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Abstract
In this paper, we give the concepts of H-directional differentiability and D-directional differentiability of interval-valued

functions. Then we discuss the properties of H-directional differentiable interval-valued functions and D-directional differen-
tiable interval-valued functions. The necessary and sufficient conditions for the H-directional differentiability are given together
with the sufficient conditions and the necessary and sufficient conditions for D-directional differentiability of interval-valued
functions. Then we discuss the relationship between the two directional differentiability and prove these directional differentia-
bility can be equivalent under a certain conditions. c©2017 All rights reserved.
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1. Introduction

Interval analysis (or interval mathematics), whose basic idea is to use interval variables instead of
point variables in calculation, was firstly formulated by Moore [4] in 1966. From then on, the theory of
interval analysis and its application developed greatly with the joint effort of many researchers. Especially,
in order to build the theory of optimization of interval value [5, 7, 8], theory of differential equation of
interval value [1, 2, 6] and the differential theory of fuzzy value [3], several kinds of differentiability of
interval-valued functions were invented, and the related theories were built.

Generally speaking, there are two different ways to define the differentiability of the interval-valued
function. The first one is to use the concepts of H-derivative of interval-valued function from nonempty
subset of real number space to interval number space, and the partial H-derivative of interval-valued
function from nonempty subset of n-dimensional Euclidean space to interval number space, which are
given by H-difference [1, 7, 8]. The second one is to use the concepts of gH-derivative of interval-valued
function from nonempty subset of real number space to interval number space, and the partial gH-
derivative of interval-valued function from nonempty subset of n-dimensional Euclidean space to interval
number space, which are given by gH-difference [2, 3, 5]. Only the changing rate of interval-valued
function in axis direction is taken into consideration, rather than in other special directions.
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In this paper, we study the changing rate of interval-valued function which is from nonempty subset
of n-dimensional Euclidean space into interval number space in special direction, i.e., H-directional differ-
entiability and D-directional differentiability problem, which enrich and develop the theory of differential
of interval-valued function and its application. In Section 3, we build the concepts of H-directional dif-
ferentiability and H-directional derivative, and prove that H-derivative and partial H-derivative are both
directional derivative of interval-valued function in axis direction. In Section 4, we build the concepts
of D-directional differentiability and D-directional partial derivative. And we study the relation between
H-directional differentiability and D-directional differentiability. So that we can prove that an interval-
valued function which is H-differentiable must be D-differentiable, but the opposite is not always true.

2. Basic concepts of interval number

Let R be the real line. For a, a ∈ R and a 6 a, we call the bounded closed interval [a,a] an interval
number, and denote a = [a,a]. The set of all interval numbers of real line R are denoted as [R], which
is called interval number space. Let M be a nonempty subset of an n-dimensional Euclid space Rn.
Let F : M → [R] be an interval-valued function F(x) = [F(x), F(x)], which F(x) and F(x) are real-valued
functions defined on M satisfying F(x) 6 F(x) for any x ∈ M. In this paper, for x ∈ M, y ∈ Rn, the
directional derivatives of F(x) and F(x) in direction y at x denotes as F(x,y) and F(x,y), respectively.

For a = [a,a], b = [b,b] ∈ [R] and k ∈ R, we define the operations of addition and scalar multiplication
of interval numbers by

a+ b = [a+ b,a+ b] = [a+ b,a+ b],

and

ka = [ka,ka]=
{

[ka,ka], k > 0,
[ka,ka], k < 0.

The metric structure is usually given by the Hausdorff distance between interval numbers

DH(a,b) = max
{
|a− b|, |a− b|

}
,

where a = [a,a], b = [b,b]. Then ([R],DH) is a complete metric space, and for a,b, c ∈ [R] and k ∈ R there
are following properties:

DH(a+ c,b+ c) = DH(a,b), DH(ka,kb) = |k|DH(a,b).

Definition 2.1 ([7]). Let a,b ∈ [R]. If there exists c ∈ [R] such that a = b+ c, then c is called the Hukuhara
difference (H-difference), which is denoted as c = a−H b.

By Definition 2.1 we can easily obtain the following properties.

Proposition 2.2. Let a,b ∈ [R]. If H-difference a−H b exists, i.e., c = a−H b ∈ [R], then

c = a− b and c = a− b.

Proposition 2.3. Let a,b ∈ [R], and H-difference exists, then

DH(a,b+ c) = DH(a−H b, c).

Proof. By the Hausdorff distance equation and Proposition 2.2, we can easily obtain it.

Definition 2.4 ([7]). Let M be an open set in R. An interval-valued F : M → ([R],DH) is H-differentiable
at x0 ∈M if there exists an F ′H(x0) ∈ [R] such that

lim
h→0+

F(x0 + h) −H F(x
0)

h
= lim

h→0+

F(x0) −H F(x
0 − h)

h
= F ′H(x0).

In this case, F ′H(x0) is called the H-derivative of F at x0.
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Definition 2.5 ([7]). Let F : M → ([R],DH) be an interval-valued function and x0 = (x0
1, · · · , x0

n) ∈ M. If
interval-valued function

hi(xi) = F(x
0
1, · · · , x0

i−1, xi, x0
i+1, · · · , x0

n),

H-differentiable at x0
i, we say that F(x) has the i-th partial H-derivative F of at x0. We can denote h ′i(x

0
i)

as
∂F

∂xi
(x0), i.e.,

∂F

∂xi
(x0) = h ′i(x

0
i) ∈ [R].

3. H-Directional differentiability of interval-function

In ([7, 8]), Wu defined the partial H-derivative and H-differentiability of interval-valued function from
a subset of space Rn into interval number space [R] by using H-difference of interval numbers. In the
following, by using H-difference of interval numbers, we define the H-directional derivative and H-
directional differentiability of interval-valued function from subset of space Rn to interval number space
[R].

In this paper, for y ∈ Rn, the unit vector of y is denoted as ye.

Definition 3.1. Let F :M→ ([R],DH) be an interval-valued function and x ∈M. If for y ∈ Rn, there exists
δ > 0 such that x+ hye ∈M(x− hye ∈M) and the H-difference

F(x+ hye) −H F(x)(F(x) −H F(x− hye)),

exists for any real number h ∈ (0, δ), and there exists a+ ∈ [R](a− ∈ [R]) such that

lim
h→0+

1
h
[F(x+ hye) −H F(x)] = a

+

(
lim

h→0+

1
h
[F(x) −H F(x− hye)] = a

−

)
.

Then we say that F is right (resp. left) H-differentiable in the direction y at x, a+(a−) is the right (resp.
left) directional derivative of F in direction y at x, and denote by

FH+(x,y) = a+(FH−(x,y) = a−).

If FH+(x,y) = FH−(x,y), we say that F is H-differentiable in direction y at x, which is denoted as

FH(x,y) = FH+(x,y) = FH−(x,y),

where FH(x,y) is called the H-directional derivative of F in direction y at x.
By Definition 2.4 and Definition 3.1, we can easily obtain the following Proposition 3.2.

Proposition 3.2. Let M be an open set in R. If interval-valued function F : M → ([R],DH) is H-differentiable in
the direction y = 1 at x0 ∈M, then F is H-differentiable at x0, and F ′(x0) = FH(x0, 1).

Theorem 3.3. Let M be an open set in Rn, and F :M→ ([R],DH) be an interval-valued function.

x0 = (x0
1, · · · , x0

i−1, x0
i, x0

i+1, · · · , x0
n) ∈M.

If F(x) is H-differentiable in direction ei(i = 1, 2, · · · ,n) at x0, then the i-th partial H-derivative of F(x) at x0

exists, and
∂F

∂xi
(x0) = FH(x0, ei) (i = 1, 2, · · · ,n), where

ei = (ai1,ai2, · · · ,aij, · · · ,ain), for i = 1, 2, · · · ,n,

with

aij=

{
1, i = j,
0, i 6= j,

for j = 1, 2, · · · ,n.
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Proof. Let hi(xi) = F(x0
1, · · · , x0

i−1, xi, x0
i+1, · · · , x0

n), then

hi(xi + h) −H hi(xi)

h
=
F(x0 + hei) −H F(x

0)

h
,

hi(xi) −H hi(xi − h)

h
=
F(x0) −H F(x

0 − hei)

h
.

Because F(x) is H-differentiable in direction ei (i = 1, 2, · · · ,n) at x0, i.e., there exists FH(x0, ei) ∈ [R] such
that

lim
h→0+

F(x0 + hei) −H F(x
0)

h
= lim

h→0+

F(x0) −H F(x
0 − hei)

h
= FH(x0, ei).

So

lim
h→0+

hi(xi + h) −H hi(xi)

h
= lim

h→0+

hi(xi) −H hi(xi − h)

h
= FH(x0, ei).

According to Proposition 3.2, the H-derivative of hi(xi) at x0
i exists. So by Definition 2.5, the i-th partial

H-derivative of F(x) at x0 for xi exists, and
∂F

∂xi
(x0) = FH(x0, ei).

The following Theorem 3.4 gives a characterization of H-directional differentiability of interval-valued
function F :M→ [R].

Theorem 3.4. Let F :M→ ([R],DH) be an interval-valued function, x ∈M, y ∈ Rn. Then

(1) F is right (resp. left) H-differentiable in direction y at x, if and only if there exists δ > 0 such that

x+ hye ∈M(x− hye ∈M),

and H-difference F(x+ hye) −H F(x) (F(x) −H F(x− hye)) exists for any h ∈ (0, δ), and there exists a+ ∈
[R] (a− ∈ [R]) such that

lim
h→0+

F(x+ hye) − F(x)

h
= a+ and lim

h→0+

F(x+ hye) − F(x)

h
= a+,

( lim
h→0+

F(x) − F(x− hye)

h
= a− and lim

h→0+

F(x) −H F(x− hy)

h
= a−).

(2) F is H-differentiable in the direction y at x, if and only if there exists δ > 0 such that x + hye ∈ M,
x− hye ∈M, and H-difference

F(x+ hye) −H F(x), F(x) −H F(x− hye),

exists for any h ∈ (0, δ), and there exists a ∈ [R] such that

lim
h→0+

F(x+ hye) − F(x)

h
= lim

h→0+

F(x) − F(x− hye)

h
= a,

lim
h→0+

F(x+ hye) − F(x)

h
= lim

h→0+

F(x) − F(x− hye)

h
= a.

Proof. (1) Necessity. Let F be right H-differentiable in direction y at x, then there exists δ > 0 such that
x+ hye ∈M, and F(x+ hye) −H F(x) exists for any h ∈ (0, δ), and there exists a+ ∈ [R] such that

lim
h→0+

F(x+ hye) −H F(x)

h
= a+.
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By the Hausdorff distance equation and Proposition 2.2 we obtain

lim
h→0+

DH

(
1
h
(F (x+ hye)−HF (x)) ,a+

)
=

(∣∣∣∣ 1
h
(F(x+ hye) − F (x)) − a+

∣∣∣∣ ,
∣∣∣∣ 1
h

(
F̄ (x+ hye) − F̄ (x)

)
− a+

∣∣∣∣)
= 0.

Therefore, we have

lim
h→0+

(
1
h
(F(x+ hye) − F(x)) − a+

)
= 0, and lim

h→0+

(
1
h
(F(x+ hye) − F(x)) − a+

)
= 0,

i.e.,

lim
h→0+

F(x+ hye) − F(x)

h
= a+, and lim

h→0+

F(x+ hye) − F(x)

h
= a+.

Likewise, F is left H-differentiable in the direction y at x, i.e.,

lim
h→0+

F(x) −H F(x− hye)

h
= a− ∈ [R].

We can obtain that

lim
h→0+

F(x) − F(x− hy)

h
= a−, and lim

h→0+

F(x) − F(x− hy)

h
= a−.

Sufficiency. Assume that there exists δ > 0 such that x+ hye ∈ M, and H-difference F(x+ hey) −H F(x)
exists for any h ∈ (0, δ), and there exists a+ ∈ [R] such that

lim
h→0+

F(x+ hye) − F(x)

h
= a+, and lim

h→0+

F(x+ hye) − F(x)

h
= a+.

Then we have

lim
h→0+

DH

(
F(x+ hye) −H F(x)

h
,a+

)
= lim

h→0+
max

(
|
F(x+ hye) − F(x)

h
− a+|, |

F(x+ hye) − F(x)

h
− a+|

)
= 0,

i.e.,

lim
h→0+

F(x+ hye) −H F(x)

h
= a+.

Therefore, F is right H-diffentiable in the direction y at x.
Similarly, we can obtain F is left H-differentiable in direction y at x.
(2) Necessity. Let F beH-differentiable in direction y at x, then there exists δ > 0 such that x+hye ∈M,

x− hye ∈M and H-differences F(x+ hye) −H F(x), F(x) −H F(x− hye) exist for any h ∈ (0, δ), and there
exists a ∈ [R] such that

lim
h→0+

F(x+ hye) −H F(x)

h
= lim

h→0+

F(x) −H F(x− hye)

h
= a.

Then we obtain

lim
h→0+

DH

(
F(x+ hye) −H F(x)

h
,a

)
= lim

h→0+
max

(
|
F(x+ hye) − F(x)

h
− a|, |

F(x+ hye) − F(x)

h
− a|

)
= 0.
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Therefore,

lim
h→0+

F(x+ hye) − F(x)

h
= a, and lim

h→0+

F(x+ hye) − F(x)

h
= a.

Likewise, we can obtain

lim
h→0+

F(x) − F(x− hye)

h
= a, and lim

h→0+

F(x) − F(x− hye)

h
= a.

Moreover, we have

lim
h→0+

F(x+ hye) − F(x)

h
= lim

h→0+

F(x) − F(x− hye)

h
= a,

lim
h→0+

F(x+ hye) − F(x)

h
= lim

h→0+

F(x) − F(x− hye)

h
= a.

Sufficiency. Assume that there exists δ > 0 such that x+ hye ∈M, x− hye ∈M, and H-differences

F(x+ hey) −H F(x), F(x) −H F(x− ye),

exist for any h ∈ (0, δ), and there exists a ∈ [R] such that

lim
h→0+

F(x+ hye) − F(x)

h
= lim

h→0+

F(x) − F(x− hye)

h
= a,

lim
h→0+

F(x+ hye) − F(x)

h
= lim

h→0+

F(x) − F(x− hye)

h
= a.

Then we have

lim
h→0+

DH

(
F(x+ hye) −H F(x)

h
,a

)
= lim

h→0+
max

(
|
F(x+ hye) − F(x)

h
− a|, |

F(x+ hye) − F(x)

h
− a|

)
= 0.

Therefore,

lim
h→0+

F(x+ hye) −H F(x)

h
= a,

i.e.,
FH+(x,y) = a.

Similarly, we can obtain FH−(x,y) = a. According to Definition 3.1, F is H-differentiable in direction y
at x.

By Theorem 3.4 and concept of the directional derivative of real-valued function, we can easily obtain
the following Corollary 3.5.

Corollary 3.5. Let F :M→ ([R],DH) be an interval-valued function F(x) = [F(x), F(x)]. If F(x) isH-differentiable
in direction y at x0, then the directional derivatives of F(x) and F(x) in direction y at x0 exist, and

F(x0,y) = FH(x0,y), F(x0,y) = FH(x0,y).

We can also obtain the following Corollary 3.6 according to Corollary 3.5 and the uniqueness of
directional derivative of the real-valued function.

Corollary 3.6. Let F :M→ ([R],DH) be an interval-valued function. If F(x) is H-differentiable in the direction y
at x, then the H-directional derivative FH(x,y) of F(x) is unique.
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Theorem 3.7. Let F :M→ ([R],DH) be an interval-valued function, x0 ∈M. Suppose that directional derivative
F(x0,y) of F(x) and directional derivative F(x0,y) of F(x) in direction y at x0 both exist.

(1) If F(x0,y) < F(x0,y), then F is H-differentiable in the direction y at x0, and

FH(x0,y) = [F(x0,y), F(x0,y)].

(2) If F(x0,y) > F(x0,y), then F is H-non-differentiable in the direction y at x0.

Proof. (1) Suppose that the directional derivatives of F(x) and F(x) in direction y at x0 exist, which is de-
noted as F(x0,y) and F(x0,y). According to the concept of directional derivative of real-valued functions,
we can easily obtain

lim
h→0+

F(x0 + hye) − F(x
0)

h
= lim

h→0+

F(x0) − F(x0 − hye)

h
= F(x0,y),

lim
h→0+

F(x0 + hye) − F(x
0)

h
= lim

h→0+

F(x0) − F(x0 − hye)

h
= F(x0,y).

On the other hand, from F(x0,y) < F(x0,y), we have F(x0,y) − F(x0,y) > 0. According to the sign-
preserving theorem of limit, there exists δ > 0 such that x+ hye ∈M, x− hye ∈M, and

F(x0 + hye) − F(x
0) 6 F(x0 + hye) − F(x

0),

F(x0) − F(x0 − hye) 6 F(x
0) − F(x0 − hye),

for any h ∈ (0, δ), i.e., the H-differences F(x+ hye) −H F(x) and F(x) −H F(x− hye) exist.
Let a(x0,y) = [F(x0,y), F(x0,y)], then

lim
h→0+

DH

(
F(x0 + hye) −H F(x

0)

h
,a(x0,y)

)
= lim

h→0+
max

(
|
F(x0 + hye) − F(x

0)

h
− a(x0,y)|, |

F(x0 + hye) − F(x
0)

h
− a(x0,y)|

)
= 0.

Therefore, we have

lim
h→0+

1
h
(F(x0 + hye) −H F(x

0)) = a(x0,y).

So FH+(x0,y) = a(x0,y).
The proof of FH−(x0,y) = a(x0,y) can be completed with similar argument. So F(x) is H-differentiable

in direction y at x0, and
FH(x0,y) = [F(x0,y), F(x0,y)].

(2) Assume that F(x) is H-differentiable in the direction y at x0, with H-directional derivative

FH(x0,y) = [FH(x0,y), FH(x0,y)] ∈ [R].

From Corollary 3.5, we have

FH(x0,y) = F(x0,y), and FH(x0,y) = F(x0,y).

By Corollary 3.6, this shows that
FH(x0,y) = [F(x0,y), F(x0,y)].

So F(x0,y) 6 F(x0,y), which contradicts the hypothesis F(x0,y) > F(x0,y).
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Example 3.8. Let M = (0, 3)× (0, 5), and

F(x) = [(x1 + x2)
2 + 1, (x1 + x2)

2 + 3], x ∈M,

be an interval-valued function defined on M.
For point x0 = (x0

1, x0
2) ∈ (0, 3)× (0, 5) in direction y = (y1,y2) ∈ [0,+∞)× [0,+∞), (ye = (y1e,y2e) is

a unit vector of y = (y1,y2)), we have

F+(x
0,y) = lim

h→0+

F(x0 + hye) − F(x
0)

h

= lim
h→0+

[x0
1 + x

0
2 + h(y1e + y2e)]

2 + 1 − [(x0
1 + x

0
2)

2 + 1]
h

= lim
h→0+

2h(y1e + y2e)(x
0
1 + x

0
2) + h

2(y1e + y2e)
2

h

= 2(x0
1 + x

0
2)(y1e + y2e),

F−(x
0,y) = lim

h→0+

F(x0) − F(x0 − hye)

h

= lim
h→0+

[(x0
1 + x

0
2)

2 + 1] − [x0
1 + x

0
2 − h(y1e + y2e)]

2 + 1
h

= lim
h→0+

2h(x0
1 + x

0
2)(y1e + y2e) − h

2(y1e + y2e)
2

h

= 2(x0
1 + x

0
2)(y1e + y2e).

Therefore, we have
F(x0,y) = 2(x0

1 + x
0
2)(y1e + y2e).

On the other hand,

F+(x
0,y) = lim

h→0+

F(x0 + hye) − F(x
0)

h

= lim
h→0+

[x0
1 + x

0
2 + h(y1e + y2e) + 1]2 + 3 − (x0

1 + x
0
2 + 1)2 − 3

h

= lim
h→0+

2(x0
1 + x

0
2 + 1)h(y1e + y2e) + h

2(y1e + y2e)
2

h

= 2(x0
1 + x

0
2 + 1)(y1e + y2e).

Similarly, we have F−(x0,y) = 2(x0
1 + x

0
2 + 1)(y1e + y2e). Hence, we have

F(x0,y) = 2(x0
1 + x

0
2 + 1)(y1 + y2).

So F(x0,y) < F(x0,y). By Theorem 3.7 (1), we have

FH(x0,y) = [2(x0
1 + x

0
2)(y1e + y2e), 2(x0

1 + x
0
2 + 1)(y1e + y2e)].

Example 3.9. Let M = [0, 2]× [0, 2], and

F(x) = [(x1 + x2)
2 + x1 + x2 + 1, (x1 + x2)

2 + 3], x ∈M,

be an interval-valued function defined on M.
For x0 = (x0

1, x0
2) ∈ [0, 2]× [0, 2] in direction y = (y1,y2) ∈ [0,+∞)× [0,+∞) (ye = (y1e,y2e) is a unit
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vector of y = (y1,y2)), we have

F+(x
0,y) = lim

h→0+

[x0
1 + x

0
2 + h(y1e + y2e)]

2 + [x0
1 + x

0
2 + h(y1e + y2e)] + 1 − [(x0

1 + x
0
2)

2 + (x0
1 + x

0
2) + 1]

h

= lim
h→0+

2(x0
1 + x

0
2)h(y1e + y2e) + h

2(y1e + y2e)
2 + h(y1e + y2e)

h

= 2(x0
1 + x

0
2)(y1e + y2e) + (y1e + y2e)

= [2(x0
1 + x

0
2) + 1](y1e + y2e).

Likewise, we can obtain
F−(x

0,y) = [2(x0
1 + x

0
2) + 1](y1e + y2e).

Therefore,
F(x0,y) = (2(x0

1 + x
0
2) + 1)(y1e + y2e).

Similarly, we can obtain F(x0,y) = 2(x0
1 + x

0
2)(y1e + y2e). So F(x0,y) > F(x0,y). By Theorem 3.7 (2), F is

H-non-differentiable in direction y at x0.

4. D-direction differentiability of interval-valued function

In order to avoid the appearance of the difficulty that H-differences bring in the conditions of Defi-
nition 3.1, in this section, we introduce the D-directional derivative and D-directional differentiability of
interval-valued function from a subset of space Rn into interval numbers space [R].

Definition 4.1. Let F : M → ([R],DH) be an interval-valued function, x ∈ M. If for y ∈ Rn, there exists
δ > 0 such that x+ hye ∈ M (x− hye ∈M) for any h ∈ (0, δ), and there exists a+ ∈ [R] (a− ∈ [R]) such
that

lim
h→0+

DH(F(x+ hye), F(x) + ha+)
h

= 0
(

lim
h→0+

DH(F(x), F(x− hye) + ha−)
h

= 0
)

.

Then we say that F is right (resp. left) D-differentiable in direction y at x, and call a+(a−) the right (resp.
left) D-directional derivative of F in direction y at x, which is denoted as

FD+ (x,y) = a+(FD− (x,y) = a−).

If FD+ (x,y) = FD− (x,y), we say that F is D-differentiable in direction y at x, which is denoted as

FD(x,y) = FD+ (x,y) = FD− (x,y),

and we call FD(x,y) is the D-directional derivative of F in direction y at x.

Theorem 4.2. Let F : M → ([R],DH) be an interval-valued function, x ∈ M, y ∈ Rn. If F is D-differentiable
in direction y at x, then F(x) and F(x) are differentiable in direction y at x, and FD(x,y) = [F(x,y), F(x,y)] .
Conversely, if F(x) and F(x) are differentiable in direction y at x, and F(x,y) 6 F(x,y). Then F is D-differentiable
in direction y at x, and

FD(x,y) = [F(x,y), F(x,y)],

where F(x,y) and F(x,y) are directional derivatives of F(x) and F(x) in direction y at x, respectively.

Proof. Let F : M → ([R],DH) be an interval-valued function, which is D-differentiable in direction y at
x. Then there exists δ > 0 such that x+ hye ∈ M and x− hye ∈ M for any h ∈ (0, δ), and there exists
FD(x,y) ∈ [R] such that

lim
h→0+

DH(F(x+ hye), F(x) + hFD(x,y))
h

= lim
h→0+

DH(F(x), F(x− hye) + hFD(x,y))
h

= 0.
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Therefore, we can obtain

lim
h→0+

DH(F(x+ hye), F(x) + hFD(x,y))
h

= lim
h→0+

max{|F(x+ hye) − (F(x) + hFD(x,y))|, |F(x+ hye) − (F(x) + hFD(x,y))|}

h

= lim
h→0+

max{|
F(x+ hye) − F(x) − hF

D(x,y)
h

|, |
F(x+ hye) − F(x) − hFD(x,y)

h
|}

= 0.

So

lim
h→0+

|
F(x+ hye) − F(x)

h
− FD(x,y)| = lim

h→0+
|
F(x+ hye) − F(x)

h
− FD(x,y)| = 0.

Therefore, the right derivative of F(x) and F(x) in direction y at x exist, and

F+(x,y) = FD(x,y), F+(x,y) = FD(x,y).

Likewise, from lim
h→0+

DH(F(x), F(x− hye) + hFD(x,y))
h

= 0, we can obtain F(x) and F(x) is left differen-

tiable in direction y at x, and

F−(x,y) = FD(x,y), F−(x,y) = FD(x,y).

Therefore,

F−(x,y) = F+(x,y) = FD(x,y), F−(x,y) = F+(x,y) = FD(x,y).

So the directional derivatives F(x,y) and F(x,y) of F(x) and F(x) in direction y at x exist, and

FD(x,y) = [F(x,y), F(x,y)].

Conversely, let the directional derivatives of F(x) and F(x) in direction y at x exist and F(x,y) 6 F(x,y).
According to the concept of directional derivative of real-valued function, there exists δ > 0 such that
x+ hye ∈M, x− hye ∈M for any h ∈ (0, δ) and

lim
h→0+

F(x) − F(x− hye)

h
= F(x,y), lim

h→0+

F(x+ hye) − F(x)

h
= F(x,y).

Let a(x,y) = [F(x,y), F(x,y)], then a(x,y) ∈ [R], and we can obtain

lim
h→0+

DH(F(x), F(x− hye) + ha(x,y))
h

= 0, lim
h→0+

DH(F(x+ hye), F(x) + ha(x,y))
h

= 0.

Therefore, by Definition 4.1, we obtain F(x) is D-differentiable in direction y at x and

FD(x,y) = [F(x,y), F(x,y)].

The following Theorem 4.3 and Example 4.4 address the relation between D-directional differentiabil-
ity and H-directional differentiability.

Theorem 4.3. Let F : M → ([R],DH) be an interval-valued function, x ∈ M, y ∈ Rn. If F is H-differentiable in
direction y at x, then F is D-differentiable in direction y at x, and

FD(x,y) = FH(x,y).
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Proof. Let F be H-differentiable in direction y at x, then there exists δ > 0 such that x + hye ∈ M,
x− hye ∈ M and F(x+ hye) −H F(x), F(x) −H F(x− hye) both exist for any h ∈ (0, δ) and there exists
FH(x,y) ∈ [R] such that

lim
h→0+

F(x+ hye) −H F(x)

h
= lim

h→0+

F(x) −H F(x− hye)

h
= FH(x,y).

According to Proposition 2.3, we have

lim
h→0+

DH(F(x+ hye), F(x) + hFH(x,y))
h

= lim
h→0+

DH(F(x+ hy) −H F(x),hFH(x,y))
h

= lim
h→0+

DH

(
F(x+ hy) −H F(x)

h
, FH(x,y)

)
= 0.

So by Definition 4.1, F is right D-differentiable in direction y at x, and

FD+ (x,y) = FH(x,y).

Likewise, according to lim
h→0+

F(x) −H F(x− hye)

h
= FH(x,y), we can obtain F is left D-differentiable in

direction y at x and
FD− (x,y) = FH(x,y).

Therefore,
FD− (x,y) = FD+ (x,y) = FH(x,y).

By Definition 4.1, we obtain F is D-differentiable in direction y at x, and

FD(x,y) = FH(x,y).

By Theorem 4.3, we know that F is H-differentiable in direction y at x, which implies F is D-differentiable
in direction y at x. But the following Example 4.4 can show that D-differentiability of F does not mean it
is H-differentiable in direction y at x.

Example 4.4. Let F(x) = [x2, x3 + 4] be an interval-valued function defined on [−1, 1]. Then for x = 0 ∈
[−1, 1] in direction y = 1, we have

F+(0, 1) = lim
h→0+

=
F(0 + h, 1) − F(0)

h2 = lim
h→0+

h2 − 02

h
= 0.

Likewise, we obtain F−(0, 1) = F+(0, 1) = F−(0, 1) = 0. Let a(0, 1) = 0 = [0, 0], then

FD+ (0, 1) = lim
h→0+

DH(F(0 + h, 1), F(0) + hF+(0, 1))
h

= lim
h→0+

DH([h2,h3 + 4], [0, 4])
h

= lim
h→0+

max{|h2 − 0|, |h3 + 4 − 4|}
h

= 0.

Similarly, we obtain FD− (0, 1) = 0. Therefore, F is D-differentiable in direction y = 1 at x = 0, and

FD(0, 1) = 0 = [0, 0].
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Next we will prove that F is not right H-differentiable in direction y = 1 at x = 0.
Suppose that F is right H-differentiable in direction y = 1 at x = 0, then there exists δ > 0 such that

F(0 + h) −H F(0) exists, i.e.,

F(0 + h) −H F(0) = [F(0 + h) −H F(0), F(0 + h) −H F(0)] ∈ [R],

for any h ∈ (0, δ). Therefore,
F(0 + h) −H F(0) 6 F(0 + h) −H F(0).

By Propsition 2.2, we have
F(0 + h) − F(0) 6 F(0 + h) − F(0),

i.e.,
(0 + h)2 − (0)2 6 (0 + h)3 + 4 − (03 + 4).

So h2 6 h3 for any h ∈ (0, δ), i.e., h > 1. Thus we can obtain a contradictory conclusion that h > 1 for any
h ∈ (0, δ). So F is not right H-differentiable in direction y = 1 at x = 0. According to Definition 3.1, it is
not H-differentiable in direction y = 1 at x = 0.

In what follows, we will further give a sufficient and necessary condition such that D-directional
differentiable interval-valued function F :M→ ([R],DH) becomes H-directional differentiable.

Theorem 4.5. Let F : M → ([R],DH) be an interval-valued function, x ∈ M, y ∈ Rn. F is H-differentiable in
direction y at x, if and only if F is D-differentiable in direction y at x, and there exists δ > 0 such that H-differences
F(x+ hye) −H F(x) and F(x) −H F(x− hye) exist for any h ∈ (0, δ).

Proof. Necessary. Suppose that F is H-differentiable in direction y at x, then according to Definition 3.1,
there exists δ > 0 such thatH-differences F(x+hye)−H F(x) and F(x)−H F(x−hye) exist for any h ∈ (0, δ).

On the other hand, according to Theorem 4.3, we can infer that F is D-differentiable in direction y at
x.

Sufficiency. Suppose that F is D-differentiable in direction y at x. Then there exists δ1 > 0 such that
x+ hye ∈M, x− hye ∈M for any h ∈ (0, δ1) and there exists FD(x,y) ∈ [R] such that

lim
h→0+

DH(F(x+ hye), F(x) + hFD(x,y))
h

= lim
h→0+

DH(F(x), F(x− hye) + hFD(x,y))
h

= 0.

Take δ0 = min{δ, δ1}, then x+ hye ∈M, x− hye ∈M and H-differences

F(x+ hye) −H F(x), F(x) −H F(x− hye),

exist for any h ∈ (0, δ0).
According to Proposition 2.3, we have

lim
h→0+

DH

(
F(x+ hye) −H F(x)

h
, FD(x,y)

)
= lim

h→0+

DH(F(x+ hye) −H F(x),hFD(x,y))
h

= lim
h→0+

DH(F(x+ hye), F(x) + hFD(x,y))
h

= 0.

So by Definition 3.1, F is H-differentiable in direction y at x, and FH+(x,y) = FD(x,y).
Similarly, we can obtain F(x) is left H-differentiable in direction y at x, and FH−(x,y) = FD(x,y). So

according to Definition 3.1, F is H-differentiable in direction y at x.

5. Conclusion

Reference [7, 8] give the concepts of the H-derivative of the interval-valued function from nonempty
subset of real-valued space to interval-valued space and the partial H-derivative of the interval-valued
function from nonempty subset of n-dimensional Euclidean space to interval number space by using
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H-difference which only take the changing rate of interval-valued function in axis direction into con-
sideration. In this paper, we take the changing rate of interval-valued function in special direction into
consideration, and give the concepts of the H-directional derivative of the interval-valued function from
nonempty subset of n-dimensional Euclidean space to interval number space, and prove that H-derivative
and partial H-derivative are both H-derivatives of interval-valued function in axis direction.

We know that the H-difference between two interval numbers does not always exist, which makes
it difficult to study the differentiability of interval-valued function. In order to solve this problem, we
give the concept of D-directional derivative of interval-valued functions from nonempty subset of n-
dimensional Euclidean space to interval number space by using Hausdorff distance in Section 4 and we
prove that an interval-valued function which is H-differentiable must beD-differentiable, but the opposite
is not always true.

The concept of D-differentiability expands the species of the interval-valued function which is differ-
entiable. This will enrich and develop the theory and application of the differentiability of interval-valued
function. We hope it can provide a new method of studying the problem about the theory of differentia-
bility of interval-valued function and its application.
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[5] R. Osuna-Gómez, Y. Chalco-Cano, B. Hernández-Jiménez, G. Ruiz-Garzón, Optimality conditions for generalized

differentiable interval-valued functions, Inform. Sci., 321 (2015), 136–146. 1
[6] L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations,

Nonlinear Anal., 71 (2009), 1311–1328. 1
[7] H.-C. Wu, The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective func-

tions, European J. Oper. Res., 176 (2007), 46–59. 1, 2.1, 2.4, 2.5, 3, 5
[8] H.-C. Wu, The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued

objective functions, European J. Oper. Res., 196 (2009), 49–60. 1, 3, 5


	Introduction
	Basic concepts of interval number 
	-Directional differentiability of interval-function
	-direction differentiability of interval-valued function
	Conclusion

