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Abstract
This paper studies the robustness of global exponential stability of neural networks evoked by deviating argument and

stochastic disturbance. Given the original neural network is globally exponentially stable, we discuss the problem that the
neural network is still globally exponentially stable when the deviating argument or both the deviating argument and stochastic
disturbance is/are generated. By virtue of solving the derived transcendental equation(s), the upper bound(s) about the intensity
of the deviating argument or both of the deviating argument and stochastic disturbance is/are received. The obtained theoretical
results are the supplements to the existing literatures on global exponential stability of neural networks. Two numerical examples
are offered to demonstrate the effectiveness of theoretical results. c©2017 All rights reserved.
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1. Introduction

In recent decades, neural networks have been widely applied in many fields such as associative mem-
ory, speech recognition, neural computing, and so on. In order to tackle different kinds of tasks expedi-
ently, a variety of types of neural networks have been presented, for instance, cellular neural networks,
Cohen-Grossberg neural networks, fuzzy neural networks, etc.. And all these neural networks have at-
tracted much attention from various theoretical and engineering fields ([3, 14, 22, 32, 35]).

In most of the practical applications, for example, robot control, speech synthesis, and associative
memory, it is essential that the neural networks are of stability. And there are many publications about
different types of stability of all sorts of types of neural networks (see, for instance, [4, 6, 8, 9, 13, 15, 16, 19,
20, 22–30, 32–36, 38, 40]). In [4], the global asymptotic stability of recurrent neural networks was reported.
It was analyzed the global Mittag-Leffler stability of memristor-based fractional-order neural networks
in [8]. A new method was proposed for complete stability of the time-delayed cellular neural networks
in [9]. Multistability analysis for time-varying delayed recurrent neural networks with non-monotonous
activation functions was addressed in [22]. Exponential stability for time-delayed memristor-based neu-
ral networks was discussed in [27]. And Lagrange stability for memristor-based neural networks with
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discrete and distributed delays was investigated in [32].
It should be noted that stochastic disturbance is inevitable in practical applications of neural net-

works, which may aggravate the performance and even derail the stable neural networks. And there-
fore, neural networks evoked by stochastic disturbance have been investigated extensively ([5, 7, 10–
12, 17, 18, 25, 31, 37, 39]). In [5], it was discussed the mean square exponential stability of neural networks
with uncertain random time-delays. The multistability for Hopfield neural networks with time-varying
delay and stochastic disturbance was analyzed in [7]. It was showed that the n-neuron network can have
2n positive invariant sets with probability 1, in which every invariant set contained an asymptotically
stable equilibrium point. It was reported in [37] that complex networks can be of exponential synchro-
nization in mean square with the delayed impulsive controller.

As a particular type of neural networks, generalized type neural networks with piecewise constant
argument, which can be seemed as neural networks evoked by deviating argument, have been explored
widely in recent years ([1, 2, 21]). Different from the traditional neural networks, this class of neural
networks can change the deviation types (alternately advanced and retarded) as the time t goes on. Based
on the fact that the generalized type neural networks with piecewise constant argument play an important
role in the electromagnetic field, and meanwhile, the disparate types of deviation argument may rely on
the occurrence of traveling waves possessing potential applications, the generalized type neural networks
with piecewise constant argument were addressed in [1]. In [21], the global mean square exponential
stability for this type of neural networks with stochastic disturbances was studied via constructing the
Lyapunov function.

From the analysis in [1, 25], it can be seen that the deviating argument and stochastic disturbance
are some key factors destablizing the neural networks, when the intensity of the deviating argument or
stochastic disturbance surpasses a certain limit. It should be stressed that there are many references which
analyze the stability properties of neural networks, whereas there are rare about the robustness stability
of neural networks evoked by deviating argument and stochastic disturbance. The deviating argument
contains the information about the past and future, meanwhile the stochastic disturbance is ubiquitous in
practical applications, hence it is meaningful to investigate: (1) Given a globally exponentially stable neu-
ral network, how much intensity of the deviating argument can the neural network sustain to maintain
globally exponentially stable? (2) Given a globally exponentially stable neural network, how much inten-
sity of the deviating argument and stochastic disturbance can the neural network sustain simultaneously
to maintain globally exponentially stable?

Motivated by the above discussion, in this paper, we investigate the following two issues:

(1) for an originally globally exponentially stable neural network, the upper bound of the intensity of the
deviating argument maintaining the neural network to be globally exponentially stable;

(2) for an originally globally exponentially stable neural network, the upper bounds of the intensity of
the deviating argument and stochastic disturbance that maintain the neural network to be globally
exponentially stable.

By establishing the transcendental equations about the intensity of deviating argument and stochastic
disturbance, the upper bounds of the intensity of deviating argument and stochastic disturbance are
derived. The validity of theoretical results is demonstrated well via some numerical examples.

The rest of the paper is outlined as follows. The preliminaries and model descriptions are introduced
in Section 2. In Section 3, it formulates the impact of deviating argument and the impact of both devi-
ating argument and stochastic disturbance on the global exponential stability of neural networks. Two
numerical examples are provided to verify the effectiveness of theoretical results in Section 4. Concluding
remarks are made in Section 5.

2. Preliminaries and model descriptions

Throughout this paper, denote Rn and Rn×m as the n-dimensional Euclidean space and the set of
n ×m matrices, respectively. For a vector x ∈ Rn and a matrix A ∈ Rn×n, the operator norm of A
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is indicated as ‖A‖ = sup{‖Ax‖ : ‖x‖ = 1}, where ‖ · ‖ is the Euclidean norm with ‖x‖ =
√∑n

i=1 x
2
i.

E(·) signifies the mathematical expectation. N indicates the natural number set. Select two real-valued
sequences ξk, σk, satisfying ξk < ξk+1, ξk 6 σk 6 ξk+1, for any k ∈ N. And ξk → +∞, σk → +∞ as
k→ +∞. Then we consider the following neural network model

ẇ(t) = −Aw(t) +Bf(w(t)) +Cf(w(ϑ(t))), w(t0) = w0 ∈ Rn, (2.1)

where ϑ(t) is a deviating argument satisfying ϑ(t) = σk ∈ [ξk, ξk+1], if t ∈ [ξk, ξk+1). And w(t) =
(w1(t), . . . ,wn(t))T ∈ Rn is the state vector, A = diag{a1, . . . ,an} ∈ Rn×n is the self-feedback con-
nection weight matrix. B = (bij)n×n ∈ Rn×n and C = (cij)n×n ∈ Rn×n denote the connection
weight matrices about the state w(t) and deviating argument state w(ϑ(t)), respectively. f(w(t)) =
(f1(w1(t)), . . . , fn(wn(t)))T ∈ Rn, f(w(ϑ(t))) = (f1(w1(ϑ(t))), . . . , fn(wn(ϑ(t))))T ∈ Rn indicate the vector-
valued activation functions at time t and ϑ(t), respectively.

We say the type of neural network (2.1) is mixed. For the deviating argument ϑ(t) = σk, t ∈ [ξk, ξk+1),
when ξk 6 t < ϑ(t) = σk, w(ϑ(t)) is an advanced argument. When ϑ(t) = σk < t < ξk+1, w(ϑ(t)) is a
retarded argument. Therefore, neural network (2.1) changes the type of deviating argument state w(ϑ(t))
with the increase of time t.

A solution w(t) = (w1(t),w2(t), . . . ,wn(t)) of neural network (2.1) is continuous such that:

(1) the derivative ẇ(t) exists at each point when t > 0 with the possible exception of the points ξk,
k ∈ N, where a one-sided derivative exists;

(2) w(t) satisfies neural network (2.1) on each interval (ξk, ξk+1), k ∈ N.

In what follows we will introduce some assumptions that will be needed in this paper.

(A1) For the activation functions fi(·) ∈ C(R,R) satisfying fi(0) = 0, there exist Lipschitz constants Li > 0
such that

|fi(ui) − fi(vi)| 6 Li|ui − vi|,

for any ui, vi ∈ R and i = 1, 2, . . .n. It can be written in the vector format as

‖f(u) − f(v)‖ 6 L‖u− v‖,

for any u, v ∈ Rn, where L = max16i6n(Li).

(A2) There exists a positive constant ξ such that ξk+1 − ξk 6 ξ for any k ∈ N.

(A3) There exist positive constants ξ, ρ, and υ such that

ξ(ρ+ 2υ) exp(ρξ) < 1,

where ρ = max16i6n

(
ai + Li

∑n
j=1 |bji|

)
, υ = max16i6n

(
Li
∑n
j=1 |cji|

)
.

Remark 2.1. It can be seen from Theorem 2.2 of [1] that the existence and uniqueness of the solution of
neural network (2.1) are guaranteed by (A1), (A2), and (A3) jointly.

In case of ϑ(t) = t (i.e., ξ = 0), for any t > t0, neural network (2.1) degenerates into an ordinary neural
network as follows

ẋ(t) = −Ax(t) +Bf(x(t)) +Cf(x(t)), x(t0) = x0. (2.2)

Definition 2.2 ([25]). The state of neural network (2.2) is globally exponentially stable if, for any (t0, x0) ∈
([0,+∞),Rn), there exist α > 0, β > 0 such that

‖x(t, t0, x0)‖ 6 α‖x(t0)‖ exp(−β(t− t0)),

where x(t, t0, x0) is the state of neural network (2.2).
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3. Main results

3.1. The impact of deviating argument on stability
Under (A1), (A2), and (A3), neural network (2.1) has a unique solution w(t, t0,w0) for any initial state

(t0,w0) when t > t0. And it is clear that w = 0 is the equilibrium point. Then, one question arises:
provided that neural network (2.2) is globally exponentially stable, how much intensity of the deviating
argument can neural network (2.1) withstand and maintain globally exponentially stable as before? Based
on this fact, in this subsection, we consider the robustness of global exponential stability of neural network
(2.1) for the deviating argument when neural network (2.2) is globally exponentially stable.

Before giving the main theorem of this subsection, a useful lemma is presented. And the following
assumptions are needed.

(A4) There exist positive constants ξ, µ and ν such that

6ξ2[nν+ 2µ(1 + 3nνξ2) exp(6µξ2)] < 1,

where µ = max16i6n

(
a2
i + nL

2
i

∑n
j=1 b

2
ji

)
, ν = max16i6n

(
L2
i

∑n
j=1 c

2
ji

)
, and n corresponds to the

number of units in neural network (2.1).

(A5) The parameters of neural network (2.2) satisfy the following inequality

2α2 exp(−2β∆) + 144‖C‖2L2∆α2 exp
{

12∆2
(
‖A‖2 + ‖B‖2L2 + 2‖C‖2L2

)
+ 288‖C‖2L2∆2

}/
β < 1,

where L is the Lipschitz constant, and ∆ > ln(2α2)/(2β).

Lemma 3.1. Under (A1), (A2), (A3), and (A4), for (2.1), the following inequality holds,

‖w(ϑ(t))‖ 6 ρ‖w(t)‖

for any t > t0, where ρ = 2
(

1− 6ξ2
[
nν+ 2µ(1+ 3nνξ2) exp(6µξ2)

])−1
, µ = max16i6n

(
a2
i +nL

2
i

∑n
j=1 b

2
ji

)
,

ν = max16i6n

(
L2
i

∑n
j=1 c

2
ji

)
, and n corresponds to the number of units in neural network (2.1).

Proof. For any t > t0, from the property of ϑ(t) and the sequences {ξk}, {σk}, there exists a unique k ∈ N,
such that

ϑ(t) = σk ∈ [ξk, ξk+1), t ∈ [ξk, ξk+1),

and we have if t > σk,

wi(t) =wi(σk) +

∫t
σk

[
− aiwi(s) +

n∑
j=1

bijfj(wj(s)) +

n∑
j=1

cijfj(wj(σk))
]
ds, (3.1)

for i = 1, 2, . . . ,n, then

w2
i(t) =

(
wi(σk) +

∫t
σk

[
− aiwi(s) +

n∑
j=1

bijfj(wj(s)) +

n∑
j=1

cijfj(wj(σk))
]
ds

)2

62w2
i(σk) + 2

( ∫t
σk

[
− aiwi(s) +

n∑
j=1

bijfj(wj(s)) +

n∑
j=1

cijfj(wj(σk))
]
ds

)2

=2w2
i(σk) + 2

( ∫t
σk

1×
[
− aiwi(s) +

n∑
j=1

(
bij × fj(wj(s))

)
+

n∑
j=1

cijfj(wj(σk))
]
ds

)2

.
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From the Cauchy-Schwarz inequality, we get

w2
i(t) 62w2

i(σk) + 2
∫t
σk

12ds×
∫t
σk

[
− aiwi(s) +

n∑
j=1

bijfj(wj(s)) +

n∑
j=1

cijfj(wj(σk))
]2
ds

62w2
i(σk) + 2ξ

∫t
σk

[
− aiwi(s) +

n∑
j=1

bijfj(wj(s)) +

n∑
j=1

cijfj(wj(σk))
]2
ds

62w2
i(σk) + 6ξ

∫t
σk

[
a2
iw

2
i(s) +

( n∑
j=1

bijfj(wj(s))
)2

+
( n∑
j=1

cijfj(wj(σk))
)2]
ds

62w2
i(σk) + 6ξ

∫t
σk

[
a2
iw

2
i(s) +n

n∑
j=1

b2
ijf

2
j(wj(s)) +n

n∑
j=1

c2
ijf

2
j(wj(σk))

]
ds,

then
n∑
i=1

w2
i(t) 62

n∑
i=1

w2
i(σk) + 6ξ

∫t
σk

[ n∑
i=1

a2
iw

2
i(s) +n

n∑
i=1

n∑
j=1

b2
ijf

2
j(wj(s)) +n

n∑
i=1

n∑
j=1

c2
ijf

2
j(wj(σk))

]
ds

=2
n∑
i=1

w2
i(σk) + 6ξ

∫t
σk

[ n∑
i=1

a2
iw

2
i(s) +n

n∑
j=1

n∑
i=1

b2
jif

2
i(wi(s)) +n

n∑
j=1

n∑
i=1

c2
jif

2
i(wi(σk))

]
ds

=2
n∑
i=1

w2
i(σk) + 6ξ

∫t
σk

[ n∑
i=1

a2
iw

2
i(s) +n

n∑
i=1

n∑
j=1

b2
jif

2
i(wi(s)) +n

n∑
i=1

n∑
j=1

c2
jif

2
i(wi(σk))

]
ds

62
n∑
i=1

w2
i(σk) + 6ξ

∫t
σk

[ n∑
i=1

a2
iw

2
i(s) +n

n∑
i=1

n∑
j=1

b2
jiL

2
iw

2
i(s) +n

n∑
i=1

n∑
j=1

c2
jiL

2
iw

2
i(σk)

]
ds

=2
n∑
i=1

w2
i(σk) + 6ξ

∫t
σk

[ n∑
i=1

(
a2
i +nL

2
i

n∑
j=1

b2
ji

)
w2
i(s) +n

n∑
i=1

(
L2
i

n∑
j=1

c2
ji

)
w2
i(σk)

]
ds

62
n∑
i=1

w2
i(σk) + 6ξ

∫t
σk

[ n∑
i=1

µw2
i(s) +n

n∑
i=1

νw2
i(σk)

]
ds,

that is

‖w(t)‖2 62‖w(σk)‖2 + 6ξ
∫t
σk

(
µ‖w(s)‖2 +nν‖w(σk)‖2

)
ds

=2‖w(σk)‖2 + 6ξµ
∫t
σk

‖w(s)‖2ds+ 6nξν
∫t
σk

‖w(σk)‖2ds

62‖w(σk)‖2 + 6ξµ
∫t
σk

‖w(s)‖2ds+ 6nξ2ν‖w(σk)‖2

=2(1 + 3nνξ2)‖w(σk)‖2 + 6ξµ
∫t
σk

‖w(s)‖2ds.

Based on the Gronwall-Bellman inequality, we obtain

‖w(t)‖2 6 2(1 + 3nνξ2)‖w(σk)‖2 exp
( ∫t

σk

6ξµds
)

6 2(1 + 3nνξ2)‖w(σk)‖2 exp
(
6µξ2). (3.2)

Exchanging the location of wi(t) and wi(σk) in (3.1),

‖w(σk)‖2 62‖w(t)‖2 + 6nξ2ν‖w(σk)‖2 + 6ξµ
∫t
σk

‖w(s)‖2ds, (3.3)
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substituting (3.2) into (3.3),

‖w(σk)‖2 62‖w(t)‖2 + 6nξ2ν‖w(σk)‖2 + 6ξµ
∫t
σk

(
2(1 + 3nνξ2)‖w(σk)‖2 exp

(
6µξ2))ds

62‖w(t)‖2 + 6nξ2ν‖w(σk)‖2 + 12ξ2µ(1 + 3nνξ2)‖w(σk)‖2 exp
(
6µξ2)

=2‖w(t)‖2 + 6ξ2
[
nν+ 2µ(1 + 3nνξ2) exp

(
6µξ2)]‖w(σk)‖2,

it follows that

‖w(ϑ(t))‖ 6 ρ‖w(t)‖.

For t < σk, we can get the same result with the method used above. And the proof is completed.

Remark 3.2. The existence of deviating argument unifies the advance and retard, hence it brings a lot of
difficulties to analyze the neural network evoked by deviating argument. Through the estimation of the
norm of the deviating argument state vector w(ϑ(t)) by the norm of the corresponding state vector w(t),
Lemma 3.1 provides an effective approach to study neural network (2.1).

Theorem 3.3. Let (A1), (A2), (A3), (A4), and (A5) hold and neural network (2.2) be globally exponentially
stable. Neural network (2.1) is globally exponentially stable if ξ < ξ̄, where ξ̄ is a unique positive solution of the
transcendental equation

2α2 exp
{
− 2β∆

}
+ 2ĉ2 exp

{
2ĉ1∆

}
= 1, (3.4)

where ĉ1 = 6∆(‖A‖2 + ‖B‖2L2 + 2‖C‖2L2) + 48‖C‖2L2∆(1 + ρ), ĉ2 = 24‖C‖2L2∆α2(1 + ρ)/β, ρ = 2
(

1 −

6ξ2
[
nν+ 2µ(1 + 3nνξ2) exp(6µξ2)

])−1
, ∆ > ln(2α2)/(2β).

Proof. For the sake of simplicity, x(t, t0, x0) and w(t, t0,w0) are denoted as x(t) and w(t), respectively.
From (2.1), (2.2), and the initial condition x0 = w0, we obtain

x(t) −w(t) =

∫t
t0

[−A(x(s) −w(s)) +B(f(x(s)) − f(w(s))) +C(f(x(s)) − f(w(ϑ(t))))]ds,

that is

‖x(t) −w(t)‖2 =
∥∥∥ ∫t
t0

[
−A

(
x(s) −w(s)

)
+B

(
f(x(s)) − f(w(s))

)
+C

(
f(x(s)) − f(w(ϑ(t)))

)]
ds
∥∥∥2

.

By the Cauchy-Schwarz inequality

‖x(t) −w(t)‖2 6
( ∫t
t0

∥∥[−A(x(s) −w(s)) +B(f(x(s)) − f(w(s))) +C(f(x(s)) − f(w(ϑ(t))))]∥∥ds)2

=
( ∫t
t0

∥∥1× [−A(x(s) −w(s)) +B(f(x(s)) − f(w(s))) +C(f(x(s)) − f(w(ϑ(t))))]
∥∥ds)2

6
∫t
t0

12ds×
∫t
t0

∥∥[−A(x(s) −w(s)) +B(f(x(s)) − f(w(s))) +C(f(x(s)) − f(w(ϑ(t))))]∥∥2
ds,

and when t0 6 t 6 t0 + 2∆,

‖x(t) −w(t)‖2 62∆
(

3
∫t
t0

‖−A(x(s) −w(s))‖2ds+ 3
∫t
t0

‖B(f(x(s)) − f(w(s)))‖2ds
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+ 3
∫t
t0

‖C(f(x(s)) − f(w(ϑ(s))))‖2ds
)

62∆
[
(3‖A‖2 + 3‖B‖2L2)

∫t
t0

‖x(s) −w(s)‖2ds+ 3‖C‖2 ×
∫t
t0

‖f(x(s)) − f(w(ϑ(s)))‖2ds
]

=2∆(3‖A‖2 + 3‖B‖2L2)

∫t
t0

‖x(s) −w(s)‖2ds+ 6‖C‖2∆

×
∫t
t0

‖(f(x(s)) − f(w(s))) + (f(w(s)) − f(w(ϑ(s))))‖2ds

66∆(‖A‖2 + ‖B‖2L2)

∫t
t0

‖x(s) −w(s)‖2ds+ 12‖C‖2L2∆

×
∫t
t0

‖x(s) −w(s)‖2ds+ 12‖C‖2L2∆

∫t
t0

‖w(s) −w(ϑ(s))‖2ds

66∆(‖A‖2 + ‖B‖2L2)

∫t
t0

‖x(s) −w(s)‖2ds+ 12‖C‖2L2∆

×
∫t
t0

‖x(s) −w(s)‖2ds+ 24‖C‖2L2∆

∫t
t0

(‖w(s)‖2 + ‖w(ϑ(s))‖2)ds.

Applying Lemma 3.1,

‖x(t) −w(t)‖2 66∆(‖A‖2 + ‖B‖2L2)

∫t
t0

‖x(s) −w(s)‖2ds+ 12‖C‖2L2∆

∫t
t0

‖x(s) −w(s)‖2ds

+ 24‖C‖2L2(1 + ρ)∆

∫t
t0

‖w(s)‖2ds

66∆(‖A‖2 + ‖B‖2L2)

∫t
t0

‖x(s) −w(s)‖2ds+ 12‖C‖2L2∆

∫t
t0

‖x(s) −w(s)‖2ds

+ 24‖C‖2L2(1 + ρ)∆

∫t
t0

‖(x(s) −w(s)) + x(s)‖2ds

66∆(‖A‖2 + ‖B‖2L2)

∫t
t0

‖x(s) −w(s)‖2ds+ 12‖C‖2L2∆

∫t
t0

‖x(s) −w(s)‖2ds

+ 48‖C‖2L2(1 + ρ)∆

∫t
t0

‖x(s) −w(s)‖2ds+ 48‖C‖2L2(1 + ρ)∆

∫t
t0

‖x(s)‖2ds

=[6∆(‖A‖2 + ‖B‖2L2 + 2‖C‖2L2) + 48‖C‖2L2(1 + ρ)∆]

∫t
t0

‖x(s) −w(s)‖2ds

+ 48‖C‖2L2(1 + ρ)∆

∫t
t0

‖x(s)‖2ds.

From the condition that neural network (2.2) is globally exponentially stable, we have

‖x(t)‖2 6 α2‖x(t0)‖2 exp{−2β(t− t0)},

and then ∫t
t0

‖x(s)‖2ds 6 α2‖x(t0)‖2/(2β).

Hence
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‖x(t) −w(t)‖2 6[6∆(‖A‖2 + ‖B‖2L2 + 2‖C‖2L2) + 48‖C‖2L2(1 + ρ)∆]

×
∫t
t0

‖x(s) −w(s)‖2ds+ (24‖C‖2L2(1 + ρ)∆α2/β)‖x(t0)‖2

=ĉ2‖x(t0)‖2 + ĉ1

∫t
t0

‖x(s) −w(s)‖2ds.

Based on the Gronwall-Bellman inequality and when t0 6 t 6 t0 + 2∆,

‖x(t) −w(t)‖2 6 ĉ2‖x(t0)‖2 exp(2ĉ1∆). (3.5)

So when t0 +∆ 6 t 6 t0 + 2∆, from (3.5) and the global exponential stability of (2.2), we can get

‖w(t)‖2 =‖(w(t) − x(t)) + x(t)‖2

62‖w(t) − x(t)‖2 + 2‖x(t)‖2

62ĉ2‖x(t0)‖2 exp(2ĉ1∆) + 2α2‖x(t0)‖2 exp{−2β(t− t0)}

62ĉ2‖x(t0)‖2 exp(2ĉ1∆) + 2α2‖x(t0)‖2 exp(−2β∆)

=2{ĉ2 exp(2ĉ1∆) +α
2 exp(−2β∆)}‖x(t0)‖2

6ĉ( sup
t06t6t0+∆

‖w(t)‖2),

(3.6)

where ĉ = 2{ĉ2 exp(2ĉ1∆) +α
2 exp(−2β∆)}. Denote

H(ρ) = 2
{
ĉ2 exp(2ĉ1∆) +α

2 exp(−2β∆)
}

,

then

H(2) =2α2 exp(−2β∆) + 144‖C‖2L2∆α2 exp
{

12∆2
(
‖A‖2 + ‖B‖2L2 + 2‖C‖2L2

)
+ 288‖C‖2L2∆2

}/
β < 1.

It is obvious that

H(+∞) > 1.

And H(ρ) is strictly increasing for ρ, so there exists a unique ρ̄ ∈ (2,+∞) such that

H(ρ̄) = 1.

Denote

S(ξ) = 6ξ2
[
nν+ 2µ(1 + 3nνξ2) exp(6µξ2)

]
,

and denote ξ̂ as the unique positive solution for

S(ξ) = 1,

then

ρ =2
(

1 − 6ξ2[nv+ 2µ(1 + 3nνξ2) exp(6µξ2)]
)−1
∈ (2,+∞)

for ξ ∈ (0, ξ̂). And ρ is strictly increasing for ξ, therefore, there exists a unique positive ξ̄ ∈ (0, ξ̂) such
that

ρ = ρ̄,
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namely, ξ̄ is the unique positive solution for (3.4).
Hence, when ξ < ξ̄, we have

ĉ = 2{ĉ2 exp(2ĉ1∆) +α
2 exp(−2β∆)} < 1.

Select γ = − ln ĉ/∆ > 0, and from (3.6), we can get

sup
t0+∆6t6t0+2∆

‖w(t)‖2 6 exp(−γ∆)( sup
t06t6t0+∆

‖w(t)‖2). (3.7)

For any positive integer l = 1, 2, . . ., according to the existence and uniqueness of the solution w(t) of
neural network (2.1), when t > t0 + (l− 1)∆, we can get

w(t, t0,w0) = w(t, t0 + (l− 1)∆,w(t0 + (l− 1)∆, t0,w0)). (3.8)

From (3.7) and (3.8),

sup
t0+l∆6t6t0+(l+1)∆

‖w(t, t0,w0)‖2

=
(

sup
t0+(l−1)∆+∆6t6t0+(l−1)∆+2∆

‖w(t, t0 + (l− 1)∆,w(t0 + (l− 1)∆, t0,w0))‖2
)

6 exp(−γ∆)
(

sup
t0+(l−1)∆6t6t0+l∆

‖w(t, t0,w0)‖2
)

6 exp(−lγ∆)
(

sup
t06t6t0+∆

‖w(t, t0,w0)‖2
)

=M exp(−lγ∆),

where M = supt06t6t0+∆
‖w(t, t0,w0)‖2.

For any t > t0 +∆, there exists a unique positive integer l such that t0 + l∆ 6 t 6 t0 + (l+ 1)∆, and
we get

‖w(t, t0,w0)‖2 6M exp{−γ(t− t0) + γ∆} = [M exp(γ∆)] exp{−γ(t− t0)},

that is

‖w(t, t0,w0)‖ 6 [c̄ exp(γ̄∆)] exp{−γ̄(t− t0)}, (3.9)

where c̄ =M
1
2 , γ̄ = γ/2. It is obvious that (3.9) holds for t0 6 t 6 t0 +∆. Therefore, neural network (2.1)

is globally exponentially stable, and the proof is completed.

Theorem 3.3 shows that, when neural network (2.2) is globally exponentially stable, neural network
(2.1), which is evoked by the deviating argument, is globally exponentially stable, provided that the
intensity of the deviating argument satisfies (A3) and is smaller than the estimated upper bound.

Remark 3.4. Theorem 3.3 seems to involve three transcendental inequalities and one transcendental equa-
tion to be solved. In fact, (3.4) has a positive solution if and only if (A5) is satisfied. And (3.4) can be
solved easily by MATLAB. Meanwhile, (A4) is satisfied in condition that (3.4) has a positive solution.
Afterwards, it only needs to verify (A3). Hence, the conditions in Theorem 3.3 are easy to be validated.

3.2. The impact of deviating argument and stochastic disturbance on stability
In the preceding subsection, the conditions that guarantee the neural network evoked by deviating

argument to be globally exponentially stable are received. In this subsection, we consider the impact
of both the deviating argument and stochastic disturbance on the global exponential stability of neural
network, when the original neural network is globally exponentially stable.
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Consider the model of neural network evoked by the deviating argument and stochastic disturbance
as follows

dw(t) = [−Aw(t) +Bf(w(t)) +Cf(w(ϑ(t)))]dt+ δw(t)dX(t), (3.10)

with the initial state w(t0) = w0, where matrices A, B, C and ϑ(t) are the same as in (2.1), δ indicates the
noise intensity, X(t) is a one-dimensional Brownian motion, which is defined in the complete probability
space (Ω,F,P) with a natural filtration {Ft}t>t0 generated by {X(s) : t0 6 s 6 t}. Without the deviating
argument and stochastic disturbance, neural network (3.10) degrades into (2.2).

For the sake of exposition, the following definition and lemma will be needed in the presence of
stochastic disturbance.

Definition 3.5 ([25]). Neural network (3.10) is said to be almost surely globally exponentially stable if,
for any t0 > 0, w0 ∈ Rn, the Lyapunov exponent lim supt→+∞(ln ‖w(t, t0,w0)‖/t) < 0 almost surely.
Neural network (3.10) is said to be mean square globally exponentially stable if, for any t > t0, w0 ∈ Rn,
the Lyapunov exponent lim supt→+∞(lnE‖w(t, t0,w0)‖2/t) < 0, where w(t, t0,w0) is the state of neural
network (3.10).

Lemma 3.6 ([25]). Under (A1), (A2), and (A3), the mean square global exponential stability of (3.10) implies the
almost sure global exponential stability of (3.10).

Remark 3.7. Lemma 3.6 provides a convenient approach for proving the almost sure global exponential
stability of (3.10).

In this subsection, the following assumptions are useful.

(A6) The parameters of neural network (2.2) satisfy the following inequality(
480‖C‖2L2∆α2/β

)
exp
{

24∆2(‖A‖2 + ‖B‖2L2 + 42‖C‖2L2)}+ 2α2 exp(−2β∆) < 1,

where L is the Lipschitz constant decided by

‖f(u) − f(v)‖ 6 L‖u− v‖,

and ∆ > ln(2α2)/(2β).

(A7) There exist positive constants ξ, µ, ν, and δ such that

12nνξ2 + (12µξ+ 2δ2)(4 + 12nνξ2)ξ exp
{
(12µξ+ 2δ2)ξ

}
< 1,

where

µ = max
16i6n

(
a2
i +nL

2
i

n∑
j=1

b2
ji

)
,ν = max

16i6n

(
L2
i

n∑
j=1

c2
ji

)
,

and δ and n indicate the intensity of stochastic disturbance and the number of units in neural
network (3.10), respectively.

Lemma 3.8. Under (A1), (A2), (A3), and (A7), for (3.10), the following inequality holds

E‖w(ϑ(t))‖2 6 ηE‖w(t)‖2,

where

η = 4
{

1 −
[
12nνξ2 +

(
12µξ+ 2δ2)(4 + 12nνξ2)ξ exp

{(
12µξ+ 2δ2)ξ}]}−1

,
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µ = max
16i6n

(
a2
i +nL

2
i

n∑
j=1

b2
ji

)
,ν = max

16i6n
L2
i

( n∑
j=1

c2
ji

)
,

and n and δ correspond to the number of units and the intensity of stochastic disturbance in neural network (3.10),
respectively.

Proof. For any t > t0, by the property of ϑ(t) and the sequences {ξk}, {σk}, there exists a unique k ∈ N,
such that

ϑ(t) = σk ∈ [ξk, ξk+1), t ∈ [ξk, ξk+1),

and if t > σk,

wi(t) = wi(σk) +

∫t
σk

[
− aiwi(s) +

n∑
j=1

bijfj(wj(s)) +

n∑
j=1

cijfj(wj(σk))
]
ds+

∫t
σk

δwi(s)dX(s) (3.11)

for i = 1, 2, . . . ,n, then

w2
i(t) =

{
wi(σk) +

∫t
σk

[
− aiwi(s) +

n∑
j=1

bijfj(wj(s)) +

n∑
j=1

cijfj(wj(σk))
]
ds+

∫t
σk

δwi(s)dX(s)

}2

62
{
wi(σk) +

∫t
σk

[
− aiwi(s) +

n∑
j=1

bijfj(wj(s)) +

n∑
j=1

cijfj(wj(σk))
]
ds
}2

+ 2δ2
( ∫t
σk

wi(s)dX(s)
)2

64w2
i(σk) + 4

( ∫t
σk

1×
[
− aiwi(s) +

n∑
j=1

bijfj(wj(s))

+

n∑
j=1

cijfj(wj(σk))
]
ds
)2

+ 2δ2
( ∫t
σk

wi(s)dX(s)
)2

.

From Cauchy-Schwarz inequality, we have

w2
i(t) 64w2

i(σk) + 4
∫t
σk

12ds×
∫t
σk

[
− aiwi(s) +

n∑
j=1

bijfj(wj(s))

+

n∑
j=1

cijfj(wj(σk))
]2
ds+ 2δ2

( ∫t
σk

wi(s)dX(s)
)2

64w2
i(σk) + 12ξ

∫t
σk

[
a2
iw

2
i(s) +

( n∑
j=1

bijfj(wj(s))
)2

+
( n∑
j=1

cijfj(wj(σk))
)2
]
ds+ 2δ2

( ∫t
σk

wi(s)dX(s)
)2

64w2
i(σk) + 12ξ

∫t
σk

[
a2
iw

2
i(s) +

(
n

n∑
j=1

b2
ijf

2
j(wj(s))

)
+
(
n

n∑
j=1

c2
ijf

2
j(wj(σk))

)2
]
ds+ 2δ2

( ∫t
σk

wi(s)dX(s)
)2

.

And hence we can get

n∑
i=1

w2
i(t) 64

n∑
i=1

w2
i(σk) + 12ξ

∫t
σk

[ n∑
i=1

a2
iw

2
i(s) +

(
n

n∑
i=1

n∑
j=1

b2
ijf

2
j(wj(s))

)
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+
(
n

n∑
i=1

n∑
j=1

c2
ijf

2
j(wj(σk))

)]
ds+ 2δ2

n∑
i=1

( ∫t
σk

wi(s)dX(s)
)2

64
n∑
i=1

w2
i(σk) + 12ξ

∫t
σk

[ n∑
i=1

a2
iw

2
i(s) +

(
n

n∑
i=1

n∑
j=1

b2
ijL

2
jw

2
j(s)

)
+
(
n

n∑
i=1

n∑
j=1

c2
ijL

2
jw

2
j(σk)

)]
ds+ 2δ2

n∑
i=1

( ∫t
σk

wi(s)dX(s)
)2

=4
n∑
i=1

w2
i(σk) + 12ξ

∫t
σk

[ n∑
i=1

a2
iw

2
i(s) +

(
n

n∑
j=1

n∑
i=1

b2
jiL

2
iw

2
i(s)

)
+
(
n

n∑
j=1

n∑
i=1

c2
jiL

2
iw

2
i(σk)

)]
ds+ 2δ2

n∑
i=1

( ∫t
σk

wi(s)dX(s)
)2

=4
n∑
i=1

w2
i(σk) + 12ξ

∫t
σk

[ n∑
i=1

a2
iw

2
i(s) +

(
n

n∑
i=1

n∑
j=1

b2
jiL

2
iw

2
i(s)

)
+
(
n

n∑
i=1

n∑
j=1

c2
jiL

2
iw

2
i(σk)

)]
ds+ 2δ2

n∑
i=1

( ∫t
σk

wi(s)dX(s)
)2

=4
n∑
i=1

w2
i(σk) + 12ξ

∫t
σk

[ n∑
i=1

(
a2
i +nL

2
i

n∑
j=1

b2
ji

)
w2
i(s)

+n

n∑
i=1

(
L2
i

n∑
j=1

c2
ji

)
w2
i(σk)

]
ds+ 2δ2

n∑
i=1

( ∫t
σk

wi(s)dX(s)
)2

64
n∑
i=1

w2
i(σk) + 12ξ

∫t
σk

[ n∑
i=1

µw2
i(s) +n

n∑
i=1

νw2
i(σk)

]
ds+ 2δ2

n∑
i=1

( ∫t
σk

wi(s)dX(s)
)2

=4
n∑
i=1

w2
i(σk) + 12ξµ

∫t
σk

n∑
i=1

w2
i(s)ds+ 12ξnν

∫t
σk

n∑
i=1

w2
i(σk)ds+ 2δ2

n∑
i=1

( ∫t
σk

wi(s)dX(s)
)2

.

That is

‖w(t)‖2 64‖w(σk)‖2 + 12ξµ
∫t
σk

‖w(s)‖2ds+ 12ξnν
∫t
σk

‖w(σk)‖2ds+ 2δ2
n∑
i=1

( ∫t
σk

wi(s)dX(s)
)2

64‖w(σk)‖2 + 12ξµ
∫t
σk

‖w(s)‖2ds+ 12ξ2nν‖w(σk)‖2 + 2δ2
n∑
i=1

( ∫t
σk

wi(s)dX(s)
)2

,

and hence

E‖w(t)‖2 64E‖w(σk)‖2 + 12ξµ
∫t
σk

E‖w(s)‖2ds+ 12ξ2nνE‖w(σk)‖2 + 2δ2
n∑
i=1

E
( ∫t
σk

wi(s)dX(s)
)2

.

According to the Itô isometry

E
( ∫t
σk

wi(s)dX(s)
)2

= E
( ∫t
σk

w2
i(s)ds

)
,

we can obtain

E‖w(t)‖2 64E‖w(σk)‖2 + 12ξµ
∫t
σk

E‖w(s)‖2ds+ 12ξ2nνE‖w(σk)‖2 + 2δ2
n∑
i=1

E
( ∫t
σk

w2
i(s)ds

)
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=4E‖w(σk)‖2 + 12ξµ
∫t
σk

E‖w(s)‖2ds+ 12ξ2nνE‖w(σk)‖2 + 2δ2
( ∫t
σk

E‖w(s)‖2ds
)

=(4 + 12ξ2nν)E‖w(σk)‖2 + (12ξµ+ 2δ2)

∫t
σk

E‖w(s)‖2ds.

Based on the Gronwall-Bellman inequality, then

E‖w(t)‖2 6(4 + 12ξ2nν)E‖w(σk)‖2 exp
{ ∫t
σk

(12ξµ+ 2δ2)ds
}

6(4 + 12ξ2nν) exp
{
(12ξµ+ 2δ2)ξ

}
E‖w(σk)‖2.

(3.12)

Exchanging the location of wi(t) and wi(σk) in (3.11), we can get

E‖w(σk)‖ 64E‖w(t)‖2 +
(
12ξµ+ 2δ2) ∫t

σk

E‖w(s)‖2ds+ 12ξ2nνE‖w(σk)‖2, (3.13)

substituting (3.12) into (3.13),

E‖w(σk)‖2 64E‖w(t)‖2 +
(
12ξµ+ 2δ2) ∫t

σk

(4 + 12ξ2nν) exp
{
(12ξµ+ 2δ2)ξ

}
× E‖w(σk)‖2ds+ 12ξ2nνE‖w(σk)‖2

64E‖w(t)‖2 +

{
12nνξ2 +

(
12µξ+ 2δ2)(4 + 12nνξ2)ξ× exp

((
12µξ+ 2δ2)ξ)}E‖w(σk)‖2,

it follows that

E‖w(ϑ(t))‖2 6 ηE‖w(t)‖2.

For the case when t < σk, the same conclusion can be gotten. And we complete the proof.

Theorem 3.9. Let (A1), (A2), (A3), (A6), (A7) hold, and let neural network (2.2) be globally exponentially stable.
Neural network (3.10) is mean square globally exponentially stable, which implies that neural network (3.10) is
almost surely globally exponentially stable, if |δ| < δ̃/

√
2, ξ < ξ̃, where δ̃ is the unique positive solution of the

transcendental equation [
480∆‖C‖2L2 + 4δ2]α2 exp

{
24∆2

(
‖A‖2 + ‖B‖2L2

+ 42‖C‖2L2
)
+ 8δ2∆

}/
β+ 2α2 exp(−2β∆) = 1,

(3.14)

and ξ̃ is the unique positive solution of the following transcendental equation

2c̃2 exp(2∆c̃1) + 2α2 exp(−2β∆) = 1, (3.15)

where c̃1 = 12∆(‖A‖2 + ‖B‖2L2 + 2‖C‖2L2(5 + 4η̄)) + 2δ̃2, c̃2 =
[
48∆‖C‖2L2(1 + η̄) + δ̃2

]
α2
/
β, η̄ = 4

{
1 −[

12nνξ2 +
(
12µξ+ 2δ̃2

)(
4 + 12nνξ2

)
ξ exp

{(
12µξ+ 2δ̃2

)
ξ
}]}−1

, ∆ > ln(2α2)/(2β).

Proof. For simplicity, x(t, t0, x0) and w(t, t0,w0) are denoted as x(t) and w(t), respectively. When t0 6 t 6
t0 + 2∆, and from (2.2), (3.10), the initial condition x0 = w0, Itô isometry, and Cauchy-Schwarz inequality,
we have

E‖x(t) −w(t)‖2 6
[
12∆

(
‖A‖2 + ‖B‖2L2 + 2‖C‖2L2)+ 4δ2

] ∫t
t0

E‖x(s) −w(s)‖2ds

+ 24∆‖C‖2L2
∫t
t0

E‖w(s) −w(ϑ(s))‖2ds+ 4δ2
∫t
t0

E‖x(s)‖2ds.
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According to Lemma 3.8,

E‖w(s) −w(ϑ(s))‖2 6 2E‖w(s)‖2 + 2E‖w(ϑ(s))‖2 6 2(1 + η)E‖w(s)‖2,

where

η =4
{

1 −
[
12nνξ2 + (12µξ+ 2δ2)(4 + 12nνξ2)ξ× exp

{
(12µξ+ 2δ2)ξ

}]}−1

,

and

E‖w(s)‖2 = E‖x(s) −w(s) − x(s)‖2 6 2E‖x(s) −w(s)‖2 + 2E‖x(s)‖2,

then

E‖x(t) −w(t)‖2 6
[
12∆

(
‖A‖2 + ‖B‖2L2 + 2‖C‖2L2)+ 4δ2

] ∫t
t0

E‖x(s) −w(s)‖2ds

+ 96∆‖C‖2L2(1 + η)

∫t
t0

E‖x(s) −w(s)‖2ds

+ 96∆‖C‖2L2(1 + η)

∫t
t0

E‖x(s)‖2ds+ 4δ2
∫t
t0

E‖x(s)‖2ds

=

{
12∆

(
‖A‖2 + ‖B‖2L2 + 2‖C‖2L2(5 + 4η)

)
+ 4δ2

}∫t
t0

E‖x(s) −w(s)‖2ds

+
[
96∆‖C‖2L2(1 + η) + 4δ2

] ∫t
t0

E‖x(s)‖2ds.

In view of the global exponential stability of (2.2), we get

E‖x(t) −w(t)‖2 6

{
12∆

(
‖A‖2 + ‖B‖2L2 + 2‖C‖2L2(5 + 4η)

)
+ 4δ2

}∫t
t0

E‖x(s) −w(s)‖2ds

+
[
48∆‖C‖2L2(1 + η) + 2δ2

]
α2‖x(t0)‖2/β.

From the Gronwall-Bellman inequality and when t0 6 t 6 t0 + 2∆,

E‖x(t) −w(t)‖2 6

([
48∆‖C‖2L2(1 + η) + 2δ2]α2/β

)
‖x(t0)‖2 exp

{[
12∆

(
‖A‖2

+ ‖B‖2L2 + 2‖C‖2L2(5 + 4η)
)
+ 4δ2

]
(t− t0)

}
(3.16)

6

([
48∆‖C‖2L2(1 + η) + 2δ2]α2/β

)
‖x(t0)‖2 exp

{[
12∆

(
‖A‖2

+ ‖B‖2L2 + 2‖C‖2L2(5 + 4η)
)
+ 4δ2

]
2∆
}

= c̃4 exp(2∆c̃3)‖x(t0)‖2,

where c̃3 = 12∆
(
‖A‖2 + ‖B‖2L2 + 2‖C‖2L2(5 + 4η)

)
+ 4δ2, c̃4 =

[
48∆‖C‖2L2(1 + η) + 2δ2

]
α2/β.

Hence, when t0 + ∆ 6 t 6 t0 + 2∆, from (3.16) and the global exponential stability of (2.2), we can
have

E‖w(t)‖2 =E‖w(t) − x(t) + x(t)‖2

62E‖x(t) −w(t)‖2 + 2E‖x(t)‖2

62c̃4 exp(2c̃3∆)‖x(t0)‖2 + 2α2‖x(t0)‖2 exp
{
− 2β(t− t0)

}
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6
(

2c̃4 exp(2c̃3∆) + 2α2 exp(−2β∆)
)
‖x(t0)‖2.

Denote J(δ,η) = 2c̃4 exp(2c̃3∆) + 2α2 exp(−2β∆), then

J(0, 4) =
(

480∆‖C‖2L2α2/β

)
exp
{

24∆2
(
‖A‖2 + ‖B‖2L2 + 42‖C‖2L2

)}
+ 2α2 exp(−2β∆) < 1.

It is clear that

J(+∞, 4) > 1,

and J(δ, 4) is strictly increasing for δ, so there exists a unique positive δ̃ such that

J(δ̃, 4) = 1,

namely, δ̃ is the unique positive solution for (3.14).
For a fixed |δ| < δ̃,

J(δ, 4) < 1, J(δ,+∞) > 1,

J(δ,η) is strictly increasing for η, so there exists a unique η̃ ∈ (4,+∞) such that

J(δ̃/
√

2, η̃) = 1.

Denote

G(δ, ξ) = 12nνξ2 + (12µξ+ 2δ2)(4 + 12nνξ2)ξ× exp
{
(12µξ+ 2δ2)ξ

}
.

Denote ξ̂ as the unique positive solution of the following transcendental equation

G(δ̃, ξ) = 1,

then

η̄ = 4
{

1 −
[
12nνξ2 + (12µξ+ 2δ̃2)(4 + 12nνξ2)ξ× exp

{
(12µξ+ 2δ̃2)ξ

}]}−1

∈ (4,+∞)

for ξ ∈ (0, ξ̂). And η̄ is strictly increasing for ξ, so there exists a unique positive ξ̃ ∈ (0, ξ̂) such that

η̄ = η̃,

namely, ξ̃ is the unique positive solution of (3.15).
When 0 < δ < δ̃/

√
2, 0 < ξ < ξ̃, we have

0 < G(δ, ξ) < G(δ̃/
√

2, ξ) < G(δ̃/
√

2, ξ̃) < G(δ̃, ξ̃) < 1,

then

η = 4
/(

1 −G(δ, ξ)
)
< 4
/(

1 −G(δ̃/
√

2, ξ)
)
< 4
/(

1 −G(δ̃/
√

2, ξ̃)
)
< η̃ = 4

/(
1 −G(δ̃, ξ̃)

)
,

hence

0 < J(δ,η) < J(δ̃/
√

2,η) < J(δ̃/
√

2, η̃) = 1.

Select γ = − ln
(
J(δ,η)

)/
∆ > 0, and we can have

sup
t0+∆6t6t0+2∆

E‖w(t, t0, x0)‖2 6 exp(−γ∆)
(

sup
t06t6t0+∆

E‖w(t, t0,w0)‖2
)

.
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For any positive integer l = 1, 2, . . ., from the existence and uniqueness of the solution w(t) of neural
network (3.10), when t > t0 + (l− 1)∆, we can get

w(t, t0, x0) = w(t, t0 + (l− 1)∆,w(t0 + (l− 1)∆, t0,w0)).

And hence

sup
t0+l∆6t6t0+(l+1)∆

E‖w(t, t0, x0)‖2

=

(
sup

t0+(l−1)∆+∆6t6t0+(l−1)∆+2∆
E‖w(t, t0 + (l− 1)∆,w(t0 + (l− 1)∆, t0, x0))‖2

)
6 exp(−γ∆)

(
sup

t0+(l−1)∆6t6t0+l∆

E‖w(t, t0, x0)‖2
)

6 exp(−γl∆)
(

sup
t06t6t0+∆

E‖w(t, t0, x0)‖2
)

= c̃ exp(−γl∆),

where c̃ = supt06t6t0+∆
E‖w(t, t0, x0)‖2. For any t > t0 +∆, there exists a unique positive integer l such

that t0 + l∆ 6 t 6 t0 + (l+ 1)∆, and then

E‖w(t, t0, x0)‖2 6c̃ exp
{
− γ(t− t0) + γ∆

}
=
(
c̃ exp(γ∆)

)
exp
{
− γ(t− t0)

}
. (3.17)

It is obvious that (3.17) holds when t0 6 t 6 t0 +∆. Hence, neural network (3.10) is mean square globally
exponentially stable, which implies that neural network (3.10) is also almost surely globally exponentially
stable according to Lemma 3.6. And the proof is completed.

Remark 3.10. In [25], the robustness of global exponential stability of neural networks in the presence of
time delays and random disturbances was discussed. In this paper, the robustness of neural network
evoked by deviating argument and stochastic disturbance is investigated, in which the type of the neural
network can vary in alternately advanced and retarded. Therefore, the result gained in this paper is an
effective supplement to the existing references.

4. Numerical examples

In this section, two examples are introduced to illustrate the effectiveness of the proposed criteria.

Example 4.1. Consider the following neural network{
ẋ1(t) = −x1(t) − 2 sin(x1(t)/20) + 2 sin(x2(t)/20),
ẋ2(t) = −x2(t) + 2 sin(x1(t)/20) − 2 sin(x2(t)/20). (4.1)

The state x(t) = (x1(t), x2(t))
T of neural network (4.1) is globally exponentially stable with α = 1,

β = 0.5, which is depicted in Figure 1.
Adding the deviating argument into neural network (4.1), it becomes

ẇ1(t) =−w1(t) − 1.9999 sin(w1(t)/20) + 1.9998
× sin(w2(t)/20) − 0.0001 sin(w1(ϑ(t))) + 0.0002 sin(w2(ϑ(t))),

ẇ2(t) =−w2(t) + 2 sin(w1(t)/20) − 1.9997× sin(w2(t)/20) − 0.0003 sin(w2(ϑ(t))),
(4.2)

where ϑ(t) is the deviating argument. From (4.2), it can be seen that

A =

(
1 0
0 1

)
, B =

(
−1.9999 1.9998

2 −1.9997

)
, C =

(
−0.0001 0.0002

0 −0.0003

)
, L = 1/20.
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Figure 1: Transient behavior of x1(t) and x2(t) in (4.1).

Let ∆ = 1 > ln(2α2)/(2β) = 0.6931. By computing, we get

‖A‖2 = 1, ‖B‖2 = 15.9976, ‖C‖2 = 1.332× 10−7, ρ = 1.2,υ = 2.5× 10−5, µ = 1.04,ν = 3.25× 10−10.

From (A4), it can be calculated that

ξ < 0.2374.

From (3.4), we can get

ρ = 30.4206, ξ̄ = 0.2315.

Selecting ϑ(t) = ξ = 1/9 < ξ̄ = 0.2315, it can be

1/9× (1.2 + 2× 2.5× 10−5)× exp(1.2× 1/9) = 0.1524 < 1,

and (A3) is satisfied.
Therefore, the conditions in Theorem 3.3 are all satisfied. From Theorem 3.3, neural network (4.2) is

globally exponentially stable, and the simulations in Figure 2 confirm well with the theoretical results.
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Figure 2: Transient behavior of w1(t) and w2(t) in (4.2) with ξ = 1/9.

Example 4.2. The following single-state neural network is considered

ẋ(t) = −3.1x(t) + 0.1 tanh(x(t)). (4.3)

Based on the comparison principle, the state x(t) of (4.3) is globally exponentially stable with α = 1,
β = 3, which is illustrated in Figure 3.
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Figure 3: Transient behavior of x(t) in (4.3).

When the deviating argument and stochastic disturbance to be generated, neural network (4.3) be-
comes

dw(t) =
[
− 3.1w(t) + 0.099 tanh(w(t)) + 0.001× tanh(w(ϑ(t)))

]
dt+ δw(t)dX(t), (4.4)

where ϑ(t) is the deviating argument, δ is the noise intensity, and X(t) is a one-dimensional Brownian
motion, which is defined in the probability space.

From (4.4), we have

A = 3.1,B = 0.099,C = 0.001,L = 1.

And

‖A‖2 = 9.61, ‖B‖2 = 9.801× 10−3, ‖C‖2 = 10−6, ρ = 3.1990, υ = 0.001, µ = 9.6198, ν = 10−6.

Let ∆ = 0.12 > ln
(
2α2
)/

(2β) = 0.1155, and(
480‖C‖2L2∆α2/β

)
exp
{

24∆2
(
‖A‖2 + ‖B‖2L2 + 42‖C‖2L2

)}
+ 2α2 exp(−2β∆)

= 5.3353× 10−4 + 0.9735 = 0.9740 < 1,

then (A6) is satisfied. From (3.14),

(5.76× 10−5 + 4δ2)× exp(3.3246 + 0.96δ2)
/

3 + 2× exp(−0.72) = 1,

we get its solution δ = δ̃ = 0.0265. Combining with (A7), it derives ξ < ξ̂ = 0.0420. Substituting δ̃ = 0.0265
into (3.15),

(4.701× 10−4 + 3.84× 10−6η̄)× exp(3.3249 + 2.765× 10−6η̄) + 2× exp(−0.72) = 1,

it gets η̄ = 125.7645, namely

η̄ =4
{

1 −
[
12nνξ2 +

(
12µξ+ 2δ̃2)× (4 + 12nνξ2)× ξ× exp

{
(12µξ+ 2δ̃2)ξ

}]}−1

=1.2× 10−5ξ2 + (115.4376ξ+ 0.0014)× (4 + 1.2

× 10−5ξ2)× ξ× exp(115.4376ξ2 + 0.0014ξ)
=125.7645,
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then ξ = ξ̃ = 0.0415, namely, it is the solution of (3.15).
Choosing

δ = 0.006 < δ̃/
√

2 = 0.0187, ξ = 0.008 < ξ̃ = 0.0415,

and by calculating, we can get

0.008× (3.1990 + 2× 0.001)× exp(3.1990× 0.008) = 0.0263 < 1,

namely, (A3) is satisfied. Hence, the conditions in Theorem 3.9 are all satisfied. And accordingly, neural
network (4.4) is mean square globally exponentially stable and also almost surely globally exponentially
stable with δ = 0.006, ξ = 0.008. The simulations shown in Figure 4 agree well with the theoretical results.
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Figure 4: Transient behavior of w(t) in (4.4) with δ = 0.006 and ξ = 0.008.

It can be seen in Figure 5 that the state w(t) of (4.4) is unstable with δ = 0.026 > δ̃/
√

2, ξ = 0.0085,
when the conditions in Theorem 3.9 are not satisfied.
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Figure 5: Transient behavior of w(t) in (4.4) with δ = 0.026 and ξ = 0.0085.

Figure 6 depicts the state w(t) of (4.4) with δ = 0.016 < δ̃/
√

2, ξ = 0.0416 > ξ̃. Obviously, the
conditions in Theorem 3.9 are not satisfied and the state w(t) is unstable.



L. Wan, A. Wu, J. Chen, J. Nonlinear Sci. Appl., 10 (2017), 5646–5667 5665

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

w

Figure 6: Transient behavior of w(t) in (4.4) with δ = 0.016 and ξ = 0.0416.

When δ = 0.021 > δ̃/
√

2, ξ = 0.0418 > ξ̃, it is clear that the conditions in Theorem 3.9 are not satisfied,
and the state w(t) of (4.4) is divergent, which can be easily seen in Figure 7.
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Figure 7: Transient behavior of w(t) in (4.4) with δ = 0.021 and ξ = 0.0418.

5. Concluding remarks

Neural networks evoked by deviating argument and stochastic disturbance have become a hotspot. In
this paper, the robustness of this type of neural network is studied. For a given originally globally expo-
nentially stable neural network, the upper bounds of the intensity of deviating argument and stochastic
disturbance are derived to guarantee the disturbed neural network to be globally exponentially stable
by means of the Gronwall-Bellman inequality and some mathematical analysis techniques. The results
obtained provide some new approaches for the analysis and design of neural networks evoked by devi-
ating argument and stochastic disturbance. The simulation results also confirm the validity of theoretical
results.
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