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Abstract
In this paper, we study the hybrid function projective synchronization between coupled complex discrete networks with

different dimensions. The hybrid function projective synchronization is achieved by designing an adaptive control method.
Based on the designed controller and the Lyapunov stability theory, we derive sufficient conditions to realize the hybrid function
projective synchronization with different nodes. Moreover, with the adaptive update law, an adaptive control gains are obtained.
Furthermore, we examine different cases of outer coupling matrix of node dynamics. Finally, we provide numerical examples to
show the effectiveness of the proposed control scheme. c©2017 All rights reserved.
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1. Introduction

During the last decades, synchronization of the dynamical systems has appeared as an active research
area in dynamical systems. Many researchers have studied this issue theoretically and numerically be-
cause of its many applications in secure communication, control theory, telecommunications, biological
networks, etc. [10, 14, 15]. Due to complexity of chaotic behavior, different synchronization schemes have
been proposed such as complete synchronization, anti synchronization, lag synchronization, projective
lag synchronization, etc. [1, 3, 4, 7, 8, 11–13, 17, 19, 20, 22]. After born different types of graph, complex
networks have attracted many attention as a powerful tool to describe many complex systems [5, 6]. Two
kinds of synchronization in coupled networks can be defined. The first one is the synchronization of all
nodes inside a network, which is referred to as inner synchronization. The second is happening between
two coupled networks, which is called as outer synchronization, which is very complicated than inner
synchronization because of the diverse connections of two networks. For example, the infectious diseases,
such as AIDS, mad cow disease, bird flu, were spread between two communities or networks.
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It should be pointed out that most literatures on the dynamical behaviors of complex networks are
concerned with continuous-time case rather than discrete-time case. In fact, discrete-time dynamics has
become an important to study computer-based simulation, experimentation and it is more suitable to
model digitally transmitted signals in a dynamical way. Actually, the synchronization problem of discrete-
time networks has received some initial research interests. Based on open plus close loop method [9], Li
et al. studied outer synchronization behavior between coupled discrete-time networks with non-delay
coupling, and consider when the networks have same and different connection topologies. Zhang et al.
studied impulsive synchronization problem of a general complex continuous and discrete-time dynamical
network with non-delay coupling and obtained sufficient condition to guarantee the synchronization [21].
In [16], Sun et al. proposed synchronization in delay discrete-time complex networks and investigated
the synchronization including inner synchronization within each network and outer synchronization be-
tween two networks by using linear matrix inequalities and investigate several criteria of synchronization
stability. In [18], Wu proposed synchronization of discrete dynamical networks with non-delay and delay
coupling, based on Lyapunov function methods and linear matrix inequalities. Recently, Al-mahbashi et
al. [2] studied hybrid function projective synchronization with delay coupling and different dimensions
in discrete dynamical networks (DCDNs) model based on Lyapunov stability theory, which this paper is
a continuation of it.

Motivated by the above discussion, in this paper a hybrid function projective synchronization (HFPS)
behavior of uncertain discrete complex dynamical networks (DCDNs) model with different nodes and
with both non-delay and delay coupling will be considered. Actually, in this paper the proposed syn-
chronization scheme is achieved by both ways which are reduced order and increased order in presence
of different cases of topological structure of the coupled networks.

The rest of this paper is organized as follows. Section 2 introduces the discrete dynamical network
model with delay coupling. A general method of HFPS by adaptive control method and Lyapunov
stability theory is discussed in Section 3. Examples and their simulations are obtained in Section 4.
Finally, the conclusions are drawn in Section 5.

2. Model description

We consider a controlled discrete complex dynamical network model with delay and non-delay cou-
pling consisting of N different nodes which is described as follows:

yi(k+ 1) = gi(yi(k)) + c
N∑
j=1

bijΓyj(k) + c

N∑
j=1

bijΓyj(k− τ) + ui(k), (2.1)

where yi(k) = (yi1(k),yi2(k), . . . ,yin(k))T ∈ Rn denotes the state vector of the i-th node, gi : Rn −→ Rn

is the function matrices determining the dynamic behavior of the node, ui ∈ Rn is the control input, c is
the coupling strength and τ > 0 is the coupling delay. Here Γ = diag(γ1,γ2, . . . ,γn) is the inner coupling
matrix with γi = 1 for the i-th state variable, i.e. matrix Γ determines the variables with which the nodes
in system are coupled. B = (bij ∈ RN×N) is the outer coupling matrix representing the topological
structure of the network, where bij are defined as follows: if there is a connection from node i to node
j (j 6= i), then the coupling bij 6= 0; otherwise, bij = 0(j 6= i), and the diagonal elements of matrices B are
defined as

bii = −

N∑
j=1,j6=i

bij, i = 1, 2, . . . ,N.

On the other hand, the reference network (drive network) is described as follows:

xi(k+ 1) = fi(xi(k)) + c
N∑
j=1

aijΓxj(k) + c

N∑
j=1

aijΓxj(k− τ), (2.2)
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where xi(k) = (xi1(k), xi2(k), . . . , xim(k))T ∈ Rm denotes the state vector of the drive system, and fi :
Rm −→ Rm,aij have the same meaning as bij in (2.1). When order n = m the synchronization problem
has been well studied.

Definition 2.1. The drive and the response discrete dynamical networks (2.2) and (2.1) are said to be
hybrid function projective synchronization (HFPS) when m = n if there exists a diagonal scaling function
matrix H such that

lim
k−→∞ ‖ei(k)| = lim

k−→∞ ‖yi(k) −Hxi(k)| = 0.

In this paper, we discuss the HFPS with different dimension nodes where n > m and n < m. When the
order of the response nodes oscillators are lower than that of the order of drive nodes, the synchronization
is attained in reduce-order. We can divide the drive network into two parts

xis(k+ 1) = fis(xis(k)) + c
N∑
j=1

aijΓsxjs(k) + c

N∑
j=1

aijΓsxjs(k− τ), (2.3)

where xis ∈ Rn, fis : Rm −→ Rn and Γs = diag(γs1 ,γs2 , . . . ,γsn). The rest:

xir(k+ 1) = fir(xir(k)) + c
N∑
j=1

aijΓrxjr(k) + c

N∑
j=1

aijΓrxjr(k− τ),

where xir ∈ Rw, fir : Rm −→ Rw and Γr = diag(γr1 ,γr2 , . . . ,γrw). Where the orders n,w satisfy n +
w = m. With a suitable controller, the reduced-order hybrid function projective synchronization (HFPS)
between the response network (2.1) and the drive network (2.3) can be achieved, i.e.,

lim
k−→∞ ‖ei(k)| = lim

k−→∞ ‖yi(k) −Hxis(k)| = 0,

where H = diag(h1,h2, . . . ,hn) is a diagonal scaling function matrix.
The second case, when the order of the drive nodes oscillator are lower than that of the order of

response nodes, the synchronization is attained in increased-order. Hence, the drive network is rewritten
as

Xi(k+ 1) = fi(Xi(k)) + c
N∑
j=1

aijΓlXj(k) + c

N∑
j=1

aijΓlXj(k− τ), (2.4)

where Xi = (xi, xd), fi(Xi(k)) = (fi(xi(k)), 0) and Γ = diag(γ1,γ2, . . . ,γn,γd) where xd,γd ∈ Rm−n.
In order to observe the increased-order hybrid function projective synchronization (HFPS) behavior,

we define the state errors between the response network (2.1) and the drive network (2.4) as:

lim
k−→∞ ‖ei(k)| = lim

k−→∞ ‖yi(k) −HXi(k)| = 0.

Remark 2.2. In Projective Synchronization (PS) we have a constant scaling factor. In Modified PS, the
scaling factor is a matrix. In Function PS the scaling factor is functional. And finally in Modified Function
PS, the scaling factor is a matrix scaling factor with functional entries.

3. Controller design

In this section, we prove that by using the Lyapunov stability theory, error dynamics between these
two networks can be stabilized which guarantees HFPS realization.
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Theorem 3.1. Hybrid function projective synchronization between the drive network and the response network is
realized for any given a diagonal scaling function matrix H, any positive scaling factor αi, any time delay τ and
any initial values xi(0),yi(0) and δi(0) by using the following control input and adaptive laws:

ui(k) = −δiei(k) − gi(yi(k)) +H(fi(xi(k))) +H(c

N∑
j=1

(aij − bij)Γxj(k))

+H(c

N∑
j=1

(aij − bij)Γxj(k− τ)),

(3.1)

δ̂i(k+ 1) = δi +Q(k)(δ̂i(k) − δi), (3.2)

where δ̂i(k) is the estimation values of uncertain feedback gains δi. Q(k) is undetermined function.

Proof. Taking the dynamics error we have

ei(k+ 1) = yi(k+ 1) −Hxi(k+ 1)

= gi(yi(k)) + c

N∑
j=1

bijΓej(k) + c

N∑
j=1

bijΓej(k− τ) −H(fi(xi(k))) + ui(k)

−H(c

N∑
j=1

(aij − bij)Γxj(k)) −H(c

N∑
j=1

(aij − bij)Γxj(k− τ)).

To show the stability of the error dynamic and the convergence of the error state to zero, we employ
Lyapunov method.

Define the Lyapunov function V(k) as

V(k) =

N∑
i=1

|ei(k)|+

N∑
i=1

k−1∑
σ=k−τ

|ei(σ)|+

N∑
i=1

αi|δ̂i(k) − δi|,

where αi is any positive constant. Then we obtain:

4V(k) = V(k+ 1) − V(k)

=

N∑
i=1

|ei(k+ 1)|+
N∑
i=1

k∑
σ=k+1−τ

|ei(σ)|+

N∑
i=1

αi|δ̂i(k+ 1) − δi|

−

N∑
i=1

|ei(k)|−

N∑
i=1

k−1∑
σ=k−τ

|ei(σ)|−

N∑
i=1

αi|δ̂i(k) − δi|

=

N∑
i=1

|ei(k+ 1)|−
N∑
i=1

|ei(k− τ)|+

N∑
i=1

αi

(
|δ̂i(k+ 1) − δi|− |δ̂i(k) − δi|

)
.

By application of the control input (3.1) to error dynamics we have

4V(k) =
N∑
i=1

|− δiei(k) +

N∑
i=1

bijΓej(k) +

N∑
i=1

bijΓej(k− τ)|−

N∑
i=1

|ei(k− τ)|+

N∑
i=1

αi
(
|Q(k)|− 1

)
|(δ̂i(k) − δi)|.
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Let e(k) = (e1(k), e2(k), . . . , eN(k))T , e(k− τ) = (e1(k− τ), e2(k− τ), . . . , eN(k− τ))T , δ = (δ1, δ2, . . . , δN)T ,
α = (α1,α2, . . . ,αN)T , and P = (B⊗ Γ). Then we have

4V(k) = |− δe(k) + Pe(k) + Pe(k− τ)|− |e(k− τ)|+α
(
|Q(k)|− 1

)
|(δ̂(k) − δ)|

6 |Pe(k) + Pe(k− τ) − δ̂(k)e(k)|− |e(k− τ)|+

(
|e(k)|+α

(
|Q(k)|− 1

))
|δ̂(k) − δ|

6
(
|P− δ̂(k)|− 1

)
|e(k− τ)|+ |Pe(k) + δ̂(k)e(k− τ) − δ̂(k)e(k)|

+

(
|e(k)|+α

(
|Q(k)|− 1

))
|δ̂(k) − δ|

6
(
|P− δ̂(k)|− 1

)
|e(k− τ)|− |Pe(k) + δ̂(k)e(k− τ) − δ̂(k)e(k)|

+

(
|e(k)|+α

(
|Q(k)|− 1

))
|δ̂(k) − δ)|

6
(
|P− δ̂(k)|− 1

)
|e(k− τ)|+

(
|e(k)|+α

(
|Q(k)|− 1

))
|δ̂(k) − δ|.

Obviously if
|P− δ̂(k)| < 1 (3.3)

and
|Q(k)| = 1 −

1
α
|e(k)|, (3.4)

we obtain
∆V(k) < 0.

According to the Lyapunov stability theory the error vector e(k) asymptotically converges to zero as
k −→∞. So, HFPS with different dimensional is realized by using the controller (3.1) and the update law
(3.2). This completes the proof.

Corollary 3.2. For any given diagonal matrix H, if the drive network (2.2) and the response network (2.1) have
same outer coupling matrices, i.e., A = B, then the two networks can achieve HFPS under the following controllers:

ui(k) = −δiei(k) − gi(yi(k)) +H(fi(xi(k))), (3.5)

δ̂i(k+ 1) = δi +Q(k)(δ̂i(k) − δi). (3.6)

Corollary 3.3. For any given diagonal matrix H, if the outer coupling matrix of drive network (2.2) A = 0, then
the single drive discrete system and response networks can achieve HFPS under the following controllers:

ui(k) = −δiei(k) − gi(yi(k)) +H(fi(xi(k))), (3.7)

δ̂i(k+ 1) = δi +Q(k)(δ̂i(k) − δi). (3.8)

4. Numerical simulations

To verify and demonstrate the effectiveness of the proposed method, numerical examples are provided.
These examples discuss hybrid function projective synchronization with different nodes and dimensions.
The first simulation deals with the case when the order of the drive nodes is reduced when m > n. The
second example examines the case when the order of the nodes dynamics of the drive system is increased
when m < n . In each situation, different cases of outer coupling matrix are considered.

4.1. Case I: reduced-order synchronization when m > n

Take the Hénon-like map (4.1) as the drive network with 10 nodes which is described as follows:

xi1(k+ 1) =1 + xi3(k) − ax
2
i2(k),

xi2(k+ 1) =1 + bxi2(k) − ax
2
i1(k),

xi3(k+ 1) =bxi1(k).

(4.1)

For the response network, the first 5 nodes are described by the following 2D Hénon map (4.2):
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yi1(k+ 1) = 1 −αy2
i1(k) + yi2(k), yi2(k+ 1) = βyi1(k). (4.2)

The other 5 nodes are described by the following 2D Lozi map (4.3):

yi1(k+ 1) = 1 − r|yi1(k)|+ syi2(k), yi2(k+ 1) = syi1(k), (4.3)

where a = 1.4,b = 0.2,α = 1.4,β = 0.3, 0 < s < 1, 1 + s < r < 2 − s
2 . We choose r = 1.7, s = 0.5.

The bifurcation diagrams of the corresponding state variables of the systems are shown in Figure 1. We
can see that, the maximum value of x2 in Hénon-like map is 1.5, the maximum value of y1 in 2D Hénon
map is 1.3 and the maximum value of y1 in Lozi map is 1.8 with respect to b,β, s being varied. Thus, the
evolution regions of the network error |ei(k)| is (0, 1.8). If we take the coefficient value is αi > 1.8, the
undetermined function Q(k) must satisfy the condition (3.4).

(a) (b)

(c)

Figure 1: Bifurcation diagram of (a) Hénon-like map; (b) 2D Hénon map; (c) Lozi map.

In this simulation, initial condition of each node is chosen randomly, coupling strength is c = 0.2, the
feedback control gain is δi = 0.45 which can be taken arbitrarily as it satisfies the condition (3.3). The
time delay coupling is τ = 0.01,αi = 3, and H = diag[2 cos(2πk/30), 0.5 + sin(πk/5)]. Inner coupling for
the drive and response dynamics are assumed to be Im, In, respectively. The outer coupling configuration
matrices A = (aij) and B = (bij) are chosen to be as follows:

A =



−3 1 1 1 0 0 0 0 0 0
0 −2 1 1 0 0 0 0 0 0
1 1 −5 0 1 0 1 1 0 0
0 0 1 −3 1 1 0 0 0 0
1 1 1 0 −4 1 0 0 0 0
0 0 0 1 0 −3 1 1 0 0
0 0 1 0 0 1 −3 0 1 0
0 1 0 1 0 0 1 −3 0 0
0 0 0 0 0 1 0 0 −1 0
1 0 0 0 0 1 0 1 0 −3


,



G. Al-mahbashi, M. S. Md Noorani, S. Abu Bakar, J. Nonlinear Sci. Appl., 10 (2017), 5593–5607 5599

B =



−4 1 0 0 1 1 0 1 0 0
0 −2 0 1 0 1 0 0 0 0
1 1 −3 0 1 0 0 0 0 0
0 0 1 −4 1 1 1 0 0 0
0 1 1 0 −3 1 0 0 0 0
0 0 1 1 0 −3 0 1 0 0
0 0 0 0 1 1 −3 0 1 0
0 1 0 1 0 0 1 −5 1 1
0 1 0 0 0 1 0 0 −2 0
1 0 1 0 1 0 0 0 1 −4


.
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Figure 2: Network structure of non-delay and delay coupling: (a) of the drive network; (b) of the response network.

4.1.1. The networks have different topological structures (A 6= B).
The numerical results are presented in Figures 3-5. The time evolution of the synchronization errors

is depicted in Figure 3, which show that upon the activation of the control functions at t = 0.01. This
figure displays the error states converge to zero which stabilizes the error dynamic system, so HFPS
between the discrete dynamical networks is realized. The estimation value of uncertain feedback gains
δ̂i(i = 1, 2, . . . ,N) are depicted in Figure 4, which approach to the fixed value δi, thus the identification
law is effective. The state trajectories between the 7th nodes of networks are depicted in Figure 5.
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Figure 3: Dynamics of reduced-order HFPS errors with delay and non-delay coupling when A 6= B : (a) errors of x components;
(b) errors of y components.
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Figure 4: The estimated parameters δ̂i of adaptive feedback gains (3.2) in reduced-order case.
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Figure 5: The time evolution of the variables of the 7th nodes of networks with delay and non-delay coupling when A 6= B.

4.1.2. The networks have identical topological structure (A = B)
In this numerical results, the time evolution of the synchronization errors is illustrated in Figure 6,

which shows that upon the activation of the control functions at t = 0.01. The identified parameters of
the adaptive gains are depicted in Figure 7 which converge to the fixed values δi. These results prove that
the required synchronization has been achieved with our designed control law (3.5)-(3.6) and under the
conditions (3.3), (3.4). Figure 8 depicts the state trajectories between the 4th nodes in networks.
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Figure 6: Dynamics of reduced-order HFPS errors with delay and non-delay coupling when A = B : (a) errors of x components;
(b) errors of y components.



G. Al-mahbashi, M. S. Md Noorani, S. Abu Bakar, J. Nonlinear Sci. Appl., 10 (2017), 5593–5607 5601

0 0.05 0.1 0.15 0.2 0.25 0.3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

t

δ

Figure 7: The estimated parameters δ̂i of adaptive feedback gains (3.6) in reduced-order case.
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Figure 8: The time evolution of the variables of the 4th nodes of networks with delay and non-delay coupling when A = B.

4.1.3. The drive is signal system (A = 0)
The numerical results are presented in Figures 9-11. The time evolution of the synchronization errors

is illustrated in Figure 9, which shows that upon the activation of the control functions at t = 0.01.
The identified parameters of the adaptive gains are depicted in Figure 10 which converge to the fixed
values δi, which shows that the adaptive law designed is effective. These results prove that the required
synchronization has been achieved with our designed control law (3.7)-(3.8) and under the conditions
(3.3), (3.4). Figure 11 depicts the state trajectories between the drive system and the last five nodes in
response networks.
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Figure 9: Dynamics of reduced-order HFPS errors with delay and non-delay coupling when A = 0 : (a) errors of x components;
(b) errors of y components.
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Figure 10: The estimated parameters δ̂i of adaptive feedback gains (3.8) in reduced-order case.
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Figure 11: The time evolution of the variables between the drive system and the last five nodes of networks with delay and
non-delay coupling when A = 0.

4.2. Case II: Increased-order synchronization when m < n

In this subsection, we discuss the simulation results of the hybrid function projective synchronization
when the order of the drive nodes are less than the order of the response nodes.

We will use the 2D Lozi map (4.3) as the drive network with 10 nodes. For the response network, the
first 5 nodes are described by Hénon-like map (4.1) and the other 5 nodes are described by the following
3D generalized Hénon map (4.4):

yi1(k+ 1) =−βyi2(k),

yi2(k+ 1) =1 + y2
i3(k) −αy

2
i2(k),

yi3(k+ 1) =βyi2(k) + yi1(k),

(4.4)

where α = 1.07,β = 0.3.
From the bifurcation diagrams of the chaotic systems which are shown in Figure 1(a), (c), and Figure

12, we can see that the evolution region of the network error |ei(k)| is (0, 1.8). We take the coefficient value
is αi > 1.8, where the function Q(k) satisfies the condition (3.4).

Figure 12: Bifurcation diagram of generalized Hénon map.
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In these numerical simulations, the initial condition of each node is chosen randomly. The outer
coupling configuration matrices A = (aij) and B = (bij) are chosen to be as the same in the previous case.
The feedback control gain is δi = 0.6, αi = 3 and H = diag[2 cos(2πk/30)), 0.5+ sin(πk/5), 0.3 cos(πk/30)].

4.2.1. The networks have different topological structures (A 6= B)
The numerical results are presented in Figures 13-15. The time evolution of the synchronization errors

is depicted in Figure 13, which shows that upon the activation of the control functions at t = 0.01.
The estimation values of uncertain feedback gains δ̂i are depicted in Figure 14, which approach to the
fixed value δi and shows that the identification law is effective. These results prove that the required
synchronization has been achieved with our designed control law (3.1)-(3.2) and under the conditions
(3.3), (3.4). Figure 15 depicts the state trajectories between the 2nd nodes of networks.
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Figure 13: Dynamics of increased-order HFPS errors with delay and non-delay coupling whenA 6= B : (a) errors of x components;
(b) errors of y components; (c) errors of z components.
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Figure 14: The estimated parameters δ̂i of adaptive feedback gains (3.2) in increased-order case.
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Figure 15: The time evolution of the variables of the 2nd nodes of networks with delay and non-delay coupling when A 6= B.

4.2.2. The networks have identical topological structure (A = B)
In this numerical results, Figure 16 shows all the error components approach to zero and therefore the

error dynamics system reaches to the stability. The identified parameters of the adaptive gain are depicted
in Figure 17 which converge to the fixed values δi and shows the effectiveness of our identification law.
Figure 18 depicts the state trajectories between the 8th nodes of networks.
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Figure 16: Dynamics of increased-order HFPS errors with delay and non-delay coupling whenA 6= B : (a) errors of x components;
(b) errors of y components; (c) errors of z components.
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Figure 17: The estimated parameters δ̂i of adaptive feedback gains (3.6) in increased-order case.
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Figure 18: The time evolution of the variables of the 8th nodes of networks with delay and non-delay coupling when A = B.

4.2.3. The drive is single system (A = 0)
The numerical results are presented in Figures 19-21. The time evolution of the synchronization

errors is illustrated in Figure 19. The identified parameters of the adaptive gain are depicted in Figure
20 which converge to the fixed values δi. These results prove that the required synchronization has
been achieved with our designed control law (3.7)-(3.8) and under the conditions (3.3), (3.4). The state
trajectories between the drive system and the last five nodes in response networks are depicted in Figure
21.
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Figure 19: Dynamics of increased-order HFPS errors with delay and non-delay coupling when A = 0 : (a) errors of x components;
(b) errors of y components; (c) errors of z components.
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Figure 20: The estimated parameters δ̂i of adaptive feedback gains (3.8) in increased-order case.
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Figure 21: The time evolution between the drive system and the variables of the last five nodes of networks with delay and
non-delay coupling when A = 0.
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5. Conclusion

Hybrid function projective synchronization (HFPS) behavior of uncertain discrete complex dynamical
networks (DCDNs) model with different orders is investigated. Based on Lyapunov stability theory and
an adaptive control scheme, sufficient conditions were derived to achieve the hybrid function projective
synchronization with different nodes and different orders. On the basis of the adaptive update law and the
adaptive control gains were obtained. Furthermore, different cases of outer coupling matrix of the drive
dynamics were considered. The simulation results revealed that the states of the dynamical network with
non-delay and delay coupling could be asymptotically synchronized into a desired scaling function matrix
under the designed controller. Finally, the numerical results proved the validity of the proposed method.
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