On subclass of meromorphic multivalent functions associated with Liu-Srivastava operator

Saqib Hussaina, Jamila Bibia, Mohsan Razab,*, Maslina Darusc

aCOMSATS Institute of Information Technology, Abbottabad, Pakistan.
bDepartment of Mathematics, Government College University Faisalabad, Pakistan.
cSchool of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600, Bangi, Selangor, Malaysia.

Communicated by S.-H. Rim

Abstract

In the present paper, we introduce a new subclass related to meromorphically p-valent reciprocal starlike functions associated with the Liu-Srivastava operator. Some sufficient conditions for functions belonging to this class are derived. The results presented here improve and generalize some known results. ©2017 All rights reserved.

Keywords: Meromorphic functions, convolution, linear operator.
2010 MSC: 30C45, 30C50.

1. Introduction

Let Σ_p denote the class of meromorphic functions of the form

$$f(z) = z^{-p} + \sum_{k=1}^{\infty} a_k z^{k-p}, \quad (p \in \mathbb{N} = \{1, 2, \ldots\}),$$

(1.1)

which are analytic and p-valent in the punctured open unit disc $\mathbb{U}^* = \{z \in \mathbb{C} : 0 < |z| < 1\} = \mathbb{U}\setminus\{0\}$, where \mathbb{U} is the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. In particular, we set $\Sigma_1 = \Sigma$. Let f and g be two analytic functions in the open unit disk \mathbb{U}, we say that the function f is subordinate to g (written as $f \prec g$) if there exists a Schwarz function ω, which is analytic in \mathbb{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$, such that $f(z) = g(\omega(z))$. Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalent relation:

$$f(z) \prec g(z) \iff f(0) = g(0) \quad \text{and} \quad f(\mathbb{U}) \subset g(\mathbb{U}).$$
For some details see [2, 12]; see also [15].

A function $f \in \Sigma_p$ is said to be in class $S_p^\ast(\odot)$ of meromorphically p-valent starlike of order α if and only if
\[
\Re \left(\frac{zf'(z)}{pf(z)} \right) < -\alpha, \quad (0 \leq \alpha < 1).
\]
It is clear that $S_p^\ast(0) = S_p^\ast$, the class of p-valent starlike functions. A function $f \in S_p^\ast$ is said to be in the class $M_p(\odot)$ of meromorphically p-valent starlike of reciprocal order α if and only if
\[
\Re \left(\frac{pf(z)}{zf'(z)} \right) < -\alpha, \quad (0 \leq \alpha < 1).
\]
In particular $M_1(\odot) = M(\odot)$.

Remark 1.1. In view of the fact that
\[
\Re (p(z)) < 0 \implies \Re \left(\frac{1}{p(z)} \right) = \Re \left(\frac{p(z)}{|p(z)|^2} \right) < 0,
\]
it follows that meromorphically p-valent starlike function of reciprocal order 0 is same as a meromorphically p-valent starlike function. When $0 < \alpha < 1$, the function $f \in \Sigma_p$ is meromorphically p-valent starlike of reciprocal order α if and only if
\[
\left| \frac{zf'(z)}{pf(z)} + \frac{1}{2\alpha} \right| < \frac{1}{2\alpha}.
\]
For $p = 1$, this class was studied by Sun et al. [17]. For arbitrary fixed real numbers A and B ($-1 \leq B < A \leq 1$), we denote by $P(A, B)$ the class of the functions of the form
\[
q(z) = 1 + c_1 z + c_2 z^2 + \cdots,
\]
which is analytic in the unit disk U and satisfies the condition
\[
q(z) \prec \frac{1 + Az}{1 + Bz}, \quad (z \in U).
\]
(1.2)
The class $P(A, B)$ was introduced and studied by Janowski [5]. We also observe from (1.2) (see also [14]) that a function $q(z) \in P(A, B)$ if and only if
\[
\left| q(z) - \frac{1 - AB}{1 - B^2} \right| < \frac{A - B}{1 - B^2}, \quad (B \neq -1),
\]
(1.3)
and
\[
\Re(q(z)) > \frac{1 - A}{2}, \quad (B = -1).
\]
(1.4)
For function $f \in \Sigma_p$ given by (1.1) and $g \in \Sigma_p$ given by
\[
g(z) = z^{-p} + \sum_{k=1}^{\infty} b_k z^{k-p},
\]
the Hadamard product (convolution) of f and g is given by
\[
(f \ast g)(z) = z^{-p} + \sum_{k=1}^{\infty} a_k b_k z^{k-p} = (g \ast f)(z).
\]
For complex parameters α_i and β_j, where $i = 1, 2, \cdots, l$, $j = 1, 2, \cdots, m$ and $\beta_j \notin \mathbb{Z}_0^+ = \{0, -1, -2, \cdots\}$, the generalized hypergeometric function $_{1}F_m$ is defined by
\[
_{1}F_m(\alpha_1, \ldots, \alpha_l; \beta_1, \ldots, \beta_m)(z) = \sum_{k=0}^{\infty} \frac{(\alpha_1)_k \cdots (\alpha_l)_k}{k!(\beta_1)_k \cdots (\beta_m)_k} z^k,
\]
where $l \leq m + 1$, $l, m \in \mathbb{N}_0 = \{0, 1, 2, \cdots\}$ and $(\lambda)_n$ is pochhammer symbol (or shifted factorial) defined
in terms of Gamma function by
\[
(\lambda)_n = \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} = \begin{cases}
1, & n = 0, \\
\lambda(\lambda + 1)\cdots(\lambda + n - 1), & n \in \mathbb{N}.
\end{cases}
\]

Now consider the function
\[
h_p(\alpha_1, \ldots, \alpha_l; \beta_1, \ldots, \beta_m; z) = z^{-p}F_m(\alpha_1, \ldots, \alpha_l; \beta_1, \ldots, \beta_m)(z),
\]
then the Liu-Srivastava linear operator [8, 9] \(H_p(\alpha_1, \ldots, \alpha_l; \beta_1, \ldots, \beta_m) : \Sigma_p \rightarrow \Sigma_p\) is defined by using the Hadamard product (or convolution) as
\[
H_p(\alpha_1, \ldots, \alpha_l; \beta_1, \ldots, \beta_m)f(z) = h_p(\alpha_1, \ldots, \alpha_l; \beta_1, \ldots, \beta_m)f(z) = z^{-p} + \sum_{k=1}^{\infty} \frac{(\alpha_1)_k \cdots (\alpha_l)_k}{(\beta_1)_k \cdots (\beta_m)_k} \alpha_k z^{-k-p}. \tag{1.5}
\]

For convenience, we denote \(H_p(\alpha_1, \ldots, \alpha_l; \beta_1, \ldots, \beta_m) \approx H_{p, l, m}[\alpha_1]\).

The Liu-Srivastava operator is studied in [1, 13, 16], is the meromorphic analogue of the Dziok-Srivastava [3] linear operator. Special cases of the Liu-Srivastava linear operator include the meromorphic analogue of the Carlson-Shaffer linear operator \(L\), Liu [6] and Yang [20]. The analogous to the Ruscheweyh derivative operator \(D_n^+ = L_p(n, p, 1)\) was investigated by Yang [19]. The operator
\[
J_{c,p} = \frac{c}{z^{c+p}} \int_0^z t^{c+p-1} f(t) \, dt = L_p(c, c+1), \quad (c > 0),
\]
was studied by Uraleegaddi and Somanatha [18].

By using operator \(H_{p, l, m}[\alpha_1]\), we introduce the following new class.

Definition 1.2. A function \(f \in \Sigma_p\) is said to be in the class \(M(\alpha_1)(p; \beta; \lambda; A_1, B)\), if it satisfies the subordination

\[
\frac{p}{1-p\beta} \left\{ \frac{1-\lambda}{z} H_{p, l, m}[\alpha_1] f(z) + \lambda z \left[H_{p, l, m}[\alpha_1] f(z)\right]' + \beta \right\} < \frac{1+A_1z}{1+Bz},
\]

where \(A_1 = (1-\alpha)A + \alpha B, 0 \leq \alpha < 1, 0 \leq \lambda \leq 1, -1 \leq B < A \leq 1, 0 \leq p \beta < 1\) and \(H_{p, l, m}[\alpha_1]\) is defined in (1.5).

Remark 1.3. Using (1.3), (1.4) and for \(B \neq -1\), the Definition 1.2 is equivalent to

\[
\left| \frac{p}{1-p\beta} \left\{ \frac{H_{p, l, m}[\alpha_1] F_\lambda(z)}{z[H_{p, l, m}[\alpha_1] F_\lambda(z)]'} + \beta \right\} \right| < \frac{A_1 - B}{1 - B^2}, \tag{1.6}
\]

and for \(B = -1\),

\[
\Re \left\{ \frac{p}{1-p\beta} \left\{ \frac{H_{p, l, m}[\alpha_1] F_\lambda(z)}{z[H_{p, l, m}[\alpha_1] F_\lambda(z)]'} + \beta \right\} \right\} < -\frac{A_1}{2}, \tag{1.7}
\]

also, for \(B = -1, A_1 \neq 1\), (1.7) reduces to

\[
\left| \frac{1-p\beta}{p} z[H_{p, l, m}[\alpha_1] F_\lambda(z)]' + \frac{1}{1-A_1} \right| < \frac{1}{1-A_1}, \tag{1.8}
\]

and for \(B = -1, A_1 = 1\), we obtain

\[
\left| \frac{p}{1-p\beta} \left(\frac{H_{p, l, m}[\alpha_1] F_\lambda(z)}{z[H_{p, l, m}[\alpha_1] F_\lambda(z)]'} + \beta \right) + 1 \right| < 1, \tag{1.9}
\]

where

\[
F_\lambda(z) = (1-\lambda)f(z) + \lambda z f'(z).
\]
By assigning particular values to parameters the class \(M_{[\alpha]} (p; \alpha; \beta; \lambda; A, B) \) generalizes many previously known classes of meromorphic functions.

(i) For \(\lambda = 0, \alpha = 0, 1 = 2, m = 1, \alpha_1 = a, \alpha_2 = 1, \beta_1 = c \), the class \(M_{[\alpha]} (p; \beta; \lambda; A_1, B) \) coincides with the class studied in [10].

(ii) For \(p = 1, A = 1 - 2 \gamma, 0 < \gamma < 1, \beta = 0, B = -1, a = c = 1 \), the class \(M_{[\alpha]} (p; \beta; \lambda; A_1, B) \) coincides with the class studied in [17].

2. Preliminaries

We need the following lemmas for our future investigation.

Lemma 2.1 (Jack’s lemma [4]). Let the (non constant) function \(\omega (z) \) be analytic in \(U \), with \(\omega (0) = 0 \). If \(|\omega (z)| \) attains its maximum value on the circle \(|z| = r < 1 \) at a point \(z_0 \in U \), then \(z_0 \omega' (z_0) = \gamma \omega (z_0) \), where \(\gamma \) is real number and \(\gamma \geq 1 \).

Lemma 2.2 ([11]). Let \(\Omega \) be a set in the complex plane \(C \) and suppose that \(\phi \) is a complex mapping from \(C^2 \times U \) to \(C \) which satisfies \(\phi (ix, y; z) \notin \Omega \) for \(z \in U \), and for all real \(x, y \) such that \(y \leq -\frac{1 + x^2}{2} \). If the function \(p (z) = 1 + c_1 z + c_2 z^2 + \cdots \) is analytic in \(U \) and \(\phi (p(z), z p'(z); z) \in \Omega \) for all \(z \in U \), then \(\Re (p(z)) > 0 \).

Lemma 2.3 ([20]). Let \(p (z) = 1 + b_1 z + b_2 z^2 + \cdots \), be analytic in \(U \) and \(\eta \) be analytic and starlike (with respect to the origin) univalent in \(U \) with \(\eta (0) = 0 \). If \(z p' (z) < \eta (z) \) then

\[
p (z) < 1 + \int_{0}^{z} \frac{\eta (t)}{t} \, dt.
\]

Unless otherwise mentioned, we shall assume that \(0 \leq \alpha < 1, 0 \leq \lambda \leq 1, -1 \leq B < A \leq 1, 0 \leq p \beta < 1 \) and \(p \in \mathbb{N} \).

3. Main results

Theorem 3.1. Let \(f \in \Sigma_p \). Then \(f \in M_{[\alpha]} (p; \alpha; \beta; \lambda; A, B) \) if and only if

\[
\frac{p}{1 - p \beta} \left\{ \frac{\mathcal{H}_{p, l, m} [\alpha] F_\lambda (z)}{z (\mathcal{H}_{p, l, m} [\alpha] F_\lambda (z))'} + \beta \right\} < \frac{-1 + A_1 z}{1 + B z}. \tag{3.1}
\]

Proof. If \(f \in M_{[\alpha]} (p; \alpha; \beta; \lambda; A, B) \), then

\[
\frac{p}{1 - p \beta} \left\{ \frac{(1 - \lambda) \mathcal{H}_{p, l, m} [\alpha] f (z) + \lambda z \mathcal{H}_{p, l, m} [\alpha] f (z)'}{z (\mathcal{H}_{p, l, m} [\alpha] f (z))'} + \beta \right\} < \frac{-1 + A_1 z}{1 + B z}. \tag{3.2}
\]

Let

\[
F_\lambda (z) = (1 - \lambda) f (z) + \lambda z f' (z),
\]

so

\[
\mathcal{H}_{p, l, m} [\alpha] F_\lambda (z) = (1 - \lambda) \mathcal{H}_{p, l, m} [\alpha] f (z) + \lambda z \mathcal{H}_{p, l, m} [\alpha] f' (z). \tag{3.3}
\]

Using (3.2), (3.3) and after some simplifications we have

\[
\frac{p}{1 - p \beta} \left\{ \frac{\mathcal{H}_{p, l, m} [\alpha] F_\lambda (z)}{z (\mathcal{H}_{p, l, m} [\alpha] F_\lambda (z))'} + \beta \right\} < \frac{-1 + A_1 z}{1 + B z},
\]

the converse is straight forward. \(\square \)
Theorem 3.2. If \(f \in \Sigma_p \) satisfies anyone of the following conditions

(i) for \(B \neq -1 \)
\[
\sum_{k=1}^{\infty} \left(\frac{|(k-p)\lambda_1|+\left|\frac{k\lambda_1}{1-p\beta}\right|}{(1-p\beta)(|A_1|-B)} \right) |\Gamma_k(\alpha_1)||a_k| \leq p|1-\lambda-p||1-|B||. \tag{3.4}
\]

(ii) for \(B = -1, \ A_1 \neq 1 \)
\[
\sum_{k=1}^{\infty} \left(\frac{|(1+(k-p)\beta)\lambda_1+(1-A_1)(1-p\beta)(k-p)\lambda_1|}{1-p\beta} \right) |\Gamma_k(\alpha_1)||a_k| \leq (1-p\beta)|1-A_1||1-\lambda+p|; \tag{3.5}
\]

(iii) for \(B = -1, \ A_1 = 1 \)
\[
\sum_{k=1}^{\infty} \left(\frac{|(k-p)\lambda_1|+\left|\frac{k\lambda_1}{1-p\beta}\right|}{(1-p\beta)} \right) |\Gamma_k(\alpha_1)||a_k| < p|\lambda_1|, \tag{3.6}
\]

then \(f \in M(\alpha_1)(p; \alpha; \beta; \lambda; A, B) \), where \(\lambda_1 = 1+\lambda(k-p-1) \) with \(\Gamma_k(\alpha_1) = \frac{\alpha_1 \cdots \alpha_k}{\Gamma(1-p\beta)_k \cdots \Gamma_m(1-p\beta)} \).

Proof. (i): If \(B \neq -1 \), by the condition (1.6) we only need to show that
\[
\left| \frac{p(1-B^2)}{(1-p\beta)(A_1-B)} \left\{ \frac{\mathcal{J}(p, \lambda_m, \alpha_1) F_{\lambda}(z)}{z[\mathcal{J}(p, \lambda_m, \alpha_1) F_{\lambda}(z)]'} + \frac{1-A_1B}{A_1-B} \right\} \right| < 1.
\]

We first observe the
\[
\left| \frac{p(1-B^2)}{(1-p\beta)(A_1-B)} \left\{ \frac{\mathcal{J}(p, \lambda_m, \alpha_1) F_{\lambda}(z)}{z[\mathcal{J}(p, \lambda_m, \alpha_1) F_{\lambda}(z)]'} + \frac{1-A_1B}{A_1-B} \right\} \right| = \left| \frac{pB(1-\lambda-p) + \sum_{k=1}^{\infty} \frac{p(1-B^2)[(1+(k-p)\beta)\lambda_1+(1-A_1)(1-p\beta)(k-p)\lambda_1]}{(1-p\beta)(|A_1|-B)} \Gamma_k(\alpha_1) a_k z^k}{-p(1-\lambda-p) + \sum_{k=1}^{\infty} \frac{p(1-B^2)[(1+(k-p)\beta)\lambda_1+(1-A_1)(1-p\beta)(k-p)\lambda_1]}{(1-p\beta)(|A_1|-B)} \Gamma_k(\alpha_1) a_k z^k} \right|
\]
\[
\leq \frac{p|B(1-\lambda-p)| + \sum_{k=1}^{\infty} \frac{|p(1-B^2)[(1+(k-p)\beta)\lambda_1+(1-A_1)(1-p\beta)(k-p)\lambda_1]|}{(1-p\beta)(|A_1|-B)} |\Gamma_k(\alpha_1)||a_k||z|^k}{p|1-\lambda-p| - \sum_{k=1}^{\infty} \frac{|(k-p)\lambda_1||\Gamma_k(\alpha_1)||a_k|}{|1-\lambda-p| - \sum_{k=1}^{\infty} |(k-p)\lambda_1||\Gamma_k(\alpha_1)||a_k|}}.
\tag{3.7}
\]

Now, by using the inequality (3.4), we have
\[
\frac{p|B(1-\lambda-p)| + \sum_{k=1}^{\infty} \frac{|p(1-B^2)[(1+(k-p)\beta)\lambda_1+(1-A_1)(1-p\beta)(k-p)\lambda_1]|}{(1-p\beta)(|A_1|-B)} |\Gamma_k(\alpha_1)||a_k|}{p|1-\lambda-p| - \sum_{k=1}^{\infty} |(k-p)\lambda_1||\Gamma_k(\alpha_1)||a_k|} < 1,
\]

which, in conjunction with (3.7), completes the proof of (i) for Theorem 3.2.
(ii): If $B = -1, A_1 \neq 1$, by the virtue of the condition (1.8), we only need to show that
\[
\left| \frac{(1 - A_1)(1 - p\beta)}{p} \left(\frac{z(\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z))'}{\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z) + \beta z(\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z))'} + 1 \right) \right| < 1.
\]
We first observe that
\[
\left| \frac{(1 - A_1)(1 - p\beta)}{p} \left(\frac{z(\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z))'}{\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z) + \beta z(\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z))'} + 1 \right) \right| = \left| A_1 (1 - p\beta)(1 - \lambda - \lambda p) + \sum_{k=1}^{\infty} \left((1 + (k - p) \beta) \lambda_1 + \frac{(1 - A_1)(1 - p\beta)(k-p)\lambda_1}{p} \right) \Gamma_k(\alpha_1) a_k z^k \right| \leq \frac{(1 - p\beta)(1 - \lambda - \lambda p) + \sum_{k=1}^{\infty} |(1 + (k - p) \beta) \lambda_1| |\Gamma_k(\alpha_1)||a_k||z^k|}{(1 - p\beta)(1 - \lambda - \lambda p) - \sum_{k=1}^{\infty} |(1 + (k - p) \beta) \lambda_1| |\Gamma_k(\alpha_1)||a_k||z^k|} |A_1||1 - \lambda - \lambda p| (1 - p\beta) + \sum_{k=1}^{\infty} \left((1 + (k - p) \beta) \lambda_1 + \frac{(1 - A_1)(1 - p\beta)(k-p)\lambda_1}{p} \right) \Gamma_k(\alpha_1)||a_k| \left| A_1||1 - \lambda - \lambda p| (1 - p\beta) + \sum_{k=1}^{\infty} \left((1 + (k - p) \beta) \lambda_1 + \frac{(1 - A_1)(1 - p\beta)(k-p)\lambda_1}{p} \right) \Gamma_k(\alpha_1)||a_k| \left| A_1||1 - \lambda - \lambda p| (1 - p\beta) + \sum_{k=1}^{\infty} \left((1 + (k - p) \beta) \lambda_1 + \frac{(1 - A_1)(1 - p\beta)(k-p)\lambda_1}{p} \right) \Gamma_k(\alpha_1)||a_k| \end{equation}

By using the inequality (3.5), we have
\[
\frac{p}{1 - p\beta} \left(\frac{\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z)}{z(\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z))'} + \beta \right) + 1 \right| < 1,
\]
which, in conjunction with (3.8), completes the proof of (ii) for Theorem 3.2.

(iii): If $B = 1, A_1 = 1$, by virtue of the condition (1.9), we only need to show that
\[
\left| \frac{p}{1 - p\beta} \left(\frac{\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z)}{z(\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z))'} + \beta \right) + 1 \right| < 1, \quad (z \in \mathbb{U}).
\]
We first observe that
\[
\left| \frac{p}{1 - p\beta} \left(\frac{\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z)}{z(\mathcal{H}_{p,1,m} [\alpha_1] F_{\lambda}(z))'} + \beta \right) + 1 \right| = \left| \sum_{k=1}^{\infty} \frac{k\lambda_1}{1 - p\beta} \Gamma_k(\alpha_1) a_k z^k \right| \leq \frac{\sum_{k=1}^{\infty} k\lambda_1 |\Gamma_k(\alpha_1)||a_k||z^k|}{p |1 - \lambda - \lambda p| - \sum_{k=1}^{\infty} |(k - p) \lambda_1| |\Gamma_k(\alpha_1)||a_k||z^k|} \leq \frac{\sum_{k=1}^{\infty} k\lambda_1 |\Gamma_k(\alpha_1)||a_k|}{p |1 - \lambda - \lambda p| - \sum_{k=1}^{\infty} |(k - p) \lambda_1| |\Gamma_k(\alpha_1)||a_k|} \end{equation}

Now, by using the inequality (3.6), we have
\[
\frac{\sum_{k=1}^{\infty} k\lambda_1 |\Gamma_k(\alpha_1)||a_k|}{p |1 - \lambda - \lambda p| - \sum_{k=1}^{\infty} |(k - p) \lambda_1| |\Gamma_k(\alpha_1)||a_k|} < 1,
\]
which, in conjunction with (3.9), completes the proof of (iii), for Theorem 3.2.

\[\square \]

Theorem 3.3. If \(f \in \Sigma_p \) satisfies anyone of the following conditions:

(i) for \(B \neq -1 \),

\[
\left| L_{p,l,m}^{\alpha_i} (F(z)) \right| < \frac{(1-p\beta) (A_1 - B)}{(1-p\beta) (A_1 - B) + (1+|B|)};
\]

(ii) for \(B = -1 \), \(-1 < A_1 \leq 0\)

\[
\left| L_{p,l,m}^{\alpha_i} (F(z)) \right| < \frac{(1-p\beta) (1-A_1) (1+A_1)}{2p\beta (1+A_1) + 2 (1-A_1)};
\]

(iii) for \(B = -1 \), \(A_1 = 1 \)

\[
\left| L_{p,l,m}^{\alpha_i} (F(z)) \right| < \frac{1-p\beta}{2-p\beta},
\]

then \(f \in \mathcal{M}_{[\alpha_i]} p; \alpha; \beta; \lambda; A, B \), where

\[
L_{p,l,m}^{\alpha_i} (F(z)) = 1 + \frac{z F'(z)}{z F''(z)} - \frac{z F'(z)}{z F''(z)} - 1, \quad (z \in \mathbb{U}),
\]

Proof. (i) If \(B \neq -1 \), let

\[
\omega(z) = \frac{1 + \frac{1+|B|}{1+|B|+A_1-B} \cdot \frac{p}{1-p\beta} \left(\frac{H_{p,l,m}^{[\alpha_i]} F(z)}{z H_{p,l,m}^{[\alpha_i]} F(z)} + \beta \right)}{1 - \frac{1+|B|}{1+|B|+A_1-B} - 1}, \quad (z \in \mathbb{U}),
\]

then the function \(\omega(z) \) is analytic in \(\mathbb{U} \) with \(\omega(0) = 0 \). Using (3.11) and after some simplifications, we obtain

\[
\frac{p H_{p,l,m}^{[\alpha_i]} F(z)}{z H_{p,l,m}^{[\alpha_i]} F(z)} = \frac{(1-p\beta) (A_1 - B) \omega(z) - (1+|B|)}{1+|B|}.
\]

Differentiating both sides of (3.12), logarithmically we get

\[
L_{p,l,m}^{\alpha_i} (F(z)) = \frac{(1-p\beta) (A_1 - B) z \omega'(z)}{(1-p\beta) (A_1 - B) \omega(z) - (1+|B|)}.
\]

By virtue of (3.10) and (3.13), we find that

\[
\left| L_{p,l,m}^{\alpha_i} (F(z)) \right| = (1-p\beta) (A_1 - B) \left| \frac{z \omega'(z)}{(1-p\beta) (A_1 - B) \omega(z) - (1+|B|)} \right|,
\]

and

\[
\left| L_{p,l,m}^{\alpha_i} (F(z)) \right| < \frac{(1-p\beta) (A_1 - B)}{(1-p\beta) (A_1 - B) + (1+|B|)}.
\]

Next, we claim that \(|\omega(z)| < 1 \). Indeed, if not, there exists a point \(z_0 \in \mathbb{U} \) such that

\[
\max_{|z| \leq |z_0|} |\omega(z)| = |\omega(z_0)| = 1, \quad (z_0 \in \mathbb{U}).
\]

Applying Lemma 2.1 to \(\omega(z) \) at the point \(z_0 \), we have

\[
z_0 \omega'(z_0) = \gamma \omega(z_0), \quad (\gamma \geq 1).
\]
By writing
\[\omega (z_0) = e^{i\theta}, \quad (0 \leq \theta \leq 2\pi), \]
and setting \(z = z_0 \) in (3.13), we get
\[|L_{p,l,m}^{\alpha_i} (F(z_0))| = (1 - p\beta) (A_1 - B) \left| \frac{\gamma}{(1 - p\beta) (A_1 - B) - (1 + |B|) e^{-i\theta}} \right|, \]
which implies
\[|L_{p,l,m}^{\alpha_i} (F(z_0))| \geq (1 - p\beta) (A_1 - B) \left| \frac{1}{(1 - p\beta) (A_1 - B) - (1 + |B|) e^{-i\theta}} \right|. \]
This implies that
\[\left| L_{p,l,m}^{\alpha_i} (F(z)) \right|^2 \geq \frac{[(1 - p\beta) (A_1 - B)]^2}{[(1 - p\beta) (A_1 - B)]^2 + (1 + |B|)^2 - 2 (1 - p\beta) (A_1 - B) (1 + |B|) \cos \theta}. \quad (3.14) \]
Since the right hand side of (3.14) takes its minimum value for \(\cos \theta = -1 \), we have
\[\left| L_{p,l,m}^{\alpha_i} (F(z_0)) \right|^2 \geq \frac{[(1 - p\beta) (A_1 - B)]^2}{[(1 - p\beta) (A_1 - B) + (1 + |B|)]^2}. \]
This implies that
\[\left| \frac{p}{1 - p\beta} \left(\frac{\mathcal{K}_{p,l,m}^{\alpha_i} \{ \alpha_1 \} F\lambda (z)}{z(\mathcal{K}_{p,l,m}^{\alpha_i} \{ \alpha_1 \} F\lambda (z))^r} + \beta \right) + 1 \right| < \frac{A_1 - B}{1 + |B|}, \]
then, we have
\[\left| \frac{p}{1 - p\beta} \left(\frac{\mathcal{K}_{p,l,m}^{\alpha_i} \{ \alpha_1 \} F\lambda (z)}{z(\mathcal{K}_{p,l,m}^{\alpha_i} \{ \alpha_1 \} F\lambda (z))^r} + \beta \right) + 1 \right| < \frac{A_1 - B}{1 + |B|} + \frac{|B| (A_1 - B)}{1 - B^2} = \frac{A_1 - B}{1 - B^2}, \quad (B \neq -1). \]
Therefore, we conclude that \(f(z) \in M_{(\alpha_1)} (p; \alpha; \beta; \lambda; A, B) \) for \(B \neq -1 \).

Using similar arguments as in proof of (i), (ii) and (iii) can be easily verified. \(\square \)

Theorem 3.4. If \(f \in \Sigma_p \) satisfies
\[\Re \left(L_{p,l,m}^{\alpha_i} (F(z)) \right) < \left\{ \begin{array}{ll} \frac{\beta_2}{2(1 - p\beta)(A_1 - B)^2} & , \quad B + \frac{1 - B}{2(1 - p\beta)} \leq A_1 \leq 1, \\ \frac{1 - B}{2(1 - p\beta)} & , \quad B < A_1 < B + \frac{1 - B}{2(1 - p\beta)}, \end{array} \right. \quad (3.15) \]
then \(f(z) \in M_{(\alpha_1)} (p; \alpha; \beta; \lambda; A, B) \), where \(\beta_2 = (1 - A_1) + p\beta (A_1 - B) \).

Proof. Let
\[g(z) = \frac{-p}{1 - p\beta} \left(\frac{\mathcal{K}_{p,l,m}^{\alpha_i} \{ \alpha_1 \} F\lambda (z)}{z(\mathcal{K}_{p,l,m}^{\alpha_i} \{ \alpha_1 \} F\lambda (z))^r} + \beta \right) - \frac{1 - A_1}{1 - B}. \quad (3.16) \]
Then \(g \) is analytic in \(\mathbb{U} \). Using (3.16), we have
\[\frac{-p\mathcal{K}_{p,l,m}^{\alpha_i} \{ \alpha_1 \} F\lambda (z)}{z(\mathcal{K}_{p,l,m}^{\alpha_i} \{ \alpha_1 \} F\lambda (z))^r} = \frac{(1 - p\beta) (A_1 - B) g(z) + \beta_2}{1 - B} = \frac{\beta_2}{1 - B}. \quad (3.17) \]
Differentiating (3.17) logarithmically, we obtain

\[-L_{p,l,m}^{\alpha_1} (F(z)) = \frac{(1 - p\beta) (A_1 - B) zg'(z)}{(1 - p\beta) (A_1 - B) g(z) + \beta_2} = \langle g(z), zg'(z); z \rangle,
\]

where

\[\langle r, s; t \rangle = \frac{(1 - p\beta) (A_1 - B) s}{(1 - p\beta) (A_1 - B) r + \beta_2}.
\]

For all real \(x\) and \(y\) satisfying \(y \leq \frac{-1 + x^2}{2}\), we have

\[\Re \left(\langle ix, y; z \rangle \right) = \frac{(1 - p\beta) (A_1 - B) \beta_2 y}{(\beta_2)^2 + [(1 - p\beta) (A_1 - B)]^2 x^2} \leq -\frac{1 + x^2}{2} \frac{(1 - p\beta) (A_1 - B) \beta_2}{(\beta_2)^2 + [(1 - p\beta) (A_1 - B)]^2 x^2} \leq \left\{ \begin{array}{l}
\frac{\beta_2}{2(1 - p\beta)(A_1 - B)}, \quad B + \frac{1 - B}{2(1 - p\beta)} \leq A_1 \leq 1, \\
\frac{\beta_2}{2(1 - p\beta)(A_1 - B)}, \quad B < A_1 \leq B + \frac{1 - B}{2(1 - p\beta)}.
\end{array} \right.
\]

We know put

\[\Omega = \left\{ \xi : \Re(\xi) > \left\{ \begin{array}{l}
\frac{\beta_2}{2(1 - p\beta)(A_1 - B)}, \quad B + \frac{1 - B}{2(1 - p\beta)} \leq A_1 \leq 1, \\
\frac{\beta_2}{2(1 - p\beta)(A_1 - B)}, \quad B < A_1 \leq B + \frac{1 - B}{2(1 - p\beta)}.
\end{array} \right. \}
\]

then \(\langle ix, y; z \rangle \notin \Omega\) for all real \(x, y\) such that \(y \leq \frac{-1 + x^2}{2}\). Moreover, in view of (3.15), we know that

\[\langle g(z), zg'(z); z \rangle \in \Omega. \]

Thus by Lemma 2.2 we deduce that

\[\Re \left(\langle g(z) \rangle \right) > 0, \quad (z \in \mathbb{U}),\]

which shows that the desired assertion of Theorem 3.4 holds.

\[\Box\]

Theorem 3.5. If \(f \in \Sigma_p\) satisfies

\[\Re \left\{ \frac{pJ_{p,l,m}(\alpha_1) F_{\lambda}(z)}{z(\mathcal{H}_{p,l,m}(\alpha_1) F_{\lambda}(z))'} \left(1 + \eta \frac{z(\mathcal{H}_{p,l,m}(\alpha_1) F_{\lambda}(z))''}{z(\mathcal{H}_{p,l,m}(\alpha_1) F_{\lambda}(z))'} \right) \right\} > \frac{1}{2} \delta_1 \eta + p\eta - (1 - \eta) \frac{\beta_2}{1 - B},\]

then \(f \in \mathcal{M}_{\langle \alpha_1 \rangle}(\rho; \alpha; \beta; \lambda; A, B)\) for \(\eta \geq 0\), where \(\delta_1 = (1 - p\beta) \left(\frac{A_1 - B}{1 - B} \right)\).

Proof. Let

\[h(z) = \frac{-p}{1 - p\beta} \left\{ \frac{J_{p,l,m}(\alpha_1) F_{\lambda}(z)}{z(\mathcal{H}_{p,l,m}(\alpha_1) F_{\lambda}(z))'} + \frac{1 - A_1}{1 - B} \right\}.
\]

Then \(h\) is analytic in \(\mathbb{U}\). It follows from (3.18) that

\[-pJ_{p,l,m}(\alpha_1) F_{\lambda}(z) \frac{1 - p\beta}{z(\mathcal{H}_{p,l,m}(\alpha_1) F_{\lambda}(z))'} = (1 - p\beta) \left(A_1 - B \right) h(z) + \beta_2,
\]

and

\[1 + \eta \frac{z(\mathcal{H}_{p,l,m}(\alpha_1) F_{\lambda}(z))''}{z(\mathcal{H}_{p,l,m}(\alpha_1) F_{\lambda}(z))'} = \frac{P + Qh(z) + Rzh'(z)}{(1 - p\beta) \left(A_1 - B \right) h(z) + \beta_2},
\]

where

\[P = -p\eta \left(1 - B \right) + (1 - \eta) \left[(1 - A_1) + p\beta \left(A_1 - B \right) \right],\]
Then, combining (3.19) and (3.20), we get

$$Q = (1 - p\beta) (A_1 - B) (1 - \eta), \quad R = -(1 - p\beta) (A_1 - B) \eta,$$

where

$$z(\mathcal{J}_{p,l,m}[\alpha_1] F_{\lambda}(z))' = -p\eta + (1 - \eta) \frac{\beta_2}{(1 - B)} + \delta_1 (1 - \eta) h(z) - \delta_1 \eta z h'(z) = \phi(h(z), z h'(z); z),$$

Rest of the proof follows by working in similar way as in Theorem 3.4.

Theorem 3.6. If $f \in \Sigma_p$ satisfies anyone of the following conditions:

(i) for $B \neq -1$,

$$\left| \left\{ \frac{p}{1 - B^2} \left(\frac{\mathcal{J}_{p,l,m}[\alpha_1] F_{\lambda}(z)}{z(\mathcal{J}_{p,l,m}[\alpha_1] F_{\lambda}(z))'} + \beta + 1 - A_1 B \right) \right\}' \right| \leq \eta |z|^\tau;$$

(ii) for $B = -1$, $A_1 \neq 1$,

$$\left| \left\{ \frac{p}{1 - \beta} \left(\frac{z(\mathcal{J}_{p,l,m}[\alpha_1] F_{\lambda}(z))'}{\mathcal{J}_{p,l,m}[\alpha_1] F_{\lambda}(z) + \beta z(\mathcal{J}_{p,l,m}[\alpha_1] F_{\lambda}(z))'} \right)' \right\}' \right| \leq \eta |z|^\tau;$$

(iii) for $B = -1$, $A_1 = 1$,

$$\left| \left\{ \frac{p}{1 - \beta} \left(\frac{\mathcal{J}_{p,l,m}[\alpha_1] F_{\lambda}(z)}{z(\mathcal{J}_{p,l,m}[\alpha_1] F_{\lambda}(z))'} + \beta + 1 \right) \right\}' \right| \leq \eta |z|^\tau,$$

then $f \in M_{\{\alpha_1\}} (p; \alpha; \beta; \lambda; A, B)$, for $0 < \eta \leq \tau + 1$ and $\tau \geq 0$.

Proof. (i): If $B \neq -1$, we define the function $\Psi(z)$ by

$$\Psi(z) = z \left\{ \frac{p}{1 - B^2} \left(\frac{\mathcal{J}_{p,l,m}[\alpha_1] F_{\lambda}(z)}{z(\mathcal{J}_{p,l,m}[\alpha_1] F_{\lambda}(z))'} + \beta + 1 - A_1 B \right) \right\}' \leq \eta |z|^\tau;$$

then $\Psi(z)$ is regular in U and $\Psi(0) = 0$. The condition of theorem gives us that

$$\left| \left(\frac{\Psi(z)}{z} \right) '' \right| \leq \eta |z|^\tau.$$

It follows that

$$\left| \left(\frac{\Psi(z)}{z} \right) ' \right| \leq \left(\int_0^z \frac{\Psi(t)}{t} \, dt \right) ' \leq \eta |z|^\tau \, dt \leq \frac{\eta}{\tau + 1} |z|^\tau + 1.$$

This implies that

$$\left| \left(\frac{\Psi(z)}{z} \right) ' \right| \leq \frac{\eta}{\tau + 1} |z|^\tau + 1 < 1, \quad (0 < \eta \leq \tau + 1, \quad \tau \geq 0).$$
Therefore, by the definition of \(\Psi(z) \), we conclude that
\[
\left| \frac{p(1 - B^2)}{(1 - p\beta)(A_1 - B)} \left(\frac{\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)}{z[\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)]'} + \beta \right) + \frac{1 - A_1 B}{A_1 - B} \right| < 1,
\]
which is equivalent to
\[
\left| \frac{p}{(1 - p\beta)} \left(\frac{\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)}{z[\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)]'} + \beta \right) + \frac{1 - A_1 B}{A_1 - B} \right| < \frac{A_1 - B}{1 - B^2}.
\]
Therefore, we conclude that \(f(z) \in \mathcal{M}_{[\alpha]}(p; \alpha; \beta; \lambda; A, B) \).

(ii): If \(B = -1, \ A_1 \neq 1 \), we define the function
\[
\Psi(z) = z \left(1 + \frac{(1 - A_1)(1 - p\beta)}{p} \left(\frac{z[\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)]'}{\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)} + \beta \frac{z[\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)]'}{\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)} \right) \right),
\]
then \(\Psi(z) \) is regular in \(\mathcal{U} \) and \(\Psi(0) = 0 \).

Using similar arguments as in proof of (i) and (ii), condition (iii) can be easily verified. \(\square \)

Theorem 3.7. If \(f \in \Sigma_p \) satisfies
\[
\left| \frac{1 - p\beta z[\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)]'}{\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)} + \beta z[\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)]' \right| \left(1 + \mathcal{M}_{p,l,m}^\alpha(F(z)) \right) \left| < \frac{A_1 - B}{1 - A_1} \right|
\]
then \(f \in \mathcal{M}_{[\alpha]}(p; \alpha; \beta; \lambda; A, B) \), for \(-1 \leq B < A_1 < \frac{1 + B}{2} \), where
\[
\mathcal{M}_{p,l,m}^\alpha(F(z)) = \frac{z[\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)]''}{\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)} - \frac{z \left(\frac{\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)}{z[\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)]'} + \beta \right)}{\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)}. \tag{3.21}
\]

Proof. Let
\[
q(z) = \frac{-p}{1 - p\beta} \left\{ \frac{\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)}{z[\mathcal{H}_{p,l,m}[\alpha_1] F_\lambda(z)]'} + \beta \right\}.
\]
Then \(q(z) \) is analytic in \(\mathcal{U} \). The condition of theorem gives us that
\[
\left| z \left(\frac{1}{q(z)} \right)' \right| < \frac{A_1 - B}{1 - A_1},
\]
that is,
\[
\left| z \left(\frac{1}{q(z)} \right)' \right| < \frac{A_1 - B}{1 - A_1} z. \tag{3.22}
\]
An application of Lemma 2.3 to (3.22) yields
\[
q(z) < \frac{1 - A_1}{1 - A_1 + (A_1 - B)z} = F(z). \tag{3.23}
\]
By noting that
\[
\Re \left(1 + \frac{zF''(z)}{F'(z)} \right) = \Re \left(\frac{1 - A_1 - (A_1 - B)z}{1 - A_1 + (A_1 - B)z} \right) \geq \frac{1 - A_1 - (A_1 - B)}{1 - A_1 + (A_1 - B)} > 0 \left(-1 \leq B < A_1 < \frac{1 + B}{2}\right),
\]
which implies that the region \(F(\mathcal{U}) \) is symmetric with respect to the real axis and \(F \) is convex univalent in...
which is equivalent to

\[
\Re \left\{ \frac{p}{1-p\beta} \left(\frac{\mathcal{H}_{p,1,m}[\alpha_1] F_\lambda(z)}{z(\mathcal{H}_{p,1,m}[\alpha_1] F_\lambda(z))'} + \beta \right) \right\} < -\frac{1 - A_1}{1 - B_1},
\]

(3.24)

Combining (3.21), (3.23) and (3.24), we deduce that for \((-1 \leq B < A_1 < \frac{1+B}{2})\),

\[
\Re \left\{ \frac{p}{1-p\beta} \left(\frac{\mathcal{H}_{p,1,m}[\alpha_1] F_\lambda(z)}{z(\mathcal{H}_{p,1,m}[\alpha_1] F_\lambda(z))'} + \beta \right) \right\} < -\frac{1 - A_1}{1 - B_1},
\]

which is equivalent to

\[
\frac{p}{1-p\beta} \left(\frac{\mathcal{H}_{p,1,m}[\alpha_1] F_\lambda(z)}{z(\mathcal{H}_{p,1,m}[\alpha_1] F_\lambda(z))'} + \beta \right) < \frac{1 + A_1 z}{1 + B z}.
\]

This evidently completes the proof of Theorem 3.7. \(\square\)

Acknowledgment

The work here is supported by MOHE grant: FRGS/1/2016/STG06/UKM/01/1.

References