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Abstract

We apply the new local fractional reduced differential transform method to obtain the solutions of some linear and nonlinear
partial differential equations on Cantor set. The reported results are compared with the related solutions presented in the
literature and the graphs are plotted to show their behaviors. The results prove that the presented method is faster and easy to
apply. c©2017 All rights reserved.
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1. Introduction

Linear and nonlinear fractional ordinary or partial differential equations (PDEs) models are commonly
encountered in applied mathematics, physics and engineering fields [2, 5, 9, 11, 12, 14–18, 21, 27–33, 35,
36, 38]. In recent years, many researches dealt the fractional differential equations due to its importance in
the different kinds of applied sciences. Therefore, there are too study on solutions of fractional ordinary
and PDEs. Some authors such as Poldlubny [30], Samko et al. [32], Schneider and Wyss [35], Beyer and
Kemplfe [15], Mainardi [29] and Yang [38], discussed fractional order of differential equations.

The Reduced Differential Transform Method (RDTM) was first proposed by Keskin and Oturanc [23–
26]. This method is widely used by many researchers to study fractional and non-fractional, linear and
nonlinear PDEs. The method introduces a reliable and efficient process for a wide variety of engineering,
scientific and physics applications, such as fractional and non-fractional, linear, nonlinear, homogeneous

∗Corresponding author
Email addresses: omeracan@yahoo.com (Omer Acan), maysaa@ksu.edu.sam (Maysaa Mohamed Al Qurashi),

dumitru@cankaya.edu.tr (Dumitru Baleanu)

doi:10.22436/jnsa.010.10.09

Received 2017-04-01

http://dx.doi.org/10.22436/jnsa.010.10.09


O. Acan, M. M. Al Qurashi, D. Baleanu, J. Nonlinear Sci. Appl., 10 (2017), 5230–5238 5231

and non-homogeneous PDEs [1, 3, 4, 6–10, 16, 19, 22–26, 33, 36, 46]. Recently, the local fractional deriva-
tive was introduced by Yang [37, 38]. By using this derivative, the solutions of important mathematical
problems are studied [13, 20, 22, 34, 39–48]. Yang et al. in 2016 [46] proposed local fractional differential
transform method (LFDTM) by using local fractional derivative (LFD) with DTM. For this method, he
gave some basic theorems and also an application. Similarly, Jafari et al. in 2016 [22] introduced local
fractional reduced differential transform method (LFRDTM) by using LFD with RDTM. For this method,
they gave some basic theorems and also some applications.

The main aim of this article is to present approximate analytical solutions of some linear and nonlinear
time and space local fractional PDEs by using LFRDTM. We discuss how to solve linear and nonlinear
PDEs with LFD by using RDTM.

This study is organized as follows. The basic definitions properties and theorems of LFD in Section 2
and LFRDTM in Section 3 are presented. In Section 4, the application of the new method is given. And
finally, we give conclusion in Section 5.

2. Preliminaries

Definition 2.1. Let Cα (a,b) be a set of the non-differentiable functions with the fractal dimension
α (α ∈ (0, 1]). For ψ (x) ∈ Cα (a,b) , the LFD operator of ψ (x) of order α (α ∈ (0, 1]) at the x = x0 is
defined as follows [13, 20, 38, 39, 41, 42, 46]

D(α)ψ(x0) =
dαψ(x0)

dxα
= lim
x→x0

∆α (ψ(x) −ψ(x0))

(x− x0)
, (2.1)

where
∆α (ψ(x) −ψ(x0)) ∼= Γ (1 +α) [ψ(x) −ψ(x0)] .

Lemma 2.2 ([38, 47, 48]). Suppose that f,g are non-differentiable functions and α ∈ (0, 1] is order of LFD. Then

(i) D(α) (af+ bg) = a
(
D(α)f

)
+ b

(
D(α)g

)
for a,b ∈ R;

(ii) D(α) (fg) = fD(α) (g) + gD(α) (f);

(iii) D(α)
(
f
g

)
= gD(α)(f)−fD(α)(g)

g2 provided g 6= 0.

Lemma 2.3 ([38, 47, 48]). Suppose that f is non-differentiable function and α ∈ (0, 1] is order of LFD. Then

(i) D(α) (f(x)) = 0, for all constant functions f(x) = λ;

(ii) D(α)
(

xkα

Γ(kα+1)

)
= x(k−1)α

Γ((k−1)α+1) ;

(iii) D(α) (Eα (xα)) = Eα (xα);

(iv) D(α) (Eα (−xα)) = −Eα (−xα);

(v) D(α) (sinα (xα)) = cosα (xα);

(vi) D(α) (cosα (xα)) = −sinα (xα),

where Eα (xα) =
∞∑
k=0

xkα

Γ(kα+1) , sinα (xα) =
∞∑
k=0

(−1)k x(2k+1)α

Γ((2k+1)α+1) and cosα (xα) =
∞∑
k=0

(−1)k x2kα

Γ(2kα+1) .

Definition 2.4. The local fractional partial derivative (LFPD) operator of ψ (x, t) of order α (α ∈ (0, 1])
with respect to t at the point (x, t0) is defined as follows [38, 46]

D
(α)
t ψ(x, t0) =

∂αψ(x, t0)

∂tα
= lim
t→t0

∆α (ψ(x, t) −ψ(x, t0))

(t− t0)
,
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where
∆α (ψ(x, t) −ψ(x, t0)) ∼= Γ (1 +α) [ψ(x, t) −ψ(x, t0)] .

In view of (2.1), the LFPD operator of ψ (x, t) of order kα (α ∈ (0, 1]) is given by [13, 20, 38, 41, 46]

D
(kα)
t ψ(x, t) =

∂kαψ(x, t)
∂tkα

= D
(α)
t D

(α)
t · · ·D(α)

t︸ ︷︷ ︸
k times

ψ(x, t).

3. Local fractional reduced differential transform method

In this section, the basic definitions some properties and theorems of LFRDTM are presented as follows
[22, 46].

Lemma 3.1 ((Local fractional Taylors theorem) [22, 46] ). Suppose that d(k+1)α

dx(k+1)αψ (x) ∈ Cα (a,b) , for a,b ∈ R,
k = 0, 1, 2, · · · ,n and α ∈ (0, 1], we have

ψ (x) =

∞∑
k=0

dkα

dxkα
ψ (x0)

(x− x0)
αk

Γ (1 + kα)
,

where a < x0 < x < b, for all x ∈ (a,b).

Definition 3.2. The LFRDT Ψk(x) of the function ψ(x, t) is defined as [22, 46]

Ψk(x) =
1

Γ(1 + kα)

[
∂kαψ(x, t)
∂tkα

]
t=t0

,

where k = 0, 1, 2, · · · ,n and α ∈ (0, 1].

Definition 3.3. The LFRDT of Ψk(x) is defined by the following formula [22, 46]

ψ(x, t) =
∞∑
k=0

Ψk(x)(t− t0)
kα,

where α ∈ (0, 1].

Using Definition 3.2 and Definition 3.3, the fundamental mathematical operations of the LFRDTM [22]
are deduced in Table 1.

Table 1: Basic operations of the LFRDTM.
Original function Local transformed function

ψ (x, t) Ψk (x) =
1

Γ(1+kα)

[
∂kαψ(x,t)
∂tkα

]
t=t0

ψ (x, t) = aπ (x, t)±Var bφ (x, t) Ψk (x) = aΠk (x)± bΦk (x)

ψ (x, t) = π (x, t)ϕ (x, t) Ψk (x) =
k∑
s=0

Πs (x)Φk−s (x)

ψ (x, t) = ∂nα

∂tnαπ (x, t) Ψk (x) =
Γ(1+kα+nα)
Γ(kα+1) Πk+n (x)

ψ (x, t) = (x−x0)
mα

Γ(1+mα)
(t−t0)

nβ

Γ(1+nβ) Ψk (x) =
xmα

Γ(1+mα)δα (k−n)

ψ(x, t) = Eα((a(x− x0))
α)Eβ((b(t− t0))

β) Ψ (k) = Eα ((a (x− x0))
α) akα

Γ(1+kα)

4. Numerical consideration

In this section we will illustrate the LFRDTM technique by four examples. These examples give exact
answer in the sense of exact solutions. This approach shows the accurate evaluation of the analytical
technique and the examination of the LFD on the behavior of the solutions. All operations are calculated
by software MAPLE.
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Example 4.1. Let us first consider the following linear time and space local fractional equation on Cantor
set [46]

∂α

∂tα
ψ (x, t) −

∂2α

∂x2αψ (x, t)=0 , 0 < α 6 1, (4.1)

with initial condition (IC)
ψ(x, 0) = Eα(xα). (4.2)

The exact solution of (4.1) is
ψ(x, t) = Eα ((x+ t)α) .

If we take the local LFRDT of (4.1), we get the following iteration formula

Γ(kα+α+ 1)
Γ(kα+ 1)

Ψk+1(x) =
∂2α

∂x2αΨk(x), (4.3)

where Ψk is the transformed function. From the IC (4.2) we write

Ψ0(x) = Eα(x
α). (4.4)

Substituting (4.4) into (4.3), and iterative steps, we obtain the following Ψk(x) values

Ψ1(x) =
Eα(x

α)

Γ(α+ 1)
, Ψ2(x) =

Eα(x
α)

Γ(2α+ 1)
, · · · , Ψn(x) =

Eα(x
α)

Γ(nα+ 1)
, · · · . (4.5)

From (4.5), we find the LFRDTM solution of equation (4.1) as

ψ̃n(x, t) =
n∑
k=0

Eα(x
α)

tαk

Γ(kα+ 1)
.

Hence ψ(x, t) is
ψ(x, t) = lim

n→∞ ψ̃n(x, t) = Eα(xα)Eα(tα).

This finding is the same as result given in [46], also it is the exact solution. The graph of this solution is
given in Figure 1 for α = ln 2

ln 3 .

Figure 1: The solution for (4.1) equation of non-differentiable type, (α = ln 2/ ln 3).

Example 4.2. Let us consider linear time and space local fractional equation on Cantor set [48]

∂2α

∂t2α
ψ (x, t) −

∂2α

∂x2αψ (x, t) = 0, 0 α 6 1, (4.6)

subject to ICs

ψ(x, 0) = −Eα (xα) and
∂α

∂tα
ψ (x, 0) = 0. (4.7)
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The exact solution of (4.6) is
ψ(x, t) = −Eα(x

α)cosα (tα) .

If we take the LFRDT of (4.6), we get the following iteration formula

Γ(kα+ 2α+ 1)
Γ(kα+ 1)

Ψk+2(x) = −
∂2α

∂x2αΨk(x), (4.8)

where Ψk is the transformed function. From the ICs (4.7) we write

Ψ0(x) = −Eα (xα) and Ψ1(x) = 0. (4.9)

Substituting (4.9) into (4.8), and by iterative steps, we obtain the following Ψk(x) values

Ψk(x) =

 (−1)i+1 Eα (xα)

Γ(2iα+ 1)
, if k = 2i,

0, if k = 2i+ 1.
(4.10)

From (4.10), we find the LFRDTM solution of (4.6) as

ψ̃n(x, t) =
n∑
k=0

(−1)k+1 Eα (xα)

Γ(2kα+ 1)
t2kα.

Hence ψ(x, t) is
ψ(x, t) = lim

n→∞ ψ̃n(x, t) = −Eα(x
α)cosα (tα) .

This finding is the exact solution. The graph of this solution is given in Figure 2 for α = ln 2
ln 3 .

Figure 2: The solution for (4.6) equation of non-differentiable type, (α = ln 2/ ln 3).

Example 4.3. Let us consider nonlinear time and space local fractional equation on Cantor set [48]

∂α

∂tα
ψ (x, t) −ψ (x, t)

∂2α

∂x2αψ (x, t)+ψ (x, t)
∂α

∂xα
ψ (x, t)= 0, 0 < α 6 1, (4.11)

subject to IC
ψ(x, 0) = Eα(xα). (4.12)

The exact solution of (4.11) is
ψ(x, t) = Eα(xα).

If we take the LFRDT of (4.11), we get the following iteration formula

Γ(kα+α+ 1)
Γ(kα+ 1)

Ψk+2(x) =

k∑
r=0

Ψk−r(x)
∂2α

∂x2αΨr(x) −

k∑
r=0

Ψk−r(x)
∂α

∂xα
Ψr(x), (4.13)
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where Ψk is the transformed function. From the IC (4.12) we write

Ψ0(x) = Eα (xα) . (4.14)

Substituting (4.14) into (4.13), and by iterative steps, we obtain the following Ψk(x) values

Ψk(x) = 0, for k = 1, 2, 3, · · · . (4.15)

From (4.15), we find the LFRDTM solution of equation (4.11) as

ψ(x, t) = ψ̃n(x, t) =
n∑
k=0

Ψk(x)t
kα(−1)k+1 = Eα (xα).

This finding is the same as result given in [48], also it is the exact solution. The graph of this solution is
given in Figure 3 for α = ln 2

ln 3 .

Figure 3: The solution for (4.11) equation of non-differentiable type, (α = ln 2/ ln 3).

Example 4.4. Let us consider nonlinear time and space local fractional equation on Cantor set [48]

∂α

∂tα
ψ (x, t) −

∂2α

∂x2αψ (x, t) −ψ (x, t)
∂α

∂xα
ψ (x, t)= 0, 0 < α 6 1, (4.16)

subject to IC

ψ(x, 0) =
xα

Γ (α+ 1)
. (4.17)

If we take the LFRDT of (4.16), we get the following iteration formula

Γ(kα+α+ 1)
Γ(kα+ 1)

Ψk+2(x) =
∂2α

∂x2αΨk(x) +

k∑
r=0

Ψk−r(x)
∂α

∂xα
Ψr(x), (4.18)

where Ψk is the transformed function. From the IC (4.17) we write

Ψ0(x) =
xα

Γ (α+ 1)
. (4.19)

Substituting (4.19) into (4.18), and by iterative steps, we obtain the following Ψk(x) values

Ψ1(x) =
1

Γ(α+ 1)
xα

Γ(α+ 1)
, Ψ2(x) =

1
Γ(2α+ 1)

xα

Γ(α+ 1)
,

Ψ3(x) =

(
(Γ(α+ 1))2 + Γ(2α+ 1)

)
(Γ(α+ 1))2Γ(3α+ 1)

xα

Γ(α+ 1)
, · · · .

(4.20)
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From (4.20), we find the LFRDTM solution of (4.16) as

ψ̃n(x, t) =
n∑
k=0

Ψk(x)t
kα.

Now this approximate solution is compared with the variational iteration method (VIM) result in [48].
The approaches of ψ̃1, ψ̃2 and ψ̃4 are plotted in Figure 4, Figure 5 and Figure 6 respectively.

Figure 4: Comparison of approximate solution (a) with VIM solution (b) in [48] for (4.16) equation, (α = ln 2/ ln 3) for ψ̃1.

Figure 5: Comparison of approximate solution (a) with VIM solution (b) in [48] for (4.16) equation, (α = ln 2/ ln 3) for ψ̃2.

Figure 6: Comparison of approximate solution (a) with VIM solution (b) in [48] for (4.16) equation, (α = ln 2/ ln 3) for ψ̃4.

5. Conclusion

In this study, local fractional reduced differential transform method (LFRDTM) has been used in linear
and nonlinear, time and space local fractional PDEs on Cantor set. Then, this new method is applied to
four different time and space local PDEs with non-differentiable initial values. In the first three examples,
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the LFRDTM results with non-differentiable terms are same as the exact solutions with non-differentiable
terms. For these examples, 3D graphs of solutions are plotted in Figures 1–3 to show the behavior of
the methods respectively. Also, in the last example, our approximate solution with non-differentiable
terms is compared with the result obtained by VIM in [48]. For this example, the comparisons are plotted
in 3D graphs of solutions in Figures 4–6. The results show that it is easier to make calculations with
LFRDTM, because it does not include integrals like local fractional VIM, ADM and HAM. In addition,
LFRDTM technique does not require any discretization, linearization or small perturbations and therefore
it reduces significantly the numerical computation. Hence, it can be said that LFRDTM is very powerful
and easy applicable mathematical tool for linear and nonlinear PDEs with non-differentiable terms on
Cantor set.
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