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Abstract
In this paper, we consider a coupled system of nonlinear conformable fractional differential equations by using the com-

parison principle and the monotone iterative technique combined with the method of upper and lower solutions:
x(α)(t) = f(t, x(t),y(t)), t ∈ [a,b],

y(α)(t) = g(t,y(t), x(t)), t ∈ [a,b],

x(a) = x∗0 , y(a) = y∗0 ,

where f, g ∈ C([a,b]×R×R, R), x∗0 , y∗0 ∈ R, x∗0 6 y∗0 , x(α), y(α) are the conformable fractional derivatives with 0 < α 6 1. We
obtain the existence of extremal iteration solution to the system, and the main results are examined by the help of an example.
c©2017 All rights reserved.
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1. Introduction

Fractional calculus is a discipline of mathematical analysis as old as integer orders. In 1695, L’Hospital
asked what does it mean dnf

dxn if n = 1
2 , since then, the mathematicians tried to answer this question. The

concepts of fractional derivative and integral appear associated with considerable operators: the Riemann-
Liouville integral, basing on iterating the integral operator n times and replaced n! by Gamma function,
was used to define Riemann-Liouville and Liouville-Caputo fractional derivatives, see [13, 16–18]; the
Grünwald-Letnikov derivative which based on iterating the derivative n times and fractionalizing by
using the Gamma function in the binomial coefficients.
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Recently, Khalil et al. in [11] gave a new well-behaved definition called ”the conformable fractional
derivative” depending on the basic limit definition of the derivative and distincting from other definitions,
and it satisfies the familiar product rule, quotient rule. Then, the conformable fractional versions of chain
rule, exponential functions, Gronwall’s inequality, integration by parts, Taylor power series expansions,
and Laplace transforms are proved in [1]. The new definition is getting an increasing of interest, see [2, 5,
7–9, 14]. Katugampola in [10] introduced a new fractional derivative based on the conformable fractional
derivative by replacing t+ εt1−α by teεt

−α
, unfortunately, the proof of chain rule was wrong. It should

be noted that the idea of Katugampola is interesting and more general. Asawasamrit et al. [3] obtained
the existence of solutions for periodic boundary value problems for impulsive conformable fractional
integro-differential equations. Ünal et al. [15] presented the particular solution for non-homogeneous
sequential linear local (conformable) fractional differential equations by the help of the operator method.
In [6], Bayour et al. proved the existence of solution to a conformable fractional nonlinear differential
equation with initial condition using the notion of tube solution and Schauder’s fixed-point theorem.

Motivated by the works mentioned above, we consider the following coupled system of conformable
nonlinear fractional differential equations:

x(α)(t) = f(t, x(t),y(t)), t ∈ [a,b],

y(α)(t) = g(t,y(t), x(t)), t ∈ [a,b],
x(a) = x∗0 , y(a) = y∗0 ,

(1.1)

where f, g ∈ C([a,b]×R×R, R), x∗0 , y∗0 ∈ R, x∗0 6 y∗0 , x(α), y(α) are the conformable fractional deriva-
tives with 0 < α 6 1. We obtain the existence of extremal iteration solution to the system by using
the comparison principle and the monotone iterative technique combined with the method of upper and
lower solutions. To the best of our knowledge, this is the first paper establishing the system of (1.1) via
the conformable fractional calculus developed by [11]. For applications of monotone iterative technique,
one can refer to literatures [4, 12, 19, 20].

This paper is organized as follows. In Section 2, we give the basic definitions of conformable fractional
calculus and prove some lemmas which will play important roles in the next section. The main results
are listed in Section 3. At last, an example is given in Section 4.

2. Preliminaries

Definition 2.1 ([1, 11]). The conformable fractional derivative starting from a point a of a function f :
[a,∞)→ R of order α ∈ (0, 1] is defined by

aT
(α)(f)(t) = lim

ε→0

f
(
t+ ε(t− a)1−α

)
− f(t)

ε
,

provided that the limit exists.

Definition 2.2 ([1, 11]). Let α ∈ (0, 1]. The conformable fractional integral starting from a point a of a
function f : [a,∞)→ R of order α is defined by

aI
α(f)(t) =

∫t
a

(s− a)α−1f(s)ds.

We will, sometimes, write f(α)(t) for aTα(f)(t), and Iα(f)(t) for aIα(f)(t), to denote α-order con-
formable fractional derivative and integral of f(t), respectively.

Lemma 2.3. Let 0 < α 6 1, σ(t) ∈ C([a,b], R), M ∈ R. The linear problem:{
x(α)(t) +Mx(t) = σ(t), t ∈ [a,b],
x(a) = x∗0 ,

(2.1)

has a unique solution.
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Proof. We first consider the associated linear homogeneous equation:{
x(α)(t) +Mx(t) = 0, t ∈ [a,b],
x(a) = x∗0 .

(2.2)

The auxiliary equation is αr+M = 0, then r = −Mα . We can easily get that the solution to (2.2) is

x(t) = Ce
−
M

α
tα

,

where C is constant. By x(a) = x∗0 , we have Ce
−
M

α
aα

= x∗0 , i.e., C = x∗0e

M

α
aα

. Hence, the solution to (2.2)
is

x(t) = x∗0e

M

α
aα

e
−
M

α
tα

.

Let x(t) = C(t)e
−
M

α
tα

is the general solution to problem (2.1), and then we can get

t1−αC ′(t)e
−
M

α
tα

+ t1−αe
−
M

α
tα

(−Mtα−1)C(t) +MC(t)e
−
M

α
tα

= σ(t).

By simple calculation,

C(t) = x∗0e

M

α
aα

+

∫t
a

sα−1e

M

α
sα

σ(s)ds.

Hence, the solution to (2.1) is

x(t) = e
−
M

α
tα
(
x∗0e

M

α
aα

+

∫t
a

sα−1e

M

α
sα

σ(s)ds

)
.

The proof is finished.

To study the nonlinear system (1.1), we first consider the associated linear system:
x(α)(t) = σ1(t) −Mx(t) −Ny(t), t ∈ [a,b],

y(α)(t) = σ2(t) −My(t) −Nx(t), t ∈ [a,b],
x(a) = x∗0 , y(a) = y∗0 ,

(2.3)

where 0 < α 6 1, σ1(t), σ2(t) ∈ C([a,b], R), M ∈ R, N > 0.

Lemma 2.4. The linear system (2.3) has a unique system of solutions in Cα([a,b], R)×Cα([a,b], R).

Proof. The pair (x,y) ∈ Cα([a,b], R)×Cα([a,b], R) is a solution to system (2.3) if and only if

x(t) =
p(t) + q(t)

2
, y(t) =

p(t) − q(t)

2
, t ∈ [a,b],

where p(t) and q(t) are the solutions to the following problems:{
p(α)(t) = (σ1 + σ2)(t) − (M+N)p(t), t ∈ [a,b],
p(a) = x∗0 + y

∗
0 ,{

q(α)(t) = (σ1 − σ2)(t) − (M−N)q(t), t ∈ [a,b],
q(a) = x∗0 − y

∗
0 ,

with



S. Liu, H. Wang, X. Li, H. Li, J. Nonlinear Sci. Appl., 10 (2017), 5082–5089 5085

p(t) = e
−
M+N

α
tα
((
x∗0 + y

∗
0
)
e

M+N

α
aα

+

∫t
a

sα−1e

M+N

α
sα(
σ1 + σ2

)
(s)ds

)
,

q(t) = e
−
M−N

α
tα
((
x∗0 − y

∗
0
)
e

M−N

α
aα

+

∫t
a

sα−1e

M−N

α
sα(
σ1 − σ2

)
(s)ds

)
.

The proof is finished.

Lemma 2.5. Let u(t) ∈ Cα([a,b], R) satisfy{
u(α)(t) +Mu(t) > 0, t ∈ [a,b],
u(a) > 0,

where 0 < α 6 1, M ∈ R, then u(t) > 0 for all t ∈ [a,b].

Proof. We prove the lemma by two cases:

Case 1: If M = 0. Suppose the contrary. If there exists t ∈ [a,b] s.t. u(t) < 0, then there exists t0 ∈ [a,b]
s.t. u(t0) = mint∈[a,b] u(t) < 0. (i) If t0 > a, hence, there exists an interval [t1, t0] ⊆ [a, t0] such that
u(t) < 0 for all t ∈ [t1, t0]. Then, u(t0) − u(t1) =t1 I

α
(
u(α)

)
(t0) > 0, which contradicts the fact that

u(t0) = mint∈[a,b] u(t). (ii) If t0 = a, then it contradicts to u(a) > 0.

Case 2: If M 6= 0. Choose σ(t) ∈ C([a,b], R), σ(t) > 0, and u0 > 0, such that u(α)(t) +Mu(t) =
σ(t), u(0) = u0. By Lemma 2.3, the expression of the function u(t) is given by

u(t) = e
−
M

α
tα
(
u0e

M

α
aα

+

∫t
a

sα−1e

M

α
sα

σ(s)ds

)
,

which is nonnegative. The proof is finished.

Lemma 2.6 (Comparison principle). Let x(t),y(t) ∈ Cα([a,b], R) satisfy
x(α)(t) > −Mx(t) +Ny(t), t ∈ [a,b],

y(α)(t) > −My(t) +Nx(t), t ∈ [a,b],
x(a) > 0, y(a) > 0,

(2.4)

where 0 < α 6 1, M, N ∈ R with N > 0, then x(t) > 0, y(t) > 0 for all t ∈ [a,b].

Proof. Let u(t) = x(t) + y(t), then (2.4) is equivalent to the following:{
u(α)(t) > −(M−N)u(t), t ∈ [a,b],
u(a) > 0,

i.e., {
u(α)(t) +Mu(t) > 0, t ∈ [a,b],
u(a) > 0.

By Lemma 2.5, we know that

u(t) > 0, ∀ t ∈ [a,b], i.e., x(t) + y(t) > 0, ∀ t ∈ [a,b]. (2.5)

By (2.5), we have 
x(α)(t) + (M+N)x(t) > 0, t ∈ [a,b],

y(α)(t) + (M+N)y(t) > 0, t ∈ [a,b],
x(a) > 0, y(a) > 0.

By Lemma 2.5, we have x(t) > 0, y(t) > 0 for all t ∈ [a,b]. The proof is completed.



S. Liu, H. Wang, X. Li, H. Li, J. Nonlinear Sci. Appl., 10 (2017), 5082–5089 5086

3. Main results

Now we list the following assumptions.

(H1) Assume that f,g ∈ C([a,b]×R×R, R) and there exist x0(t), y0(t) ∈ Cα([a,b], R) satisfying x0(t) 6
y0(t) for all t ∈ [a,b] such that{

x
(α)
0 (t) 6 f(t, x0(t),y0(t)), x0(a) 6 x

∗
0 ,

y
(α)
0 (t) > g(t,y0(t), x0(t)), y0(a) > y

∗
0 .

(H2) There exist constants M ∈ R and N > 0 such that

f(t, x,y) − f(t, x,y) > −M(x− x) −N(y− y), g(t,y, x) − g(t,y, x) > −M(y− y) −N(x− x),

where x0 6 x 6 x 6 y0, x0 6 y 6 y 6 y0 for all t ∈ [a,b], and

g(t,y, x) − f(t, x,y) > −M(y− x) −N(x− y),

where x0 6 x 6 y 6 y0 for all t ∈ [a,b].

Theorem 3.1. Assume that (H1) and (H2) hold. Then (1.1) has an extremal system of solutions (x∗(t),y∗(t)) ∈
[x0(t),y0(t)]× [x0(t),y0(t)], and there exist monotone iterative sequences {xn}∞n=0, {yn}∞n=0 converging uniformly
to x∗,y∗, respectively, where xn(t),yn(t) ∈ [x0(t),y0(t)], {xn}∞n=0, {yn}∞n=0 are defined by (3.2), (3.3), (3.4), and

x0 6 x1 6 · · · 6 xn 6 · · · 6 x∗ 6 y∗ 6 · · · 6 yn 6 · · · 6 y1 6 y0 .

Proof. Firstly, for all xn,yn ∈ Cα([a,b], R), we consider the linear system:
x
(α)
n+1(t) = f(t, xn(t),yn(t)) +M(xn(t) − xn+1(t)) +N(yn(t) − yn+1(t)), t ∈ [a,b],

y
(α)
n+1(t) = g(t,yn(t), xn(t)) +M(yn(t) − yn+1(t)) +N(xn(t) − xn+1(t)), t ∈ [a,b],

xn+1(a) = x
∗
0 , yn+1(a) = y

∗
0 .

(3.1)

By Lemma 2.4, the linear system (3.1) has a unique system of solutions in Cα([a,b], R)× Cα([a,b], R),
which is defined by

xn+1 =
pn+1 + qn+1

2
, yn+1 =

pn+1 − qn+1

2
, (3.2)

pn+1 = e
−
M+N

α
tα
{(
x∗0 + y

∗
0
)
e

M+N

α
aα

+

∫t
a

sα−1e

M+N

α
sα
[
f
(
s, xn(s),yn(s)

)
+ g

(
s,yn(s), xn(s)

)
+ (M+N)

(
xn(s) + yn(s)

)]
ds

}
,

(3.3)

qn+1 = e
−
M−N

α
tα
{(
x∗0 − y

∗
0
)
e

M−N

α
aα

+

∫t
a

sα−1e

M−N

α
sα
[
f
(
s, xn(s),yn(s)

)
− g

(
s,yn(s), xn(s)

)
+ (M−N)

(
xn(s) − yn(s)

)]
ds

}
.

(3.4)

Secondly, we shall prove that

xn 6 xn+1 6 yn+1 6 yn, n = 0, 1, 2, . . . .
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Let p = x1 − x0, q = y0 − y1. According to (3.1) and (H1), we have{
p(α) >M(x0(t) − x1(t)) +N(y0(t) − y1(t)), p(a) > x∗0 − x

∗
0 = 0,

q(α) > −M(y0(t) − y1(t)) −N(x0(t) − x1(t)), q(a) > y∗0 − y
∗
0 = 0,

i.e., {
p(α) > −Mp+Nq, p(a) > 0,

q(α) > −Mq+Np, q(a) > 0.

Then, by Lemma 2.6, we have p(t) > 0, q(t) > 0, i.e., x1 > x0, y1 6 y0. Let ω = y1 − x1. According to
(3.1) and (H2), we have

ω(α) = y
(α)
1 − x

(α)
1

= g(t,y0(t), x0(t)) +M(y0(t) − y1(t)) +N(x0(t) − x1(t))

− f(t, x0(t),y0(t)) −M(x0(t) − x1(t)) −N(y0(t) − y1(t))

> −M(y1 − x1) +N(y1 − x1) = −(M−N)ω,
ω(a) = y∗0 − x

∗
0 > 0.

By Lemma 2.5, we have ω(t) > 0, i.e., y1(t) > x1(t) for all t ∈ [a,b]. By mathematical induction, we can
prove that

xn 6 xn+1 6 yn+1 6 yn, n = 0, 1, 2, . . . .

Thirdly, the sequences {xn}
∞
n=0, {yn}∞n=0 are monotone and bounded, hence

lim
n→∞ xn = x∗, lim

n→∞yn = y∗,

(x∗,y∗) is an extremal system of solutions to (1.1).
Finally, we prove that (1.1) has at most one extremal system of solutions. Assume that (x,y) ∈ [x0,y0]×

[x0,y0] is the system of solutions to (1.1), then x0 6 x, y 6 y0. For some k ∈N, assume that the following
relation holds

xk(t) 6 x(t), y(t) 6 yk(t), t ∈ [a,b].

Let u(t) = x(t) − xk+1(t), v(t) = yk+1(t) − y(t), we can get{
u(α) > −Mu+Nv, u(a) > 0,

v(α) > −Mv+Nu, v(a) > 0.

By Lemma 2.6, we have u(t) > 0, v(t) > 0, i.e., xk+1(t) 6 x(t), y(t) 6 yk+1(t), t ∈ [a,b]. By the induction
arguments, the following relation holds

xn(t) 6 x(t), y(t) 6 yn(t), n = 0, 1, 2, . . . .

Taking the limit as n → ∞, we get that x∗ 6 x, y 6 y∗. Hence, (x∗,y∗) ∈ [x0,y0]× [x0,y0] is the extremal
system of solutions to (1.1). So the proof is finished.

Remark 3.2. Assume that f, g admit a decomposition of form h = f+ g when u = x+ y in system (1.1), let
u∗0 = x∗0 + y

∗
0 , the special case is {

u(α)(t) = h(t,u(t)), t ∈ [a,b],
u(a) = u∗0 ,

(3.5)

which has been investigated in [6].

Corollary 3.3. When assumptions (H1) and (H2) hold, the special case (3.5) has an extremal solution.
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4. An example

Consider the system of nonlinear conformable fractional differential equations:
x(0.5)(t) =

1
2
(
2 − x(t)

)3
−

√
t

1 + t
y2(t), t ∈ [1, 2],

y(0.5)(t) =
1
2
(
2 − y(t)

)3
−

sin2 t

2
x2(t), t ∈ [1, 2],

x(1) = 0, y(1) = 0.

(4.1)

Choose x0(t) = 0, y0(t) = t, then assumption (H1) holds. The assumption (H2) holds when M = 6, N = 0.
By Theorem 3.1, the system (4.1) has an extremal iterative solutions (x∗,y∗) and there exist monotone
iterative sequences {xn}

∞
n=0, {yn}∞n=0 converging uniformly to x∗,y∗, respectively, moreover

xn+1(t) = e
−12t0.5

∫t
1
s−0.5e12s0.5[1

2
(
2 − xn(s)

)3
−

√
t

1 + t
y2
n(s) + 6xn(s)

]
ds,

yn+1(t) = e
−12t0.5

∫t
1
s−0.5e12s0.5[1

2
(
2 − yn(s)

)3
−

sin2 t

2
x2
n(s) + 6yn(s)

]
ds.
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