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Abstract
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1. Introduction

In 2008, Bashirov et al. [2] introduced the notion of multiplicative metric spaces and illustrated the
usefulness of multiplicative calculus with some interesting applications. From then on, several authors
have reported some important fixed point results in the framework of multiplicative metric spaces (see
[2, 3, 5–7]). In 2016, Agarwal et al. [1] pointed out the relation between the multiplicative metric spaces
and the standard metric spaces.

In this paper we introduce the concept of the homeomorphism metric space and prove the fixed
point theorems and the best proximity point theorems for generalized contractions in such spaces. The
concept of the homeomorphism metric space is firstly introduced in this article. It is worth noting that
the multiplicative metric space is a special form of the homeomorphism metric space. The results of this
paper improve and extend the previously known ones in the literature.

Now, we present some necessary definitions and results which will be needed in the article.
In 2008, Bashirov et al. [2] introduced the following notion of multiplicative metric spaces.

Definition 1.1 ([2]). Let X be a non-empty set. A mapping d∗ : X×X→ [0,+∞) is said to be a multiplica-
tive metric if it satisfies the following conditions:
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(i) d∗(x,y) > 1 for all x,y ∈ X;
(ii) d∗(x,y) = 1 if and only if x = y;

(iii) d∗(x,y) = d∗(y, x) for all x,y ∈ X;
(iv) d∗(x, z) 6 d∗(x, z) · d∗(z,y) for all x,y, z ∈ X.

Also, (X,d∗) is called a multiplicative metric space.
The concept of b-metric spaces was introduced by Czerwik [4] in 1993, who used it to prove a gener-

alization of Banach principle in spaces endowed with such kind of metrics.

Definition 1.2 ([4]). Let X be a non-empty set. A mapping d : X×X → [0,+∞) is said to be a b-metric if
it satisfies the following conditions:

(i) d(x,y) > 0 for all x,y ∈ X;
(ii) d(x,y) = 0 if and only if x = y;

(iii) d(x,y) = d(y, x) for all x,y ∈ X;
(iv) d(x,y) 6 bd(y, z) + bd(z,y) for all x,y, z ∈ X,

where b > 1 is a constant. Also, (X,d) is called a b-metric space.

In 2016, Agarwal et al. [1] pointed out the following relation.

Theorem 1.3 ([1]). Let (X,d∗) be a multiplicative metric space. Then the mapping d : X× X → [0,+∞) with
d(x,y) = ln(d∗(x,y)) forms a metric.

In 2015, Su and Yao [8] proved the existence and uniqueness of the fixed point for the generalized
contraction type mappings in complete metric spaces.

Theorem 1.4 ([8]). Let (X,d) be a complete metric space, T : X→ X be a mapping such that

ψ(d(Tx, Ty)) 6 φ(d(x,y)), ∀x,y ∈ X,

where ψ,φ : [0,+∞)→ [0,+∞) are two functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε,bn → ε

⇒ ε = 0.

Then T has a unique fixed point and, for any given x0 ∈ X, the iterative sequence Tnx0 converges to this fixed point.

Example 1.5 ([8]). There are some functions that satisfy conditions (1) and (2) of Theorem 1.4.

(1)
{
ψ1(t) = t,
φ1(t) = αt,

where 0 < α < 1 is a constant;

(2)
{
ψ2(t) = t

2,
φ2(t) = ln(t2 + 1);

(3)


ψ3(t) = t,

φ3(t) =

{
t2, 0 6 t 6 1

2 ,
t− 3

8 , 1
2 < t < +∞;

(4)


ψ4(t) =

{
t, 0 6 t 6 1,
t− 1

2 , 1 < t < +∞,

φ4(t) =

{
t
2 , 0 6 t 6 1,
t− 4

5 , 1 < t < +∞;

(5)


ψ5(t) =

{
t, 0 6 t < 1,
αt2, 1 6 t < +∞;

φ5(t) =

{
t2, 0 6 t < 1,
βt, 1 6 t < +∞.
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In 1969, Fan [5] introduced and established a classical best approximation theorem which is regarded
as a natural generalization of fixed point theorems. Let (A,B) be a pair of nonempty subsets of a metric
space (X,d), consider a mapping T : A → B. The best proximity point problem is whether we can find
an element x0 in A such that d(x0, Tx0) = min{d(x, Tx) : x ∈ A}. In fact, if A = B, then d(A,B) = 0 and
hence the best proximity point of T becomes a fixed point of T . Since d(x, Tx) > d(A,B) for any x ∈ A,
the optimal solution to this problem is the one for which the value d(A,B) is attained. A point x in A for
which d(x, Tx) = d(A,B) is called a best proximity point of T . We denote the following sets by A0 and B0,

A0 = {x ∈ A : d(x,y) = d(A,B) for some y ∈ B},

B0 = {y ∈ B : d(x,y) = d(A,B) for some x ∈ A},

where d(A,B) = inf{d(x,y) : x ∈ A and y ∈ B}.
It is interesting that A0 and B0 are contained in the boundaries of A and B respectively provided A

and B are closed subsets of a normed linear space such that d(A,B) > 0 ([9, 10]).
The following are some necessary definitions and results about the best proximity point theorems in

metric space, which will be needed in our discussion.

Definition 1.6 ([9, 10]). Let (A,B) be a pair of nonempty subsets of a metric space (X,d) with A0 6= ∅.
Then the pair (A,B) is said to have the P-property if and only if for any x1, x2 ∈ A0 and y1,y2 ∈ B0,{

d(x1,y1) = d(A,B)
d(x2,y2) = d(A,B) ⇒ d(x1, x2) = d(y1,y2).

Definition 1.7 ([9, 10]). Let (A,B) be a pair of nonempty subsets of a metric space (X,d) with A0 6= ∅.
Then the pair (A,B) is said to have the weak P-property if and only if for any x1, x2 ∈ A0 and y1,y2 ∈ B0,{

d(x1,y1) = d(A,B)
d(x2,y2) = d(A,B) ⇒ d(x1, x2) 6 d(y1,y2).

Example 1.8 ([9]). Consider (R2,d), where d is the Euclidean distance and the subsets A = {(0, 0)} and
B = {y = 1 +

√
1 − x2}. Obviously, A0 = {(0, 0)}, B0 = {(−1, 1), (1, 1)}, and d(A,B) =

√
2. Furthermore,

d((0, 0), (−1, 1)) = d((0, 0), (1, 1)) =
√

2;

however,
0 = d((0, 0), (0, 0)) < d((−1, 1), (1, 1)) = 2.

We can see that the pair (A,B) satisfies the weak P-property but not the P-property.

Definition 1.9 ([8]). Let (A,B) be a pair of nonempty subsets of a metric space (X,d) with A0 6= ∅. Then
the pair (A,B) is said to have the (ψ,ϕ)-P-property if and only if for any x1, x2 ∈ A0 and y1,y2 ∈ B0,{

d(x1,y1) = d(A,B)
d(x2,y2) = d(A,B) ⇒ ψ(d(x1, x2)) 6 ϕ(d(y1,y2)),

where ψ,ϕ : [0,+∞)→ [0,+∞) are two functions.

In 2015, Su and Yao [8] also proved the following best proximity point theorems for the generalized
contraction type mappings in complete metric spaces.

Theorem 1.10 ([8]). Let (A,B) be a pair of nonempty closed subsets of a complete metric space (X,d) such that
A0 6= ∅. Let ψ,ϕ,φ : [0,+∞)→ [0,+∞) be three functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;



Y. Luo, Y. Su, W. Gao, J. Nonlinear Sci. Appl., 10 (2017), 5132–5141 5135

(2)
{
ψ(an) 6 φ(bn)
an → ε, bn → ε

⇒ ε = 0;

(3) ψ(tn)→ 0 ⇒ tn → 0;
(4) tn → 0 ⇒ ϕ(tn)→ 0;
(5) ϕ(a) 6 ϕ(b) ⇒ a 6 b.

Let T : A→ B be a mapping, such that

ψ(d(Tx, Ty)) 6 φ(d(x,y)), ∀x,y ∈ A.

Suppose that the pair (A,B) has the (ψ,ϕ)-P-property and T(A0) ⊆ B0. Then there exists a unique x∗ ∈ A such
that d(x∗, Tx∗) = d(A,B).

Theorem 1.11 ([8]). Let (A,B) be a pair of nonempty closed subsets of a complete metric space (X,d) such that
A0 6= ∅. Let ψ,φ : [0,+∞)→ [0,+∞) be two functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε, bn → ε

⇒ ε = 0;

(3) ψ(tn)→ 0 ⇔ tn → 0;

and ψ(t) is nondecreasing. Let T : A→ B be a mapping such that

ψ(d(Tx, Ty)) 6 φ(d(x,y)), ∀x,y ∈ A.

Suppose that the pair (A,B) has the weak P-property and T(A0) ⊆ B0. Then there exists a unique x∗ ∈ A such that
d(x∗, Tx∗) = d(A,B).

2. Homeomorphism metric space and the fixed point theorems

We start our work by introducing the following concepts. The concept of homeomorphism metric
space was firstly introduced in this paper.

Definition 2.1. Let X be a non-empty set. A mapping d∗ : X×X→ [0,+∞) is said to be a metric embryo
if it satisfies the following conditions:

(i) d∗(x,y) > a for all x,y ∈ X;
(ii) d∗(x,y) = a if and only if x = y;

(iii) d∗(x,y) = d∗(y, x) for all x,y ∈ X,

where a ∈ [0,+∞) is a constant. Also, (X,d∗) is called a metric embryo space.

Definition 2.2. A metric embryo space (X,d∗) is said to be a homeomorphism metric space, if there exists
a continuous and strictly increasing function f : [0,+∞)→ [a,+∞) with limt→+∞ f(t) = +∞ such that

d(x,y) = f−1(d∗(x,y)), ∀ x,y ∈ X

forms a metric. We denote (X,d∗) = (X,d∗, f). In this case, d∗(x,y) = f(d(x,y)) for all x,y ∈ X.

The basic topological structure of homeomorphism metric space (X,d∗, f) is consistent with the met-
ric space (X,d). For examples, the open set, closed set, completeness, Cauchy sequence, convergence,
continuity, compact set and so on.

Definition 2.3. A metric embryo space (X,d∗) is said to be a homeomorphism b-metric space, if there
exists a continuous and strictly increasing function f : [0,+∞) → [a,+∞) with limt→+∞ f(t) = +∞ such
that

d(x,y) = f−1(d∗(x,y)), ∀ x,y ∈ X

forms a b-metric. We denote (X,d∗) = (X,d∗, f). In this case, d∗(x,y) = f(d(x,y)) for all x,y ∈ X.
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The basic topological structure of homeomorphism b-metric space (X,d∗, f) is consistent with the b-
metric space (X,d). For examples, the open set, closed set, completeness, Cauchy sequence, convergence,
continuity, compact set and so on.

Example 2.4. Let (X,d∗) be a multiplicative metric space, then (X,d∗) must be a homeomorphism metric
space (X,d∗, f) with f(t) = et, t ∈ [0,+∞).

Theorem 2.5. Let (X,d∗) be a b-metric space, then (X,d∗) is also a homeomorphism 2n
√
b-metric space with

f(t) = t2n, t ∈ [0,+∞), where n is a natural number.

Proof. Let (X,d∗) be a b-metric space, f(t) = t2, and

d(x,y) =
√
d∗(x,y), ∀ x,y ∈ X.

We have for all x,y, z ∈ X that

d2(x,y) = d∗(x,y) 6 bd∗(x, z) + bd∗(z,y) 6 bd2(x, z) + bd2(z,y) 6 (
√
bd(x, z) +

√
bd(z,y))2.

This implies for all x,y, z ∈ X that

d(x,y) 6
√
bd(x, z) +

√
bd(z,y).

By induction, let f(t) = t2n and
d(x,y) = 2n

√
d∗(x,y), ∀ x,y ∈ X.

We have for all x,y, z ∈ X that
d(x,y) 6 2n

√
bd(x, z) + 2n

√
bd(z,y).

This completes the proof.

Theorem 2.6. Let (X,d∗) be a complete multiplicative metric space, and T : X→ X be a mapping such that

ψ(d∗(Tx, Ty)) 6 φ(d∗(x,y)), ∀x,y ∈ X, (2.1)

where ψ,φ : [0,+∞)→ [0,+∞) are two functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε,bn → ε

⇒ ε = 1.

Then T has a unique fixed point and, for any given x0 ∈ X, the iterative sequence Tnx0 converges to this fixed point.

Proof. The condition (2.1) can be rewritten as

ψ(elnd∗(Tx,Ty)) 6 φ(elnd∗(x,y)), ∀ x,y ∈ X.

Let ψ∗(t) = ψ(et), φ∗(t) = φ(et), then above inequality becomes that

ψ∗(lnd∗(Tx, Ty)) 6 φ∗(lnd∗(x,y)), ∀ x,y ∈ X. (2.2)

From the conditions (1) and (2), we have the following conditions

(1’) ψ∗(a) 6 φ∗(b) ⇒ a 6 b;

(2’)
{
ψ∗(an) 6 φ∗(bn)
an → ε,bn → ε

⇒ ε = 0.

Since lnd∗(x,y) is a metric on X, consider the condition (2.2), (1’) and (2’), by using Theorem 1.4, we can
get the conclusion of Theorem 2.6. This completes the proof.
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Theorem 2.7. Let (X,d∗, f) be a complete homeomorphism metric space, and T : X→ X be a mapping such that

ψ(d∗(Tx, Ty)) 6 φ(d∗(x,y)), ∀x,y ∈ X, (2.3)

where ψ,φ : [0,+∞)→ [0,+∞) are two functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε,bn → ε

⇒ ε = f(0).

Then T has a unique fixed point and, for any given x0 ∈ X, the iterative sequence Tnx0 converges to this fixed point.

Proof. From (2.3), we have that

ψ(f(d(Tx, Ty))) 6 φ(f(d(x,y))), ∀x,y ∈ X,

which can be rewritten as

(ψf)(d(Tx, Ty)) 6 (φf)(d(x,y)), ∀x,y ∈ X. (2.4)

Let ψf = ψ · f, φf = φ · f, then (2.4) can be rewritten as

ψf(d(Tx, Ty)) 6 φf(d(x,y)), ∀x,y ∈ X. (2.5)

Next, we show that, the functions ψf and φf satisfy the conditions (1) and (2) as in Theorem 1.4. In fact,
if

ψf(a) 6 φf(b),

that is,
ψ(f(a)) 6 φ(f(b)),

we have from the condition (1) as in Theorem 1.4, that f(a) 6 f(b), therefore, it follows from the mono-
tonicity of f, that a 6 b. We have proved the functions ψf and φf satisfy the condition (1) as in Theorem
1.4. Furthermore, if {

ψf(an) 6 φf(bn),
an → ε,bn → ε,

that is, {
ψ(f(an)) 6 φ(f(bn)),
f(an)→ f(ε), f(bn)→ f(ε),

we have from the condition (2) as in Theorem 1.4, that f(ε) = f(0), therefore, it follows from the continuity
of f, that ε = 0.

Now, we have proved the functions ψf and φf satisfy the conditions (1) and (2) as in Theorem 1.4.
Consider the inequality (2.5), by using Theorem 1.4, we get the conclusion of Theorem 2.7. This completes
the proof.

By using Theorem 1.4, we can get the following results.

Corollary 2.8. Let (X,d∗, f) be a complete homeomorphism metric space, and T : X→ X be a mapping such that

ψ(ed(Tx,Ty)) 6 φ(ed(x,y)), ∀x,y ∈ X,

where ψ,φ : [0,+∞)→ [0,+∞) are two functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε,bn → ε

⇒ ε = 1.
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Then T has a unique fixed point and, for any given x0 ∈ X, the iterative sequence Tnx0 converges to this fixed point.

Proof. Let f(t) = et in Theorem 1.4, we can get Corollary 2.8. This completes the proof.

Corollary 2.9. Let (X,d∗, f) be a complete homeomorphism metric space, and T : X→ X be a mapping such that

ψ(d(Tx, Ty)l) 6 φ(d(x,y)l), ∀x,y ∈ X,

where l > 0 is a constant and ψ,φ : [0,+∞)→ [0,+∞) are two functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε,bn → ε

⇒ ε = 0.

Then T has a unique fixed point and, for any given x0 ∈ X, the iterative sequence Tnx0 converges to this fixed point.

Proof. Let f(t) = tl in Theorem 1.4, we can get Corollary 2.9. This completes the proof.

Corollary 2.10. Let (X,d∗, f) be a complete homeomorphism metric space, and T : X→ X be a mapping such that

ψ(tan
πd(Tx, Ty)

2 + 2d(Tx, Ty)
) 6 φ(tan

πd(x,y)
2 + 2d(x,y)

), ∀x,y ∈ X,

where l > 0 is a constant and ψ,φ : [0,+∞)→ [0,+∞) are two functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε,bn → ε

⇒ ε = 0.

Then T has a unique fixed point and, for any given x0 ∈ X, the iterative sequence Tnx0 converges to this fixed point.

Proof. Let f(t) = tan πt
2+2t in Theorem 1.4, we can get Corollary 2.10. This completes the proof.

3. Generalized best proximity point theorems in the homeomorphism metric space

In this section we will prove the best proximity point theorems for generalized contractions in the
homeomorphism metric space.

Theorem 3.1. Let (X,d∗, f) be a complete homeomorphism metric space and (A,B) be a pair closed subset of X
such that A0 6= ∅. Let ψ,ϕ,φ : [0,+∞)→ [0,+∞) be three functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε, bn → ε

⇒ ε = f(0);

(3) ψ(tn)→ 0 ⇒ tn → f(0);
(4) tn → f(0) ⇒ ϕ(tn)→ 0;
(5) ϕ(a) 6 φ(b) ⇒ a 6 b.

Let T : A→ B be a mapping, such that

ψ(d∗(Tx, Ty)) 6 φ(d∗(x,y)), ∀x,y ∈ A. (3.1)

Suppose that the pair (A,B) has the (ψ,ϕ)-P-property and T(A0) ⊆ B0. Then there exists a unique x∗ ∈ A such
that d∗(x∗, Tx∗) = d∗(A,B).

Proof. From (3.1), we have that

ψ(f(d(Tx, Ty))) 6 φ(f(d(x,y))), ∀x,y ∈ X,

which can be rewritten as
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(ψf)(d(Tx, Ty)) 6 (φf)(d(x,y)), ∀x,y ∈ X. (3.2)

Let ψf = ψ · f, φf = φ · f, then (3.2) can be rewritten as

ψf(d(Tx, Ty)) 6 φf(d(x,y)), ∀x,y ∈ X. (3.3)

Next, we show that, the functions ψf and φf satisfy the conditions as in Theorem 1.10. In fact, if

ψf(a) 6 φf(b),

that is,
ψ(f(a)) 6 φ(f(b)),

we have from the condition (1) as in Theorem 1.10 that f(a) 6 f(b), therefore, it follows from the mono-
tonicity of f, that a 6 b. We have proved the functions ψf and φf satisfy the condition (1) as in Theorem
1.10. Similarly, we can get the condition (5) as in Theorem 1.10. Furthermore, if{

ψf(an) 6 φf(bn),
an → ε,bn → ε,

that is, {
ψ(f(an)) 6 φ(f(bn)),
f(an)→ f(ε), f(bn)→ f(ε),

we have from the condition (2) as in Theorem 1.10, that f(ε) = f(0), therefore, it follows from the continuity
of f, that ε = 0.

Now, we show that, the functions ψf and φf satisfy the conditions (3) and (4) in Theorem 1.10.
If ψf(tn) = ψ(f(tn)) → 0, by the condition (3) in Theorem 3.1, we have f(tn) → f(0), it follows from

the continuity of f, that tn → 0. Then we get the condition (4) as in Theorem 1.10.
Let ϕf(tn) = ϕ(f(tn)) and tn → 0, by continuity of f, that f(tn) → f(0). From the condition (4) in

Theorem 3.1 we can get that ϕf(tn) = ϕ(f(tn))→ 0, then we have the condition (4) as in Theorem 1.10.
Taking into all the discussion offered above, the conditions in Theorem 3.1 can be rewritten as follows

(1’) ψf(a) 6 φf(b) ⇒ a 6 b;

(2’)
{
ψf(an) 6 φf(bn)
an → ε, bn → ε

⇒ ε = 0;

(3’) ψf(tn)→ 0 ⇒ tn → 0;
(4’) tn → 0 ⇒ ϕf(tn)→ 0;
(5’) ϕf(a) 6 φf(b) ⇒ a 6 b.

Consider the condition (3.3) and all conditions offered above, by using Theorem 1.10, we can get the
conclusion of Theorem 3.1. This completes the proof.

Theorem 3.2. Let (X,d∗, f) be a complete homeomorphism metric space and (A,B) be a pair closed subset of X
such that A0 6= ∅. Let ψ,φ : [0,+∞)→ [0,+∞) be two functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε, bn → ε

⇒ ε = f(0);

(3) ψ(tn)→ 0 ⇔ tn → f(0),

and ψ(t) is nondecreasing. Let T : A→ B be a mapping such that

ψ(d∗(Tx, Ty)) 6 φ(d∗(x,y)), ∀x,y ∈ A. (3.4)

Suppose that the pair (A,B) has the weak P-property and T(A0) ⊆ B0. Then there exists a unique x∗ ∈ A such that
d∗(x∗, Tx∗) = d∗(A,B).



Y. Luo, Y. Su, W. Gao, J. Nonlinear Sci. Appl., 10 (2017), 5132–5141 5140

Proof. Let ϕ(t) = ψ(t) for all t ∈ [0,+∞). Then the pair (A,B) having the weak P-property implies
that the pair (A,B) has the (ψ,ϕ)-P-property. Condition (3) of Theorem 3.2 implies conditions (3), (4) of
Theorem 3.1 and (3.4) implies (3.1). By using Theorem 3.1 we get the conclusion of Theorem 3.2.

Corollary 3.3. Let (X,d∗) be a complete multiplicative metric space, (A,B) be a pair closed subset of X such that
A0 6= ∅, and ψ,ϕ,φ : [0,+∞)→ [0,+∞) are three functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε, bn → ε

⇒ ε = 1;

(3) ψ(tn)→ 0 ⇒ tn → 1;
(4) tn → 1 ⇒ ϕ(tn)→ 0;
(5) ϕ(a) 6 φ(b) ⇒ a 6 b.

Let T : A→ B be a mapping, such that

ψ(d∗(Tx, Ty)) 6 φ(d∗(x,y)), ∀x,y ∈ A. (3.5)

Suppose that the pair (A,B) has the (ψ,ϕ)-P-property and T(A0) ⊆ B0. Then there exists a unique x∗ ∈ A such
that d∗(x∗, Tx∗) = d∗(A,B).

Proof. Let f(t) = et, t ∈ [0,+∞). Then a multiplicative metric space (X,d∗) must be a homeomorphism
metric space (X,d∗, f). By using Theorem 3.1 we get the conclusion of Corollary 3.3.

Corollary 3.4. Let (X,d∗) be a complete multiplicative metric space, (A,B) be a pair closed subset of X such that
A0 6= ∅, and ψ,φ : [0,+∞)→ [0,+∞) are two functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε, bn → ε

⇒ ε = 1;

(3) ψ(tn)→ 0 ⇔ tn → 1;

and ψ(t) is nondecreasing. Let T : A→ B be a mapping, such that

ψ(d∗(Tx, Ty)) 6 φ(d∗(x,y)), ∀x,y ∈ A. (3.6)

Suppose that the pair (A,B) has the weak P-property and T(A0) ⊆ B0. Then there exists a unique x∗ ∈ A such that
d∗(x∗, Tx∗) = d∗(A,B).

Proof. Let ϕ(t) = ψ(t) for all t ∈ [0,+∞). Then the pair (A,B) having the weak P-property implies that
the pair (A,B) has the (ψ,ϕ)-P-property. Condition (3) of Corollary 3.4 implies conditions (3) and (4) of
Corollary 3.3 and (3.6) implies (3.5). By using Corollary 3.3 we get the conclusion of Corollary 3.4.

Corollary 3.5. Let (X,d∗) be a complete 2n
√
b-metric space, (A,B) be a pair closed subset of X such that A0 6= ∅,

and ψ,ϕ,φ : [0,+∞)→ [0,+∞) are three functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε, bn → ε

⇒ ε = 0;

(3) ψ(tn)→ 0 ⇒ tn → 0;
(4) tn → 0 ⇒ ϕ(tn)→ 0;
(5) ϕ(a) 6 φ(b) ⇒ a 6 b.

Let T : A→ B be a mapping, such that

ψ(d∗(Tx, Ty)) 6 φ(d∗(x,y)), ∀x,y ∈ A.

Suppose that the pair (A,B) has the (ψ,ϕ)-P-property and T(A0) ⊆ B0. Then there exists a unique x∗ ∈ A such
that d∗(x∗, Tx∗) = d∗(A,B).
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Proof. Let f(t) = t2n, t ∈ [0,+∞). Then a 2n
√
b-metric space (X,d∗) must be a homeomorphism metric

space (X,d∗, f). By using Theorem 3.1 we get the conclusion of Corollary 3.5.

Corollary 3.6. Let (X,d∗) be a complete 2n
√
b-metric space, (A,B) be a pair closed subset of X such that A0 6= ∅,

and ψ,φ : [0,+∞)→ [0,+∞) are two functions satisfying the conditions:

(1) ψ(a) 6 φ(b) ⇒ a 6 b;

(2)
{
ψ(an) 6 φ(bn)
an → ε, bn → ε

⇒ ε = 0;

(3) ψ(tn)→ 0 ⇔ tn → 0,

and ψ(t) is nondecreasing. Let T : A→ B be a mapping, such that

ψ(d∗(Tx, Ty)) 6 φ(d∗(x,y)), ∀x,y ∈ A.

Suppose that the pair (A,B) has the weak P-property and T(A0) ⊆ B0. Then there exists a unique x∗ ∈ A such that
d∗(x∗, Tx∗) = d∗(A,B).

Proof. The process of proof is similar to the proof of Corollary 3.4. So we omit it here.

If we choose ψ3,φ3 in Example 1.5, by Theorem 3.2, we can get the following result.

Corollary 3.7. Let (X,d∗, f) be a complete homeomorphism metric space, (A,B) be a pair closed subset of X such
that A0 6= ∅. Let T : A→ B be a mapping such that

0 6 d∗(x,y) 6
1
2
⇒ d∗(Tx, Ty) 6 (d∗(x,y))2,

1
2
< d∗(x,y)⇒ d∗(Tx, Ty) 6 d∗(x,y) −

1
8

for any x,y ∈ A. Suppose that the pair (A,B) has the weak P-property and T(A0) ⊆ B0. Then there exists a unique
x∗ ∈ A such that d∗(x∗, Tx∗) = d∗(A,B).

If we choose others ψ,φ in Example 1.5, by Theorem 3.2, we can get the relatively result. We omit it
here.

Acknowledgment

This project is supported by the National Natural Science Foundation of China under grant (11071279).

References

[1] R. P. Agarwal, E. Karapınar, B. Samet, An essential remark on fixed point results on multiplicative metric spaces, Fixed
Point Theory Appl., 2016 (2016), 3 pages. 1, 1, 1.3

[2] A. E. Bashirov, E. M. Kurplnar, A. Ozyaplcl, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337
(2008), 36–48. 1, 1.1

[3] A. E. Bashirov, E. Misirli, Y. Tandogdu, A. Ozyaplcl, On modeling with multiplicative differential equations, Appl.
Math. J. Chinese Univ., 26 (2011), 425–438. 1

[4] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. 1, 1.2
[5] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234–240. 1, 1
[6] L. Florack, H. Van Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging Vision, 42 (2012),

64–75.
[7] W. A. Kirk, S. Reich, P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Funct. Anal. Optim.,

24 (2003), 851–862. 1
[8] Y. Su, J.-C. Yao, Further generalized contraction mapping principle and best proximity theorem in metric spaces, Fixed

Point Theory Appl., 2015 (2015), 13 pages. 1, 1.4, 1.5, 1.9, 1, 1.10, 1.11
[9] J. Zhang, Y. Su, Q. Cheng, A note on ‘A best proximity point theorem for Geraghty-contractions’, Fixed Point Theory

Appl., 2013 (2013), 4 pages. 1, 1.6, 1.7, 1.8
[10] J. Zhang, Y. Su, Q. Cheng, Best proximity point theorems for generalized contractions in partially ordered metric spaces,

Fixed Point Theory Appl., 2013 (2013), 7 pages. 1, 1.6, 1.7


	Introduction
	Homeomorphism metric space and the fixed point theorems
	Generalized best proximity point theorems in the homeomorphism metric space

