y, Tx) = d(Sm,Sn−1) = Sn−1 − Sm = Sn−1 − Sm−1 −m,

φ(θ(
d(x, Ty) + d(y, Tx)

2
)) = φ(θ(Sn−1 − Sm−1 +

n−m

2
))

= eSn−1−Sm−1+
n−m

2 − 1

= e
n−m

2 eSn−1−Sm−1 − 1

> eSn−1−Sm−1

= θ(d(Tx, Ty)).

Case 2. x = Sn, y = S1, n > 1.

In this case, we have
d(Tx, Ty) = d(TSn, TS1) = Sn−1 − S1,

d(x, Ty) = d(Sn,S1) = Sn − S1 = n+ Sn−1 − S1,

d(y, Tx) = d(S1,Sn−1) = Sn−1 − S1,

φ(θ(
d(x, Ty) + d(y, Tx)

2
)) = φ(θ(Sn−1 − S1 +

n

2
))

= eSn−1−S1+
n
2 − 1

= e
n
2 eSn−1−S1 − 1

> eSn−1−S1

= θ(d(Tx, Ty)).

Therefore, we have for all x,y ∈ X

θ(d(Tx, Ty)) 6 φ[θ(
d(x, Ty) + d(y, Tx)

2
)].

So all the hypotheses of Theorem 2.2 are satisfied, and T has a fixed point. In this example x = S1 is the
fixed point.
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By using similar proofs in Theorem 2.2, we can obtain the following results in an ordered metric space.

Theorem 2.6. Let (X,�) be a partially ordered set and suppose that there exists a metric d in X such that (X,d) is
a complete metric space. Let T : X→ X be a continuous and nondecreasing mapping such that

θ(d(Tx, Ty)) 6 φ[θ(
d(x, Ty) + d(y, Tx)

2
)]

for every comparative x and y where θ ∈ Θ, φ ∈ Φ. If there exists x0 ∈ X with x0 � Tx0, then T has a fixed point.

Theorem 2.7. Let (X,�) be a partially ordered set and suppose that there exists a metric d in X such that (X,d) is
a complete metric space. Let T : X→ X be a nondecreasing mapping such that

θ(d(Tx, Ty)) 6 φ[θ(
d(x, Ty) + d(y, Tx)

2
)]

for every comparative x and y where θ ∈ Θ, φ ∈ Φ. Suppose that for a nondecreasing sequence {xn} in X with
xn → x, we have xn � x for all n ∈ N. If there exists x0 ∈ X with x0 � Tx0, then T has a fixed point.

Remark 2.8. Theorem 2.6 improves Theorem 1.3, and Theorem 2.7 improves the result of [10].

3. Coupled fixed point

Theorem 3.1. Let (X,�) be a partially ordered set and d be a metric on X such that (X,d) is a complete metric
space. Let F : X× X −→ X be a continuous mapping having the mixed monotone property on X. Assume that for
x,y,u, v ∈ X with x � u, y � v,

θ(d(F(x,y), F(u, v))) 6 φ[θ(
d(x,u) + d(y, v)

2
)]. (3.1)

If there exists (x0,y0) ∈ X×X such that x0 � F(x0,y0) and y0 � F(x0,y0), then F has a coupled fixed point.

Proof. Let x0,y0 ∈ X be such that x0 � F(x0,y0) and y0 � F(x0,y0). Let x1 = F(x0,y0) and y1 = F(y0, x0).
Then x0 � x1 and y0 � y1. Again, let x2 = F(x1,y1) and y2 = F(y1, x1). Then x1 � x2 and y1 � y2.
Continuing in this way, we construct two sequences {xn} and {yn} in X such that xn+1 = F(xn,yn) and
yn+1 = F(yn, xn), and we have x0 � x1 � x2 � · · · and y0 � y1 � y2 � · · · .

If xn0+1 = xn0 , yn0+1 = yn0 for some n0 ∈ N, then

xn0 = xn0+1 = F(xn0 ,yn0), yn0 = yn0+1 = F(yn0 , xn0).

Thus, (xn0 ,yn0) is a coupled fixed point for F.
Next, we assume that for all n ∈ N, either xn 6= F(xn,yn) or yn 6= F(yn, xn), that is

d(xn+1, xn) + d(yn+1,yn) > 0

for all n ∈ N.
By (3.1), we have

θ(d(xn+1, xn+2)) = θ(d(F(xn,yn), F(xn+1,yn+1))) 6 φ[θ(
d(xn, xn+1) + d(yn,yn+1)

2
)]. (3.2)

Similarly, we have

θ(d(yn+1,yn+2)) = θ(d(F(yn, xn), F(yn+1, xn+1))) 6 φ[θ(
d(xn, xn+1) + d(yn,yn+1)

2
)]. (3.3)
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Then by (3.2), (3.3) and Lemma 1.8, we have

d(xn+1, xn+2) 6
d(xn, xn+1) + d(yn,yn+1)

2
, (3.4)

and

d(yn+1,yn+2) 6
d(xn, xn+1) + d(yn,yn+1)

2
. (3.5)

So, by (3.4) and (3.5), we have

d(xn+1, xn+2) + d(yn+1,yn+2) 6 d(xn, xn+1) + d(yn,yn+1).

Thus, {d(xn, xn+1) + d(yn,yn+1)} is a decreasing sequence and bounded from below. Thus there is r > 0
such that

lim
n→∞(d(xn, xn+1) + d(yn,yn+1)) = r.

Suppose r > 0, then (d(xn, xn+1) + d(yn,yn+1)) > r, so there exist n1 < n2 < · · · < nk < · · · such that for
each k ∈ N, d(xnk+1, xnk+2) > r

2 or d(ynk+1,ynk+2) > r
2 .

Without loss of generality, we can assume that d(xnk+1, xnk+2) > r
2 for k ∈ N, then from (3.4),

θ(
r

2
) 6 θ(d(xnk+1, xnk+2)) 6 φ[θ(

d(xnk , xnk+1) + d(ynk ,ynk+1)

2
)].

Passing to limit as k→∞, then we get

θ(
r

2
) 6 φ[θ(

r

2
)] < θ(

r

2
),

which is a contradiction, so r = 0. Therefore, we get that

lim
n→∞d(xn, xn+1) = 0,

and
lim
n→∞d(yn,yn+1) = 0. (3.6)

Now, we show that {xn} is a Cauchy sequence in X.
Suppose, on the contrary, {xn} is not a Cauchy sequence. Then by Lemma 1.11, there exist ε > 0 and

two sequences {m(k)}, {n(k)} of positive integers such that m(k) > n(k) > k and

lim
k→∞d(xm(k), xn(k)) = lim

k→∞d(xm(k)+1, xn(k)+1) = ε. (3.7)

If there exist k1 < k2 < · · · < ks < · · · such that d(ym(ks),yn(ks)) < ε for each s ∈ N, then

θ(d(xm(ks)+1, xn(ks)+1)) 6 φ[θ(
d(xm(ks), xn(ks)) + d(ym(ks),yn(ks))

2
)]

6 φ[θ(
d(xm(ks), xn(ks)) + ε

2
)].

Passing to limit as s→∞, then from (3.7) and Lemma 1.8, we get

θ(ε) 6 φ[θ(ε)] < θ(ε),

which is a contradiction. Therefore, for k large enough, we have

d(ym(k),yn(k)) > ε. (3.8)
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Since

θ(d(ym(k)+1,yn(k)+1)) 6 φ[θ(
d(xm(k), xn(k)) + d(ym(k),yn(k))

2
)],

then we have

d(ym(k)+1,yn(k)+1) 6
d(xm(k), xn(k)) + d(ym(k),yn(k))

2
.

Therefore, by triangle inequality of d,

d(ym(k),yn(k)) − d(ym(k),ym(k)+1) − d(yn(k),yn(k)+1)

6 d(ym(k)+1,yn(k)+1) 6
d(xm(k), xn(k)) + d(ym(k),yn(k))

2
.

That is,
d(ym(k),yn(k)) 6 d(xm(k), xn(k)) + 2d(ym(k),ym(k)+1) + 2d(yn(k),yn(k)+1). (3.9)

Thus, from (3.6), (3.8) and (3.9), we have

lim
n→∞d(ym(k),yn(k)) = ε.

Since θ(d(xm(k)+1, xn(k)+1)) 6 φ[θ(
d(xm(k),xn(k))+d(ym(k),yn(k))

2 )], passing to limit as k → ∞, then we
get θ(ε) 6 φ[θ(ε)] < θ(ε), which is a contradiction. Thus we know that {xn} is a Cauchy sequence in X.
Similarly, {yn} is a Cauchy sequence in X. Since X is complete, then there exist x,y ∈ X such that xn → x

and yn → y. And F is continuous, xn+1 = F(xn,yn) → F(x,y) and yn+1 = F(yn, xn) → F(y, x). By the
uniqueness of limit, we have x = F(x,y) and y = F(y, x). Thus (x,y) is a coupled fixed point of F.

Theorem 3.2. Let (X,�) be a partially ordered set and d be a metric on X such that (X,d) is a complete metric
space. Let F : X×X −→ X be a mapping having the mixed monotone property on X. Assume that for x,y,u, v ∈ X
with x � u, y � v,

θ(d(F(x,y), F(u, v))) 6 φ[θ(
d(x,u) + d(y, v)

2
)].

Suppose that for a nondecreasing sequence {xn} in X with xn → x, we have xn � x for all n ∈ N and for a
nonincreasing sequence {yn} in X with yn → y, we have yn � y for all n ∈ N. If there exists (x0,y0) ∈ X× X
such that x0 � F(x0,y0) and y0 � F(x0,y0), then F has a coupled fixed point.

Remark 3.3. Take θ(t) = et, t ∈ [0,+∞) and φ(t) = tk, t ∈ [1,+∞), where k ∈ (0, 1) in Theorem 3.1, then
we get Theorem 1.6. Also, Theorem 3.2 improves the result of [9].
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[18] S. Radenović, Bhaskar-Lakshmikantham type results for monotone mappings in partially ordered metric spaces, Int. J.

Nonlinear Anal. Appl., 5 (2014), 96–103. 1.11
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