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Abstract

In this work, we discuss the recently introduced monotone τ-Opial condition in Banach spaces which admit a sequence
of monotone approximations of the identity. Then we give a fixed point theorem for monotone multivalued nonexpansive
mappings in Banach spaces satisfying the monotone τ-Opial condition. This result generalizes those of Markin, Browder and
Lami Dozo to monotone mappings. c©2017 All rights reserved.
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1. Introduction

The extension of many fixed point theorems of singlevalued mappings to the multivalued case was
never an easy one. Recall that the first attempts was carried by Markin [16] in Hilbert spaces, by Browder
[5] in spaces having a weakly continuous duality mapping, and by Lami Dozo [14] in spaces satisfying
the weak Opial condition. For a nice survey on multivalued mappings, we recommend the paper by
Benavides and Ramı́rez [4].

The study of fixed points of monotone mappings attracted some attention following the extension of
the Banach Contraction Principle [3] by Ran and Reurings [18] in partially ordered metric spaces. For
an extensive list of references and historical facts about monotone mappings, we recommend the survey
by Bachar and Khamsi [2]. In this work, we extend the main ideas of Lami Dozo [14] to the case of
monotone multivalued mappings. In particular, we introduce the concept of monotone approximation of
the identity of a Banach space.

For more on the metric fixed point theory, we recommend the book by Khamsi and Kirk [12].
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2. Monotone Opial condition

Throughout, (X, ‖.‖,�) stands for a partially ordered Banach space such that x � y implies

α x+ z � α y+ z

for any x,y, z ∈ X and α ∈ [0,+∞). We will assume that order intervals are closed. Recall that an order
interval is any of the sets

[x,→) = {y ∈ X; x � y} and (←, x] = {y ∈ X; y � x}

for any x ∈ X. Let τ be a topology on X for which order intervals are τ-closed. Let us next recall the
definition of τ-Opial condition [6, 17].

Definition 2.1. We will say that X satisfies the τ-Opial condition if for any sequence {xn} in X which
τ-converges to x, we have

lim sup
n→+∞ ‖xn − x‖ < lim sup

n→+∞ ‖xn − y‖

for any y ∈ X such that y 6= x.

Very early on, this property played a major role in the study of the fixed point property of nonex-
pansive mappings [6]. For example, Opial [17] noted that the classical Banach spaces `p enjoyed the
weak-Opial condition while Lp([0, 1]) fails it for p 6= 2 and 1 < p < ∞. In recent study of the fixed point
property of monotone nonexpansive mappings, the authors introduced the concept of monotone Opial
condition as follows.

Definition 2.2 ([1]). We will say that X satisfies the monotone τ-Opial condition if for any monotone
increasing (resp. decreasing) sequence {xn} in X which τ-converges to x, we have

lim sup
n→+∞ ‖xn − x‖ < lim sup

n→+∞ ‖xn − y‖

for any y ∈
⋂
n>1

[xn,→) (resp. y ∈
⋂
n>1

(←, xn]) such that y 6= x.

Note that since we assumed that order intervals are τ-closed, then we have y ∈
⋂
n>1

[xn,→) if and only

if x � y (resp. y ∈
⋂
n>1

(←, xn] if and only if y � x). In [1], it is proved that any lattice Banach space with

a monotone norm satisfies a large monotone weak-Opial condition. But if the norm is uniformly convex,
then we have the monotone weak-Opial condition. This is amazing because it allows one to prove that
Lp([0, 1]) satisfies the monotone weak-Opial condition, for p 6= 2 and 1 < p <∞.

Next, we extend the concept of the approximation of the identity as introduced by Lami Dozo [14] to
the monotone case.

Definition 2.3. A sequence of bounded linear operators {Pn}n>1 of X is said to be a monotone τ-approxi-
mation of the identity, if

(1) lim
n→∞ ‖x− Pn(x)‖ = 0, for any x ∈ X;

(2) lim
n→∞ ‖Pi(xn)‖ = 0, for any i > 1 and any sequence {xn} which τ-converges to 0;

(3) Pn and Qn = I− Pn are monotone operators, where I : X→ X is the identity mapping.

We will say that {Pn} satisfies the property (L) if there exists a continuous function δ : [0,∞)× [0,∞) →
[0,∞) such that

‖Pn(u) +Qn(v)‖ > δ(‖Pn(u)‖, ‖Qn(v)‖)

for any u, v ∈ X such that u � 0 and v � 0 and n > 1. Moreover the function δ satisfies δ(0, r) = δ(r, 0) = r,
δ(r, s) > r and δ(s, r) > r for any r > 0 and s > 0.
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The origin of the property (L) may be found in [11] where this property was introduced and investi-
gated in relation with the Opial and Kadec-Klee properties. The following example will help shed some
interesting properties about this new concept. It is inspired from the original work of Lim [15].

Example 2.4. Consider the Banach space `p, with 1 < p <∞. For any x = (xn) ∈ `p, define

x+ = (max(xn, 0)) and x− = (−min(xn, 0)).

Define the new norm in `p defined by

‖x‖ = ‖x+‖p + ‖x−‖p

for any x ∈ `p. It is easy to check that ‖.‖ is an equivalent norm to ‖.‖p. Next consider the sequence of
natural projections {Pn} associated to the canonical Schauder basis of `p, i.e.

Pn(x) = (x1, x2, · · · , xn, 0, 0, 0, · · · ), x ∈ `p.

Then {Qn} are also projections defined by

Qn(x) = (0, 0, · · · , xn+1, xn+2, · · · ), x ∈ `p.

Note that if u, v ∈ `p are such that u � 0 and v � 0, then we have u = u+ and v = v+ and

‖Pn(u) +Qn(v)‖ = ‖Pn(u) +Qn(v)‖p =
(
‖Pn(u)‖pp + ‖Qn(v)‖pp

)1/p
,

which implies

‖Pn(u) +Qn(v)‖ =
(
‖Pn(u)‖p + ‖Qn(v)‖p

)1/p

for any n > 1. If we take δ(r, s) = (rp + sp)1/p, the sequence {Pn} satisfies the property (L). And if we
take τ to be the weak topology, then {Pn} is a monotone weak-approximation of the identity. Note that
(`p, ‖.‖) is not strictly convex since

‖e1‖ = ‖− e2‖ = ‖(e1 − e2)/2‖ = 1,

where e1 = (1, 0, 0, · · · ) and e2 = (0, 1, 0, 0, · · · ).

The following result may be seen as an analogue to [14, Theorem 2.1].

Theorem 2.5. Let (X, ‖.‖,�) and τ be as described before. Assume X has a monotone τ-approximation of the
identity {Pn} which satisfies the property (L). Then X satisfies the monotone τ-Opial condition.

Proof. Let {xn} be a monotone sequence in X which τ-converges to x. Without loss of generality, we
assume {xn} is monotone increasing. Since order intervals are τ-closed, we know that xn � x, for any
n > 1. Let y 6= x and x � y. We have

y− xn = y− x+ (x− xn), n > 1.

Set u = y− x and un = x− xn, for n > 1. Using the properties satisfied by the order � and the topology
τ, we conclude that u � 0, un � 0, for any n > 1, u 6= 0, and {un} τ-converges to 0. Since Pi +Qi = I, we
get

u+ un = Pi(u) +Qi(un) +Qi(u) + Pi(un)

for any n, i > 1. Since {Pn} is a monotone τ-approximation of the identity which satisfies the (L) property,
we have

lim
i→∞ ‖Qi(u)‖ = lim

n→∞ ‖Pi(un)‖ = 0.
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Hence
‖u+ un‖ > ‖Pi(u) +Qi(un)‖− ‖Qi(u)‖− ‖Pi(un)‖

> δ(‖Pi(u)‖, ‖Qi(un)‖) − ‖Qi(u)‖− ‖Pi(un)‖
for any n, i > 1. If we let n→∞, we get

lim sup
n→∞ ‖u+ un‖ > δ(‖Pi(u)‖, lim sup

n→∞ ‖un‖) − ‖Qi(u)‖,

since lim sup
n→∞ ‖Qi(un)‖ = lim sup

n→∞ ‖un‖, for any i > 1. Next, we let i→∞, we get

lim sup
n→∞ ‖u+ un‖ > δ(‖u‖, lim sup

n→∞ ‖un‖),

since lim sup
i→∞ ‖Pi(u)‖ = ‖u‖. Since ‖u‖ > 0 we obtain

lim sup
n→∞ ‖u+ un‖ > lim sup

n→∞ ‖un‖,

i.e.,
lim sup
n→∞ ‖xn − y‖ > lim sup

n→∞ ‖xn − x‖.

The proof of our claim is complete.

As a corollary, we have the following result.

Corollary 2.6. Let (`p, ‖.‖), with 1 < p <∞, the Banach space described in Example 2.4. Then (`p, ‖.‖) satisfies
the monotone weak-Opial condition.

This is truly amazing since (`p, ‖.‖) fails to be uniformly convex. In the next section, we give a
fixed point result for multivalued monotone nonexpansive mappings in Banach spaces which satisfy the
monotone Opial condition.

3. Fixed points of monotone multivalued nonexpansive mappings

Before we give the definition of monotone multivalued nonexpansive mappings, we need the following
definition.

Definition 3.1. Let (X, ‖.‖,�) be a Banach space endowed with a partial order. Let C be a nonempty
subset of X. Let T : C→ C be a map.

(a) T is said to be monotone if
x � y =⇒ T(x) � T(y)

for any x,y ∈M.

(b) T is said to be monotone Lipschitzian if T is monotone and there exists k > 0 such that

‖T(x) − T(y)‖ 6 k ‖x− y‖

for any x,y ∈ C such that x � y.

If k < 1, then we say that T is a monotone contraction mapping. If k = 1, T is called a monotone
nonexpansive mapping. A point x ∈ C is said to be a fixed point of T whenever T(x) = x.

Note that classical definitions of nonexpansive multivalued mappings use the Hausdorff distance. This
will force the multivalued mappings to have closed and bounded values. Next, we define the concept of
monotone nonexpansive multivalued mappings defined on a partially ordered Banach space which, in
single-valued case, coincides with the definition of monotone nonexpansive mappings.
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Definition 3.2. Let (X, ‖.‖,�) be a Banach space endowed with a partial order and C a nonempty subset
of X. A multivalued mapping T : C → 2C with nonempty values is said to be monotone nonexpansive if
for any x,y ∈ C with x � y and any u ∈ T(x) there exists v ∈ T(y) such that

u � v and ‖u− v‖ 6 ‖x− y‖.

A point x is said to be a fixed point of T if and only if x ∈ T(x).

As we said before, monotone Lipschitzian mappings are not necessarily continuous. They usually
have good topological behaviors on comparable elements. In order to take advantage of this point, one
approach to study such mappings is to use iterative methods. Let (X, ‖.‖,�) and τ be as described before.
Mostly we will consider sequential convergence with respect to τ. A nice discussion about the use of a
topology versus a sequential convergence may be found in the work of Dudley [7].

Let C be a convex nonempty subset of a partially ordered Banach space X not reduced to one point.
Let T : C→ 2C be a monotone multivalued nonexpansive mapping with nonempty values. Set

CT = {x ∈ C; x � y or y � x for some y ∈ T(x)}.

Assume that CT is not empty. Fix λ ∈ (0, 1) and x0 ∈ CT . Without loss of generality, assume there exists
y0 ∈ T(x0) such that x0 � y0. Then x1 = λ x0 + (1 − λ) y0 ∈ C. Since order intervals are convex, we
have x0 � x1 � y0. Since T is monotone multivalued nonexpansive, then there exists y1 ∈ T(x1) such that
y0 � y1 and ‖y0 −y1‖ 6 ‖x0 − x1‖. We have x0 � x1 � y0 � y1. Set x2 = λ x1 +(1− λ) y1. Then x2 ∈ C and
x1 � x2 � y1 since order intervals are convex. Since T is monotone multivalued nonexpansive, then there
exists y2 ∈ T(x2) such that y1 � y2 and ‖y1 − y2‖ 6 ‖x1 − x2‖. We have x1 � x2 � y1 � y2. By induction,
we build two sequences {xn} and {yn} in C defined by what is known as the Krasnoselskii-Ishikawa
[10, 13] iteration

xn+1 = λ xn + (1 − λ) yn, n > 1, (3.1)

such that ‖yn − yn+1‖ 6 ‖xn − xn+1‖, yn ∈ T(xn) and xn � xn+1 � yn � yn+1, for any n ∈N.
In order to proceed further, we will need the following fundamental property satisfied by {xn}.

Proposition 3.3 ([8, 9]). Consider the sequences {xn} and {yn} generated by λ, x0 and the iteration (3.1). Then the
following inequality holds

(GK) (1 +nλ) ‖yi − xi‖ 6 ‖yi+n − xi‖+ (1 − λ)−n
(
‖yi − xi‖− ‖yi+n − xi+n‖

)
, ∀i,n ∈N.

If C is assumed to be bounded, then we have lim
n→+∞ ‖xn−yn‖ = 0, i.e., {xn} is an approximate fixed point sequence

of T .

The following result will be helpful to prove the main fixed point theorem of this work.

Lemma 3.4. Assume that C is a convex and bounded nonempty subset of X not reduced to one point. Let T :
C → 2C be a monotone nonexpansive multivalued mapping with nonempty values. Assume CT is not empty. Fix
λ ∈ (0, 1) and x0 ∈ CT . Consider the sequences {xn} and {yn} in C generated by λ, x0 and the iteration (3.1). Then
{xn} has at most one τ-cluster point.

Proof. Since x0 ∈ CT , there exists y0 ∈ T(x0) which is comparable to x0. Without loss of generality, we
assume x0 � y0. In this case, the sequence {xn} is monotone increasing, i.e., xn � xn+1, for any n ∈ N.
Let z1 and z2 be two τ-cluster points of {xn}. Fix k ∈ N. Since {xn} is monotone increasing and the order
interval [xk,→) is τ-closed, we conclude that zi ∈ [xk,→), for i = 1, 2. Hence {xn} ⊂ (←, zi], for i ∈ {1, 2},
holds which implies for the same reason zj ∈ (←, zi], for i, j ∈ {1, 2}. Hence z1 = z2, which implies that
{xn} has at most one τ-cluster point.

Note that if we assume C is τ-compact, then {xn} is τ- convergent to some z ∈ C and either xn � z or
z � xn, for any n ∈ N. Before, we state the main result of this section, define K(C) to be the set of all
nonempty compact subsets of C.
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Theorem 3.5. Let (X, ‖.‖,�) and τ be as described above. Assume X satisfies the monotone τ-Opial condition. Let
C be a τ-compact, convex and bounded nonempty subset of X not reduced to one point. Let T : C → K(C) be a
monotone nonexpansive multivalued mapping with nonempty values. Assume CT is not empty. Then T has a fixed
point.

Proof. Since CT is not empty, pick x0 ∈ CT . Fix λ ∈ (0, 1). Without loss of generality, assume there exists
y0 ∈ T(x0) such that x0 � y0. Consider the sequences {xn} and {yn} in C generated by λ, x0 and the
iteration (3.1). Since C is τ-compact, we know that {xn} is τ-convergent to some point z ∈ C. Since {xn} is
monotone increasing, then we have xn � z, for all n ∈N. Since T is monotone multivalued nonexpansive
and yn ∈ T(xn), there exists zn ∈ T(z) such that yn � zn and

‖yn − zn‖ 6 ‖xn − z‖, ∀n ∈N.

Since T(z) is compact, there exists a subsequence {zφ(n)} of {zn} such that {zφ(n)} converges to v ∈ T(z).
Moreover, we have lim

n→+∞ ‖xn − yn‖ = 0, since C is bounded. Hence, we have

lim sup
n→∞ ‖yφ(n) − zφ(n)‖ = lim sup

n→∞ ‖yφ(n) − v‖ = lim sup
n→∞ ‖xφ(n) − v‖,

which implies
lim sup
n→∞ ‖xφ(n) − v‖ 6 lim sup

n→∞ ‖xφ(n) − z‖.

Let us prove that z � v. Indeed, we have xn � yn � zn, for any n ∈ N. Since {xn} is increasing and
the order intervals are closed, we conclude that xn � v. Finally since {xn} τ-converges to z and the order
intervals are τ-closed, we obtain z � v. Since X satisfies the monotone τ-Opial condition, we conclude
that z = v ∈ T(z), i.e., z is a fixed point of T .
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