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Abstract

In this paper, we introduce the new concept of a generalization of contraction so-called ϕE-Geraghty contraction and we
establish a fixed point theorem for such mappings in complete metric spaces. c©2017 All rights reserved.
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1. Introduction and preliminaries

Banach’s contraction principle (BCP) [1] is one of the initial and also fundamental results in theory of
fixed point.

It is know that BCP has been extended in many various directions by several authors, see [1–18] and
the references therein. The following generalization is due to Geraghty [7].

Theorem 1.1 ([7]). Let (X,d) be a complete metric space and T : X→ X be an operator. If T satisfies the following
inequality:

d (Tx, Ty) 6 ϕ (d (x,y)) · d (x,y) , ∀x,y ∈ X,

where ϕ : [0,∞)→ [0, 1) is a function which satisfies the condition

lim
n→∞ϕ (tn) = 1⇒ lim

n→∞tn = 0,

then T has a unique fixed point.

In this paper, starting from [16], we introduce the notion of ϕE-Geraghty contraction and prove a fixed
point theorem for ϕE-contractions, which generalizes Theorem 1.1. Examples are given to show that our
result is a proper extension.
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2. Main results

Definition 2.1. Let φ denote the class of functions ϕ : [0,∞)→ [0, 1) which satisfy the condition

lim
n→∞ϕ (tn) = 1⇒ lim

n→∞tn = 0.

Let (X,d) be a metric space. A mapping T : X → X is said to be a ϕE-Geraghty contraction on (X,d) if
there exists ϕ ∈ φ such that

d (Tx, Ty) 6 ϕ (E (x,y)) · E (x,y) , ∀x,y ∈ X, (2.1)

where
E (x,y) = d (x,y) + |d (x, Tx) − d (y, Ty) |. (2.2)

Remark 2.2. Due to the fact that ϕ : [0,∞)→ [0, 1) we have

d (Tx, Ty) 6 ϕ (E (x,y)) · E (x,y) < E (x,y)

for any x,y ∈ X, with x 6= y.

Theorem 2.3. Let (X,d) be a complete metric space and T : X → X be a ϕE-Geraghty contraction. Then T has a
unique fixed point x∗ and for all x0 ∈ X, the sequence {Tnx0} is convergent to x∗.

Proof. Let x0 ∈ X be arbitrary and fixed. We define a sequence {xn} ⊂ X by xn+1 = Txn = Tnx0 for all
n ∈N. Suppose that xn0 = xn0+1 for some n0 ∈N. Then Txn0 = xn0 . This proves that xn0 is a fixed point
of T .

From now, we suppose that xn+1 6= xn for all n ∈ N. Then, d (xn+1, xn) > 0 and it follows from (2.2)
that for each n ∈N

0 < d (xn, xn+1) = d (Txn−1, Txn) 6 ϕ (E (xn−1, xn)) · E (xn−1, xn) , (2.3)

where

E (xn−1, xn) = d (xn−1, xn) + |d (xn−1, Txn−1) − d (xn, Txn)|
= d (xn−1, xn) + |d (xn−1, xn) − d (xn, xn+1)| .

If we denote by
dn = d (xn−1, xn) ,

we have
dn+1 6 ϕ (dn + |dn − dn+1|) · (dn + |dn − dn+1|) .

If there exists n ∈N such that dn 6 dn+1, then (2.3) becomes

dn+1 6 ϕ (dn+1) · dn+1 < dn+1.

But, it is a contradiction. Therefore, dn > dn+1 for all n ∈N. Thus, we have from (2.3)

dn+1 6 ϕ (2dn − dn+1) · (2dn − dn+1) (2.4)

for all n ∈N.
Let now d = lim

n→∞dn and we suppose that d > 0. Taking the limit as n→∞ in (2.4) we get

d = lim
n→∞ dn+1 6 lim

n→∞ [ϕ (2dn − dn+1) · (2dn − dn+1)] 6 lim
n→∞ (2dn − dn+1) .



A. Fulga, A. M. Proca, J. Nonlinear Sci. Appl., 10 (2017), 5125–5131 5127

It follows that lim
n→∞ϕ (2dn − dn+1) = 1. Owing to the fact that ϕ ∈ φ we have

d = lim
n→∞ (2dn − dn+1) = 0,

which is a contradiction. Therefore,

d = lim
n→∞d (xn−1, xn) = 0. (2.5)

We claim now that {xn} is a Cauchy sequence. Suppose, on the contrary, that there exist ε > 0 and
sequences {n (k)} , {m (k)} of positive integers such that n (k) > m (k) > k and

d
(
xn(k), xm(k)

)
> ε, d

(
xn(k)−1, xm(k)

)
< ε, ∀k ∈N.

Using the triangle inequality, we have

ε 6 d
(
xn(k), xm(k)

)
6 d

(
xn(k), xn(k)−1

)
+ d

(
xn(k)−1, xm(k)

)
< d

(
xn(k), xn(k)−1

)
+ ε.

Combining (2.5) and the above inequality we obtain

lim
k→∞d

(
xn(k), xm(k)

)
= ε.

But, using the triangle inequality,

d
(
xn(k), xm(k)

)
6 d

(
xn(k), xn(k)−1

)
+ d

(
xn(k)−1, xm(k)−1

)
+ d

(
xm(k)−1, xm(k)

)
,

and so

d
(
xn(k), xm(k)

)
− d

(
xn(k)−1, xm(k)−1

)
6 d

(
xn(k), xn(k)−1

)
+ d

(
xm(k)−1, xm(k)

)
.

Also

d
(
xn(k)−1, xm(k)−1

)
6 d

(
xn(k)−1, xn(k)

)
+ d

(
xn(k), xm(k)

)
+ d

(
xm(k), xm(k)−1

)
,

and

d
(
xn(k)−1, xm(k)−1

)
− d

(
xn(k), xm(k)

)
6 d

(
xn(k), xn(k)−1

)
+ d

(
xm(k)−1, xm(k)

)
.

Now, we have ∣∣d (xn(k)−1, xm(k)−1
)
− d

(
xn(k), xm(k)

)∣∣ 6 d (xn(k), xn(k)−1
)

+ d
(
xm(k)−1, xm(k)

)
,

and

lim
k→∞

∣∣d (xn(k), xm(k)

)
− d

(
xn(k)−1, xm(k)−1

)∣∣
6 lim

k→∞
(
d
(
xn(k), xm(k)

)
+ d

(
xm(k)−1, xm(k)

))
= 0.
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Hence,
lim
k→∞d

(
xn(k), xm(k)

)
= lim

k→∞d
(
xn(k)−1, xm(k)−1

)
= ε. (2.6)

On the other hand, from (2.2) we have

ε 6 d
(
xn(k), xm(k)

)
= d

(
Txn(k)−1, Txm(k)−1

)
6 ϕ

(
E
(
xn(k)−1, xm(k)−1

))
· E

(
xn(k)−1, xm(k)−1

)
.

(2.7)

Since

E
(
xn(k)−1, xm(k)−1

)
= d

(
xn(k)−1, xm(k)−1

)
+
∣∣d (xn(k)−1, Txn(k)−1

)
− d

(
xm(k)−1, Txm(k)−1

)∣∣
= d

(
xn(k)−1, xm(k)−1

)
+
∣∣d (xn(k)−1, xn(k)

)
− d

(
xm(k)−1, xm(k)

)∣∣ ,

using (2.5) and (2.6) we obtain

lim
k→∞E

(
xn(k)−1, xm(k)−1

)
= ε. (2.8)

Combining (2.7), (2.8) with the property of ϕ, we get

ε 6 lim
k→∞ϕ

(
E
(
xn(k)−1, xm(k)−1

))
· ε 6 ε,

so,
lim
k→∞ϕ

[
E
(
xn(k)−1, xm(k)−1

)]
= 1 =⇒ ε = lim

k→∞E
(
xn(k)−1, xm(k)−1

)
= 0.

It is a contradiction. Therefore, {xn} is a Cauchy sequence. By completeness of (X,d) , {xn} converges to
some point x∗ ∈ X,

lim
n→∞d (xn, x∗) = 0. (2.9)

We shall prove that x∗ is a fixed point of T .
If for each n ∈N, there exists in ∈N such that xin = Tx∗ and in > in−1, then we have

x∗ = lim
n→∞xin+1 = Tx

∗.

This proves that x∗ is a fixed point of T .
Suppose now, there exists N ∈N such that xn+1 6= Tx∗. This implies

d (xn+1, Tx∗) > 0, ∀n > N.

It follows from (2.2) and the property of ϕ that

d (xn+1, Tx∗) = d (Txn, Tx∗) 6 ϕ (E (xn, x∗)) · E (xn, x∗) < E (xn, x∗) . (2.10)

Since

E (xn, x∗) = d (xn, x∗) + |d (xn, Txn) − d (x∗, Tx∗)|
= d (xn, x∗) + |d (xn, xn+1) − d (x

∗, Tx∗)| ,

combining (2.5) and (2.9) we have
lim
n→∞E (xn, x∗) = d (x∗, Tx∗) .

Taking the limit as n→∞ in (2.10), since d (x∗, Tx∗) > 0, we have

d (x∗, Tx∗) 6 lim
n→∞ϕ (E (xn, x∗)) · d (x∗, Tx∗) 6 d (x∗, Tx∗) ,
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hence lim
n→∞ϕ (E (xn, x∗)) = 1. Thus, we obtain

d (x∗, Tx∗) = lim
n→∞E (xn, x∗) = 0.

It is a contradiction. Therefore d (x∗, Tx∗) = 0, that is, x∗ is a fixed point of T .
Finally, we prove that the fixed point of T is unique. For this, let x∗,y∗ be two fixed points of T , and

suppose that
Tx∗ = x∗ 6= y∗ = Ty∗.

Since

E (x∗,y∗) = d (x∗,y∗) + |d (x∗, Tx∗) − d (y∗, Ty∗)|
= d (x∗,y∗) + |d (x∗, x∗) − d (y∗,y∗)|
= d (x∗,y∗) ,

it follows from (2.1) that

0 < d (x∗,y∗) = d (Tx∗, Ty∗) 6 ϕ (E (x∗,y∗)) · E (x∗,y∗)
= ϕ (d (x∗,y∗)) · d (x∗,y∗) < d (x∗,y∗) .

This is a contradiction. Then d (x∗,y∗) = 0, that is x∗ = y∗. This proves that the fixed point of T is
unique.

Example 2.4. Let X= {0, 1, 4} , d (x,y) = |x− y| and T : X→ X defined by

T1 = T4 = 1, T0 = 4.

Then, since d (T0, T1) = 3 and d (0, 1) = 1 we can not find a function ϕ ∈ φ satisfying

d(T0, T1) 6 ϕ (d(0, 1)) · d(0, 1).

Therefore, T is not a Geraghty contraction. Now consider a function ϕ : [0,∞)→ [0, 1), defined by

ϕ (t) =

{
1

1+ t
15

, t > 0,
1
2 , t = 0,

then T is a ϕE-Geraghty contraction.

Indeed, since

d (0, 1) = 1, d (0, 4) = 4, d (1, 4) = 3,
d (0, T0) = |0 − 4| = 4, d (1, T1) = |1 − 1| = 0, d (4, T4) = |4 − 1| = 3,
d (T0, T1) = |4 − 1| = 3, d (T0, T4) = |4 − 1| = 3, d (T1, T4) = 0,

for x = 0 and y = 1

3 = d (T0, T1) >
15
16

=
d (0, 1)

1 + d(0,1)
15

= ϕ (d (0, 1)) · d (0, 1) .

On the other hand,

E (0, 1) = d (0, 1) + |d (0, T0) − d (1, T1)| = 1 + |4 − 0| = 5,
E (0, 4) = d (0, 4) + |d (0, T0) − d (4, T4)| = 4 + |4 − 3| = 5,
E (1, 4) = d (1, 4) + |d (1, T1) − d (4, T4)| = 3 + |0 − 3| = 6,

so, we have the following cases:
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Case 1. Let x = 0 and y = 1. Then

d (T0, T1) 6 ϕ (E (0, 1)) · E (0, 1) ⇐⇒ 3 6
5

1 + 5
15

=
5

1 + 1
3

=
15
4

.

Case 2. Let x = 0 and y = 4. Then

3 = d (T0, T4) 6 ϕ (E (0, 4)) · E (0, 4) =
5

1 + 5
15

=
15
4

.

Case 3. Let x = 1 and y = 4. Then

0 = d (T1, T4) 6 ϕ (E (1, 4)) · E (1, 4) =
6

1 + 6
15

.

This proves that T is a ϕE-Geraghty contraction.

Example 2.5. Let T :
[
−2

3 , 2
3

]
→

[
−2

3 , 2
3

]
be given by

Tx =

{
0, x ∈

[
−2

3 , 0
]

,
−x, x ∈

(
0, 2

3

]
,

and d (x,y) = |x− y| . Let us consider the mapping

ϕ (t) =

{ 1
1+t , t > 0,
1
2 , t = 0,

We obtain that T is a ϕE-Geraghty contraction.

To see this, let us consider the following calculations. First, we observe that for x,y ∈
(
0, 2

3

]
, with

x 6= y we have

d (Tx, Ty) = |x− y| 6
|x− y|

1 + |x− y|
=

1
1 + d(x,y)

· d(x,y)

⇐⇒ 1 + |x− y| 6 1⇐⇒ |x− y| 6 0.

This is a contradiction, so, Geraghty’s theorem cannot be used to prove the existence of a fixed point of T .
Now, we consider the following cases:

Case 1: Let x,y > 0, with x < y. Then, d (x,y) = |x− y| = y− x and

E (x,y) = d (x,y) + |d (x, Tx) − d (y, Ty)| = |x− y|+ ||x+ x|− |y+ y|| = 3 (y− x) .

Thus,

y− x = d (Tx, Ty) 6
E (x,y)

1 + E (x,y)
=

3 (y− x)
1 + 3 (y− x)

⇐⇒ 1 + 3 (y− x) 6 3⇐⇒ y− x 6
2
3

.

Case 2: Let x,y < 0, x < y. Then, d (x,y) = |x− y| ,d (Tx, Ty) = 0 and

E (x,y) = |x− y|+ ||x− 0|− |y− 0|| = 2 |x− y| .

So,

0 = d (Tx, Ty) 6
2 |x− y|

1 + 2 |x− y|
=

E (x,y)
1 + E (x,y)

,
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is true.
Case 3: Let x 6 0, y > 0. Then, d (x,y) = y− x,d (Tx, Ty) = y and

E (x,y) = y− x+ |−x− |2y|| = y− x+ |−x− 2y| .

Because x < 0, let us denote −x = a > 0. We have now two subcases:

(i) If a 6 2y, then

E (x,y) = y+ a+ |a− 2y| = y+ a+ 2y− a = 3y and

y = d (Tx, Ty) 6
3y

1 + 3y
⇐⇒ y+ 3y2 6 3y⇔ 0 6 y 6

2
3

.

(ii) If a > 2y, then

E (x,y) = y+ a+ a− 2y = 2a− y and

y = d (Tx, Ty) 6
2a− y

1 + 2a− y
⇐⇒ y+ 2ay− y2 6 2a− y

⇔ 2y− y2

2 − 2y
6 a.

This is true, because we have

2y− y2

2 − 2y
6 2y < a⇐⇒ 2y− y2 6 4y− 4y2 ⇐⇒ 3y2 6 2y⇔ y ∈

[
0,

2
3

]
.

Since the conditions of Theorem 2.3 are satisfied, then T has a unique fixed point.
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