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Abstract
In this paper, we obtain a general symmetric identity involving the degenerate Euler-tangent mixed-type polynomials and
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1. Introduction

Computing environment would make more and more rapid progress and there has been increasing
interest in solving mathematical problems with the aid of computers. Using software, mathematicians
can explore concepts much more easily than in the past. The ability to create and manipulate figures on
the computer screen enables mathematicians to quickly visualize and produce many problems, examine
properties of the figures, look for patterns, and make conjectures. This capability is especially exciting
because these steps are essential for most mathematicians to truly understand even basic concept. Nu-
merical experiments of Bernoulli polynomials, Euler polynomials, and Genocchi polynomials have been
the subject of extensive study in recent years and much progress has been made both mathematically
and computationally (see [1–6, 8–11]). In [2], Carlitz introduced the degenerate Bernoulli polynomials.
Recently, Qi et al. [6] studied the partially degenerate Bernoull polynomials of the first kind in p-adic
field.

Throughout this paper, we always make use of the following notations: N denotes the set of natural
numbers, Z+ = N ∪ {0}, and C denotes the set of complex numbers. Ryoo [11] defined the degenerate
tangent polynomials Tn,λ(x) for λ 6= 0 by means of the generating function

2
(1 + λt)2/λ + 1

(1 + λt)x/λ =

∞∑
n=0

Tn,λ(x)
tn

n!
. (1.1)
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When x = 0, Tn,λ(0) = Tn,λ are called the degenerate tangent numbers. For more theoretical properties of
the degenerate tangent numbers and polynomials, the readers may refer to [11]. These are polynomials
in x and λ with integer coefficients (see [11]). We recall that the classical Stirling numbers of the first kind
S1(n,k) and S2(n,k) are defined by the relations (see [12])

(x)n =

n∑
k=0

S1(n,k)xk and xn =

n∑
k=0

S2(n,k)(x)k,

respectively. The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =

n−1∏
k=0

(x− λk)

for positive integer n, with the convention (x|λ)0 = 1. We also need the binomial theorem: for a variable
x,

(1 + λt)x/λ =

∞∑
n=0

(x|λ)n
tn

n!
. (1.2)

The tangent numbers Tn are defined by means of the generating function (see, for details, [9]):

∞∑
n=0

Tn
tn

n!
=

2
e2t + 1

, (|t| <
π

2
). (1.3)

The second kind Euler polynomials En(x) are defined by the generating function (see, for details, [8]):(
2et

e2t + 1

)
ext =

∞∑
n=0

En(x)
tn

n!
. (1.4)

We also define the second kind degenerate kind Euler polynomials En,λ(x) by

2(1 + λt)1/λ

(1 + λt)2/λ + 1
(1 + λt)x/λ =

∞∑
n=0

En,λ(x)
tn

n!
.

When x = 0, En,λ(0) = En,λ are called the second kind degenerate Euler numbers.
Using computer, a realistic study for degenerate Euler-tangent mixed type polynomials is very inter-

esting. The outline of this paper is as follows. In Section 2, we define new degenerate Euler-tangent
mixed-type polynomials γn,λ(x). We give some properties of these polynomials γn,λ(x). In Section 3, we
obtain a general symmetric identity involving the degenerate tangent polynomials and sums of general-
ized falling factorials. In Section 4, we observe the structure of the real roots of our polynomials, γn,λ(x),
using numerical investigation. By computer experiments, we demonstrate a remarkably regular structure
of the complex roots of the Euler-tangent mixed type polynomials γn,λ(x).

2. New degenerate Euler-tangent mixed-type polynomials

In this section, we define the degenerate Euler-tangent-type polynomials γn,λ(x). Our main identity
in Section 3 will be derived from the degenerate Euler-tangent mixed-type polynomials. For a variable
t, the degenerate Euler-tangent mixed-type polynomials γn,λ(x) are defined by means of the generating
function:

2((1 + λt)(x+1)/λ + 1)
(1 + λt)2/λ + 1

=

∞∑
n=0

γn,λ(x)
tn

n!
. (2.1)
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When x = 0, γn,λ(0) = γn,λ are called the degenerate Euler-tangent mixed-type numbers. Note that
γn,λ(x) = En,λ(x) + Tn,λ. These are polynomials in x and λ with integer coefficients. From (2.1), (1.3), and
(1.4), we note that∞∑

n=0

lim
λ→0

γn,λ(x)
tn

n!
= lim
λ→0

2((1 + λt)(x+1)/λ + 1)
(1 + λt)2/λ + 1

=

(
2et

e2t + 1

)
ext +

2
e2t + 1

=

∞∑
n=0

(En(x) + Tn)
tn

n!
.

Thus, we get
lim
λ→0

γn,λ(x) = En(x) + Tn, (n > 0).

By (2.1), we get ∞∑
n=0

γn,−λ(−x− 2)
(−t)n

n!
=

2((1 + λt)(x+1)/λ + 1)
(1 + λt)2/λ + 1

(1 + λt)2/λ

=

( ∞∑
n=0

γn,λ(x)
tn

n!

)( ∞∑
n=0

(2|λ)n
tn

n!

)

=

∞∑
n=0

(
n∑
l=0

(
n

l

)
γl,λ(x)(2|λ)n−l

)
tn

n!
.

(2.2)

By comparing of the coefficients t
n

n! on the both sides of (2.2), we have the following theorem.

Theorem 2.1. For n ∈ Z+, we have

γn,−λ(−x− 2) = (−1)n
n∑
l=0

(
n

l

)
γl,λ(x)(2|λ)n−l.

By (2.1) and (1.1), we have∞∑
n=0

(Tn,λ(x+ 1) + Tn,λ)
tn

n!
=

2
(1 + λt)2/λ + 1

(1 + λt)(x+1)/λ +
2

(1 + λt)2/λ + 1

=
2((1 + λt)(x+1)/λ + 1)

(1 + λt)2/λ + 1

=

∞∑
m=0

γm,λ(x)
tm

m!
.

(2.3)

By comparing of the coefficients t
n

n! on the both sides of (2.3), we have the following theorem.

Theorem 2.2. For n ∈ Z+, we have

Tn,λ(x+ 1) + Tn,λ = γn,λ(x).

For n ∈N with n ≡ 1(mod2), we have∞∑
m=0

(Tm,λ(2n) + Tm,λ)
tm

m!
=

2
(1 + λt)2/λ + 1

(1 + λt)(2n)/λ +
2

(1 + λt)2/λ + 1

=
2((1 + λt)(2n)/λ + 1)

(1 + λt)2/λ + 1
=

∞∑
m=0

γm,λ(2n− 1)
tm

m!
.

(2.4)

and

2((1 + λt)(2n)/λ + 1)
(1 + λt)2/λ + 1

= 2
n−1∑
l=0

(−1)l(1 + λt)2l/λ =

∞∑
m=0

(
2
n−1∑
l=0

(−1)l(2l|λ)m

)
tm

m!
. (2.5)

By (2.4) and (2.5), we have the following theorem.
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Theorem 2.3. For n ∈N with n ≡ 1(mod2) and m ∈ Z+, we have

γm,λ(2n− 1) = 2
n−1∑
l=0

(−1)l(2l|λ)m, Tm,λ(2n) + Tm,λ = γm,λ(2n− 1).

From (2.1) and (1.2), we have

∞∑
n=0

γn,λ(x+ y)
tn

n!
=

2((1 + λt)(x+y+1)/λ + 1)
(1 + λt)2/λ + 1

=
2

(1 + λt)2/λ + 1
(1 + λt)(x+1)/λ(1 + λt)y/λ +

2
(1 + λt)2/λ + 1

=

( ∞∑
n=0

En,λ(x)
tn

n!

)( ∞∑
n=0

(y|λ)n
tn

n!

)
+

∞∑
n=0

Tn,λ
tn

n!

=

∞∑
n=0

(
n∑
l=0

(
n

l

)
El,λ(x)(y|λ)n−l + Tn,λ

)
tn

n!
.

(2.6)

Therefore, by (2.6), we have the following theorem.

Theorem 2.4. For n ∈ Z+, we have

γn,λ(x+ y) =

n∑
l=0

(
n

l

)
El,λ(x)(y|λ)n−l + Tn,λ.

By replacing t by
eλt − 1
λ

in (2.1), we obtain

2et

e2t + 1
ext +

2
e2t + 1

=

∞∑
n=0

γn,λ(x)

(
eλt − 1
λ

)n 1
n!

=

∞∑
n=0

γn,λ(x)λ
−n

∞∑
m=n

S2(m,n)λm
tm

m!

=

∞∑
m=0

(
m∑
n=0

γn,λ(x)λ
m−nS2(m,n)

)
tm

m!
.

(2.7)

Thus, by (2.7), (1.4), and (1.1), we have the following theorem.

Theorem 2.5. For n ∈ Z+, we have

Em(x) + Tm =

m∑
n=0

γn,λ(x)λ
m−nS2(m,n).

By replacing t by log(1 + λt)1/λ in (1.1) and (1.4), we have

∞∑
n=0

En(x)
(

log(1 + λt)1/λ
)n 1

n!
+

∞∑
n=0

Tn

(
log(1 + λt)1/λ

)n 1
n!

=
2((1 + λt)(x+1)/λ + 1)

(1 + λt)2/λ + 1
=

∞∑
m=0

γm,λ(x)
tm

m!
,

(2.8)
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and ∞∑
n=0

En(x)
(

log(1 + λt)1/λ
)n 1

n!
+

∞∑
n=0

Tn

(
log(1 + λt)1/λ

)n 1
n!

=

∞∑
m=0

(
m∑
n=0

(En(x) + Tn)λ
m−nS1(m,n)

)
tm

m!
.

(2.9)

Thus, by (2.8) and (2.9), we have the following theorem.

Theorem 2.6. For n ∈ Z+, we have

γm,λ(x) =

m∑
n=0

λm−n(En(x) + Tn)S1(m,n).

3. Symmetric identity for the degenerate tangent polynomials

In this section, we obtain a general symmetric identity involving the degenerate tangent polynomials
and sums of generalized falling factorials. Let w1 and w2 be odd positive integers. We consider the
generating function

F(t, λ) =
4 (1 + λt)

w1w2x
λ

(
(1 + λt)

2w1w2
λ + 1

)
(
(1 + λt)

2w1
λ + 1

)(
(1 + λt)

2w2
λ + 1

) .

We use (1.1) and (2.1) to expand F(t, λ) as

F(t, λ) =
4 (1 + λt)

w1w2x
λ

(
(1 + λt)

2w1w2
λ + 1

)
(
(1 + λt)

2w1
λ + 1

)(
(1 + λt)

2w2
λ + 1

)

=

(
2 (1 + λt)

w1w2x
λ

(1 + λt)
2w1
λ

)2
(
(1 + λt)

2w1w2
λ + 1

)
(1 + λt)

2w2
λ + 1


=

( ∞∑
n=0

Tn,λ/w1(w2x)
(w1t)

n

n!

)( ∞∑
n=0

γn,λ/w2(2w1 − 1)
(w2t)

n

n!

)

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
Tk,λ/w1(w2x)w

k
1 γn−k,λ/w2(2w1 − 1)wn−k2

)
tn

n!
.

(3.1)

We may also expand F(t, λ) as

F(t, λ) =
4 (1 + λt)

w1w2x
λ

(
(1 + λt)

2w1w2
λ + 1

)
(
(1 + λt)

2w2
λ + 1

)(
(1 + λt)

2w1
λ + 1

)
=

( ∞∑
n=0

Tn,λ/w2(w1x)
(w2t)

n

n!

)( ∞∑
n=0

γn,λ/w1(2w2 − 1)
(w1t)

n

n!

)

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
Tk,λ/w2(w1x)w

k
2 γn−k,λ/w1(2w2 − 1)wn−k1

)
tn

n!
.

(3.2)
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By comparing coefficients
tn

n!
in the both sides of (3.1) and (3.2), we have the following theorem.

Theorem 3.1. Let w1 and w2 be odd positive integers. For n ∈ Z+, we have

n∑
k=0

(
n

k

)
wk1w

n−k
2 Tk,w2λ(w2x)γn−k,w1λ(2w1 − 1)

=

n∑
k=0

(
n

k

)
wk2w

n−k
1 Tk,w1λ(w1x)γn−k,w2λ(2w2 − 1).

Letting λ→ 0 in Theorem 3.1 gives the identity

n∑
k=0

(
n

k

)
wk1w

n−k
2 Tk(w2x)

w1−1∑
l=0

(−1)l(2l)n−k =

n∑
k=0

(
n

k

)
wk2w

n−k
1 Tk(w1x)

w2−1∑
l=0

(−1)l(2l)n−k

which was proved by Ryoo ([8, Theorem 3.2]). By Theorem 3.1, we obtain the interesting symmetric
identity for degenerate tangent number in complex field.

Corollary 3.2. Let w1 and w2 be odd positive integers. For n ∈ Z+, we have

n∑
k=0

(
n

k

)
wk1w

n−k
2 Tk,w2λγn−k,w1λ(2w1 − 1) =

n∑
k=0

(
n

k

)
wk2w

n−k
1 Tk,w1λγn−k,w2λ(2w2 − 1).

Letting λ→ 0 in Corollary 3.2 yields the identity

n∑
k=0

(
n

k

)
wk1w

n−k
2 (En−k(2w1 − 1) + Tn−k)Tk =

n∑
k=0

(
n

k

)
wk2w

n−k
1 (En−k(2w2 − 1) + Tn−k)Tk.

Putting w1 = 1 in Theorem 3.1 gives the identity

2Tn,w2λ(w2x) =

n∑
k=0

(
n

k

)
wk2 Tk,λ(x)γn−k,w2λ(2w2 − 1). (3.3)

This may be rewritten as

2Tn,w2λ(w2x) − 2wn2 Tn,λ(x) =

n−1∑
k=0

(
n

k

)
wk2 Tk,λ(x)γn−k,w2λ(2w2 − 1).

By Theorem 2.3 and (3.3), we have the following theorem.

Theorem 3.3. Let w2 be odd positive integer. For n ∈ Z+, we have

Tn,w2λ(w2x) =

n∑
k=0

(
n

k

)
wk2 Tk,λ(x)

w2−1∑
l=0

(−1)l(2l|λ)n−k.

We remark that (3.3) may also be used to give another proof of the distribution relation for degenerate
tangent polynomials ([11, Theorem 5]): we observe that, since (x|λ)n is a homogeneous polynomial in λ
and x of degree n, we have

w−m
2 γm,w2λ(2w2 − 1) = 2

w2−1∑
i=0

(−1)iw−m
2 (2i|w2λ)m = 2

w2−1∑
i=0

(−1)i
(

2i
w2

∣∣λ)
m

.
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Multiplying (3.3) by w−n
2 and applying (2.6) then yields

2w−n
2 Tn,w2λ(w2x) =

n∑
k=0

(
n

k

)
wk−n2 Tk,λ(x)γn−k,w2λ(2w2 − 1)

= 2
n∑
k=0

(
n

k

)
Tk,λ(x)

w2−1∑
i=0

(−1)i
(

2i
w2

∣∣λ)
n−k

= 2
w2−1∑
i=0

(−1)iTn,λ

(
2i
w2

+ x

)
.

Therefore, we have the following theorem.

Theorem 3.4. Let w2 be odd positive integer. For n ∈ Z+, we have

Tn,w2λ(w2x) = w
n
2

w2−1∑
i=0

(−1)iTn,λ

(
2i
w2

+ x

)
.

Letting λ→ 0 in Theorem 3.4 gives the well-known distribution relation for usual tangent polynomials
Tn(x) (cf. [8, Theorem 2.3]).

4. Distribution of zeros of the degenerate Euler-tangent mixed-type polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical
prediction and to discover new interesting pattern of the zeros of the degenerate Euler-tangent mixed-type
polynomials γn,λ(x). By using computer, the degenerate Euler-tangent mixed-type polynomials γn,λ(x)
can be determined explicitly. A few of them are

γ0,λ(x) = 2,
γ1,λ(x) = x− 1,

γ2,λ(x) = x
2 − λx+ λ− 1,

γ3,λ(x) = x
3 − 3λx2 + 2λ2x− 3x− 2λ2 + 3λ+ 2,

γ4,λ(x) = x
4 − 6λx3 + 11λ2x2 − 6x2 − 6λ3x+ 18λx+ 6λ3 − 11λ2 − 12λ+ 5.

We investigate the beautiful zeros of the γn,λ(x) by using a computer. We plot the zeros of the degenerate
Euler-tangent mixed-type polynomials γn,λ(x) for n = 30, λ = 1/10, 1, 2, 3, and x ∈ C (Figure 1).
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Figure 1: Zeros of γn,λ(x).

In Figure 1 (top-left), we choose n = 30 and λ = 1/10. In Figure 1 (top-right), we choose n = 30 and
λ = 1. In Figure 1 (bottom-left), we choose n = 30 and λ = 2. In Figure 1 (bottom-right), we choose n = 30
and λ = 3. Putting λ = 2 in (2.1), the first few are

γ0,2(x) = 2,γ1,2(x) = x− 1,γ2,λ(x) = x
2 − 2x+ 1,γ3,2(x) = x

3 − 36x2 + 5x,

γ4,2(x) = x
4 − 12x3 + 38x2 − 12x− 15.

Stacks of zeros of γn,λ(x) for 1 6 n 6 30 from a 3-D structure are presented in Figure 2. In Figure 2 (left),
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Figure 2: Stacks of zeros of γn,λ(x) for 1 6 n 6 30.

we choose 1 6 n 6 30 and λ = 1/10 . In Figure 2 (middle), we choose 1 6 n 6 30 and λ = 2. In Figure 2
(right), we choose 1 6 n 6 30 and λ = 3. Our numerical results for approximate solutions of real zeros of
γn,λ(x) are displayed in Tables 1 and 2.

Plot of real zeros of γn,λ(x) for 1 6 n 6 30 structure are presented in Figure 3.
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Figure 3: Real zeros of γn,λ(x) for λ = 1/10, 2, 3 and 1 6 n 6 30.
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In Figure 3 (left), we choose 1 6 n 6 30 and λ = 1/10 . In Figure 3 (middle), we choose 1 6 n 6 30
and λ = 2. In Figure 3 (right), we choose 1 6 n 6 30 and λ = 3. We observe a remarkably regular
structure of the complex roots of the degenerate Euler-tangent mixed-type polynomials γn,λ(x). We hope
to verify a remarkably regular structure of the complex roots of the degenerate Euler-tangent mixed-type
polynomials γn,λ(x) (Table 1).

Table 1: Numbers of real and complex zeros of γn,λ(x).
λ = 1/10 λ = 2 λ = 3

degree n real zeros complex zeros real zeros complex zeros real zeros complex zeros
1 1 0 1 0 1 0
2 2 0 2 0 2 0
3 3 0 3 0 3 0
4 4 0 4 0 4 0
5 3 2 5 0 3 2
6 2 4 6 0 4 2
7 3 4 7 0 3 4
8 4 4 8 0 4 4
9 5 4 9 0 3 6

10 2 8 10 0 4 6
11 3 8 11 0 3 8
12 4 8 12 0 4 8

Next, we calculated an approximate solution satisfying γn,λ(x) for x ∈ C. The results are given in
Tables 2 and 3.

Table 2: Approximate solutions of γn,λ(x) = 0, λ = 2, x ∈ R .
degree n x

1 1.0000
2 1.0000, 1.0000
3 0, 1.0000, 5.0000
4 -0.46410, 1.0000, 5.0000, 6.4641
5 -0.70156, 1.0000, 5.0000, 5.7016, 9.0000
6 -0.83095, 1.0000, 5.0000, 5.0000, 9.0000, 10.831
7 -0.90381, 1.0000, 4.4418, 5.0000, 9.0000, 10.462, 13.000

Table 3: Approximate solutions of γn,λ(x) = 0, λ = 3, x ∈ R.
degree n x

1 1.0000
2 1.0000, 2.0000
3 1.0000, 1.0000, 7.0000
4 0.46887, 1.0000, 8.0000, 8.5311
5 0.15248, 1.000, 13.000
6 -0.053737, 1.000, 14.000, 15.054
7 -0.19734, 1.0000 , 19.000

By definition of the degenerate Euler-tangent mixed-type polynomials γn,λ(x), we have the following
theorem (see Tables 1 and 2).
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Theorem 4.1. For n ∈ Z+, we have
γ0,λ(1) = 2, γn,λ(1) = 0.

By numerical computations, we will make a series of the following conjectures.

Conjecture 4.2. Prove that γn,λ(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic complex functions.
However, γn,λ(x), x ∈ C, has not Re(x) = a reflection symmetry for a ∈ R.

Using computers, many more values of n have been checked. It still remains unknown if the conjecture
fails or holds for any value n (see Figures 1, 2, and 3).

Conjecture 4.3. Prove that γn,λ(x) = 0 has n distinct solutions.

We find a counterexample of Conjecture 4.3. Let λ = 2 and n = 6. Then there are six numbers,
xi(1 = 1, 2, 3, 4, 5, 6) such that γ6,2(xi) = 0. That is, we obtain x1 = 1, x2 = 5, x3 = 5, x4 = 9, x5 =
5 −
√

34, x6 = 5 +
√

34. One may also observe that γ2,2(1) = 0 (see Table 2). Let λ = 3 and n = 3. Then
there are three numbers, xi(1 = 1, 2, 3) such that γ3,3(xi) = 0. That is, we obtain x1 = 1, x2 = 1, x3 = 7 (see
Table 3). Hence, Conjecture 4.3 is not true for all n. Letting λ→ 0, note that γ2n+1,λ(x) = 0 has not 2n+ 1
distinct solutions for n ∈ N. Using computers, many more values of n and λ have been checked. It still
remains unknown if the conjecture fails or holds for any value n and λ.

For fixed λ, since n is the degree of the polynomial γn,λ(x), the number of real zeros Rγn,λ(x) lying on
the real plane Im(x) = 0 is then Rγn,λ(x) = n−Cγn,λ(x), where Cγn,λ(x) denotes complex zeros. See Table
1 for tabulated values of Rγn,λ(x) and Cγn,λ(x).

Conjecture 4.4. Let λ = 2. Prove that the numbers of complex zeros Cγn,λ(x) of γn,λ(x), Im(x) 6= 0 are Cγn,λ(x) =
0.

Conjecture 4.5. Putting λ = 3, prove that the numbers of complex zeros Cγn,λ(x) of γn,λ(x), Im(x) 6= 0 are

Cγn,λ(x) = 2
[
n− 3

2

]
, for n > 3,

where [·] denotes taking the integer part.

Finally, we shall consider the more general problems. How many zeros does γn,λ(x) have? Find
the numbers of complex zeros Cγn,λ(x) of γn,λ(x), Im(x) 6= 0. Since n is the degree of the polynomial
γn,λ(x), the number of real zeros Rγn,λ(x) lying on the real plane Im(x) = 0 is then Rγn,λ(x) = n−Cγn,λ(x),
where Cγn,λ(x) denotes complex zeros. See Table 1 for tabulated values of Rγn,λ(x) and Cγn,λ(x). The
author has no doubt that investigations along this line will lead to a new approach employing numerical
method in the research field of the degenerate Euler-tangent mixed-type polynomials γn,λ(x) to appear
in mathematics and physics. The reader may refer to [4, 7, 10] for the details.
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