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Abstract

In this paper, by virtue of fixed point index on cones, we obtain two existence theorems of positive solutions for a sys-
tem of nonlinear semipositone fractional q-difference equations with q-integral boundary conditions. Concave functions and
nonnegative matrices are used to characterize the coupling behavior of our nonlinearities. c©2017 All rights reserved.
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1. Introduction

In this work we study the following system of nonlinear semipositone fractional q-difference equations
with q-integral boundary conditions

Dαqu(t) + f1(t,u(t), v(t)) = 0, t ∈ (0, 1),

Dαqv(t) + f2(t,u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = 0, Dqu(0) = 0, Dνqu(1) = β
∫ 1

0
Dνqu(t)dqt,

v(0) = 0, Dqv(0) = 0, Dνqv(1) = β
∫ 1

0
Dνqv(t)dqt,

(1.1)

where α ∈ (2, 3),ν ∈ (1, 2) are real numbers, Dαq is the Riemann-Liouville’s fractional q-derivative of
order α, and the nonnegative constant β, and the functions fi(i = 1, 2) satisfy the conditions

(H1) β > 0 and 1 −β
∫1

0 t
α−ν−1dqt := A > 0;
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(H2) fi ∈ C([0, 1]×R+ ×R+, R) and there exists M > 0 such that

fi(t, x,y) > −M, ∀(t, x,y) ∈ [0, 1]×R+ ×R+, i = 1, 2.

Recently, there are a large number of papers involving fractional differential equations in the litera-
tures, for example, we refer the readers to [1–5, 7–25] and the references therein. In [7, 14], Henderson
and Luca had studied the system of fractional differential equations with sign-changing nonlinearities

Dα0+u(t) + λf(t,u(t), v(t)) = 0, t ∈ (0, 1),
D
β
0+v(t) + µg(t,u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = u(i)(0) = 0,u ′(1) =
∫1

0 v(s)dH(s), i = 1, 2, . . . ,n− 2,
v(0) = v(i)(0) = 0, v ′(1) =

∫1
0 u(s)dK(s), i = 1, 2, . . . ,m− 2,

and they obtained the existence of positive solutions by the nonlinear alternative of Leray-Schauder type
and the Guo-Krasnosel’skii fixed point theorem. Their nonlinearities f,g are superlinear growth depend-
ing on the unknown functions u, v, i.e.,

f∞ = lim
u+v→∞ min

t∈[c,1−c]

f(t,u, v)
u+ v

=∞, g∞ = lim
u+v→∞ min

t∈[c,1−c]

g(t,u, v)
u+ v

=∞, c ∈ (0,
1
2
). (1.2)

In [3, 19–21], the authors had adopted the similar conditions of (1.2) to obtain various existence theo-
rems of positive solutions for some semipositone fractional boundary value problems.

In [25], Zhang et al. had studied the system of fractional differential equations with Riemann-Liouville
fractional derivative

Dα0+D
α
0+x(t) = f(t, x, x ′,−Dα0+x,y,y ′,−Dα0+y) = 0, t ∈ (0, 1),

Dα0+D
α
0+y(t) = g(t, x, x ′,−Dα0+x,y,y ′,−Dα0+y) = 0, t ∈ (0, 1),

x(0) = x ′(0) = x ′(1) = Dα0+x(0) = D
α+1
0+ x(0) = Dα+1

0+ x(1) = 0,
y(0) = y ′(0) = y ′(1) = Dα0+y(0) = D

α+1
0+ y(0) = Dα+1

0+ y(1) = 0.

(1.3)

They used the Krasnoselskii-Zabreiko fixed point theorem to establish some existence theorems of positive
solutions for (1.3).

In this paper, inspired by the above works, we investigate the existence of positive solutions for (1.1)
by fixed point index on cones. Moreover, some appropriate concave functions and nonnegative matrices
are used to depict the coupling behavior of our nonlinearities, and then our nonlinearities grow both
superlinearly and sublinearly.

2. Preliminaries

Let q ∈ (0, 1) and define

[a]q =
1 − qa

1 − q
, a ∈ R.

The q-analogue of the power function (a− b)n with N0 is

(a− b)0 = 1, (a− b)n =

n−1∏
k=0

(a− bqk), n ∈N, a,b ∈ R.

More generally, if α ∈ R, then

(a− b)(α) = aα
∞∏
n=0

a− bqn

a− bqα+n
.
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Note that, if b = 0 then a(α) = aα. The q-gamma function is defined by

Γq(x) =
(1 − q)(x−1)

(1 − q)x−1 , x ∈ R \ {0,−1,−2, . . .},

and satisfies Γq(x+ 1) = [x]Γq(x). The q-derivative of a function f is here defined by

(Dqf)(x) =
f(x) − f(qx)

(1 − q)x
, (Dqf)(0) = lim

x→0
(Dqf)(x),

and q-derivatives of higher order by

(D0
qf)(x) = f(x) and (Dnqf)(x) = Dq(D

n−1
q f)(x), n ∈N.

The q-integral of a function f defined in the interval [0,b] is given by

(Iqf)(x) =

∫x
0
f(t)dqt = x(1 − q)

∞∑
n=0

f(xqn)qn, x ∈ [0,b].

If a ∈ [0,b] and f is defined in the interval [0,b], its integral from a to b is defined by∫b
a

f(t)dqt =

∫b
0
f(t)dqt−

∫a
0
f(t)dqt.

Similarly as done for derivatives, an operator Inq can be defined, namely,

(I0qf)(x) = f(x) and (Inqf)(x) = Iq(I
n−1
q f)(x), n ∈N.

The fundamental theorem of calculus is applied to these operators Iq and Dq; i.e.,

(DqIqf)(x) = f(x),

and if f is continuous at x = 0, then
(IqDqf)(x) = f(x) − f(0).

Basic properties of the two operators can be found in the book [9]. We now point out three formulas that
will be used later (iDq denotes the derivative with respect to variable i)

[a(t− s)](α) = aα(t− s)(α),

tDq(t− s)
(α) = [α]q(t− s)

(α−1),(
xDq

∫x
0
f(x, t)dqt

)
(x) =

∫x
0
xDqf(x, t)dqt+ f(qx, x).

Remark 2.1 ([4]). We note that if α > 0 and a 6 b 6 t, then (t− a)(α) > (t− b)(α).

Definition 2.2 ([1]). Let α > 0 and f be a function defined on [0, 1]. The fractional q-integral of the
Riemann-Liouville type is (I0qf)(x) = f(x) and

(Iαqf)(x) =
1

Γq(α)

∫x
0
(x− qt)(α−1)f(t)dqt, α > 0, x ∈ [0, 1].

Definition 2.3 ([16]). The fractional q-derivative of the Riemann-Liouville type of order α > 0 is defined
by (D0

qf)(x) = f(x) and
(Dαqf)(x) = (Dmq I

m−α
q f)(x), α > 0,

where m is the smallest integer greater than or equal to α.
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Next, we list some properties that are already known in the literature, for more details, please refer to
[1, 4, 16].

Lemma 2.4. Let α,β > 0 and f be a function defined on [0, 1]. Then the following formulas hold:

(1) (IβqI
α
qf)(x) = (Iα+βq f)(x),

(2) (DαqI
α
qf)(x) = f(x).

Lemma 2.5. Let α > 0 and p be a positive integer. Then the following equality holds:

(IαqD
p
qf)(x) = (DpqI

α
qf)(x) −

p−1∑
k=0

xα−p+k

Γq(α+ k− p+ 1)
(Dkqf)(0).

Next, we study the following fractional boundary value problems
Dαqu(t) + f(t,u(t)) = 0, t ∈ (0, 1),

u(0) = 0, Dqu(0) = 0, Dνqu(1) = β
∫ 1

0
Dνqu(t)dqt,

(2.1)

where β, f satisfy (H1) and
(H2) ′ f ∈ C([0, 1]×R+, R) and there exists M > 0 such that

f(t, x) > −M, ∀(t, x) ∈ [0, 1]×R+.

Lemma 2.6. Let α ∈ (2, 3),ν ∈ (1, 2). Then (2.1) is equivalent to the Hammerstein integral equation

u(t) =

∫ 1

0
G(t,qs)f(s,u(s))dqs, ∀t ∈ [0, 1],

where

G(t, s) = H1(t, s) +
βtα−1

A

[∫ 1

0
H2(t, s)dqt

]
, (2.2)

H1(t, s) =
1

Γq(α)

{
tα−1(1 − s)(α−ν−1) − (t− s)(α−1), 0 6 s 6 t 6 1,
tα−1(1 − s)(α−ν−1), 0 6 t 6 s 6 1,

(2.3)

H2(t, s) =
1

Γq(α)

{
tα−ν−1(1 − s)(α−ν−1) − (t− s)(α−ν−1), 0 6 s 6 t 6 1,
tα−ν−1(1 − s)(α−ν−1), 0 6 t 6 s 6 1.

(2.4)

Proof. From the definitions and properties of the fractional q-derivative of the Riemann-Liouville type,
we have

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 − Iαqf(t,u(t)), ci ∈ R, i = 1, 2, 3.

The conditions u(0) = 0,Dqu(0) = 0 enable us to obtain c2 = c3 = 0. Hence,

u(t) = c1t
α−1 − Iαqf(t,u(t)),

and

Dνqu(t) =
Γq(α)

Γq(α− ν)
c1t
α−ν−1 −

1
Γq(α− ν)

∫t
0
(t− qs)(α−ν−1)f(s,u(s))dqs.

From Dνqu(1) = β
∫1

0 D
ν
qu(t)dqt we have

Γq(α)

Γq(α− ν)
c1 −

1
Γq(α− ν)

∫ 1

0
(1 − qs)(α−ν−1)f(s,u(s))dqs

= β
Γq(α)

Γq(α− ν)
c1

∫ 1

0
tα−ν−1dqt−

β

Γq(α− ν)

∫ 1

0

∫t
0
(t− qs)(α−ν−1)f(s,u(s))dqsdqt,

and
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c1 =
1

AΓq(α)

∫ 1

0
(1 − qs)(α−ν−1)f(s,u(s))dqs−

β

AΓq(α)

∫ 1

0

∫t
0
(t− qs)(α−ν−1)f(s,u(s))dqsdqt

=
1

AΓq(α)

∫ 1

0
(1 − qs)(α−ν−1)f(s,u(s))dqs−

β

AΓq(α)

∫ 1

0

∫ 1

s

(t− qs)(α−ν−1)f(s,u(s))dqtdqs.

Therefore,

u(t) =
1

AΓq(α)

∫ 1

0
tα−1(1 − qs)(α−ν−1)f(s,u(s))dqs−

βtα−1

AΓq(α)

∫ 1

0

∫ 1

s

(t− qs)(α−ν−1)f(s,u(s))dqtdqs

−
1

Γq(α)

∫t
0
(t− qs)(α−1)f(s,u(s))dqs+

1
Γq(α)

∫ 1

0
tα−1(1 − qs)(α−ν−1)f(s,u(s))dqs

−
1

Γq(α)

∫ 1

0
tα−1(1 − qs)(α−ν−1)f(s,u(s))dqs

=

∫ 1

0
H1(t,qs)f(s,u(s))dqs

+
βtα−1

AΓq(α)

∫ 1

0

[∫ 1

0
tα−ν−1(1 − qs)(α−ν−1)dqt−

∫ 1

s

(t− qs)(α−ν−1)dqt

]
f(s,u(s))dqs

=

∫ 1

0
H1(t,qs)f(s,u(s))dqs+

∫ 1

0

βtα−1

A

[∫ 1

0
H2(t,qs)dqt

]
f(s,u(s))dqs

=

∫ 1

0
G(t,qs)f(s,u(s))dqs.

Lemma 2.7 ([5]). The functions Hi(t, s) (i = 1, 2) in (2.3)-(2.4) satisfy the following properties:

(1) Hi(t,qs) > 0 for t, s ∈ [0, 1];
(2) tα−1H1(1,qs) 6 H1(t,qs) 6 H1(1,qs) for t, s ∈ [0, 1];
(3) H1(t,qs) 6 1

Γq(α)
tα−1(1 − s)(α−ν−1) for t, s ∈ [0, 1].

Proof. The proof is analogous to the proof of Lemma 3.0.7 in [5], and hence, we omitted it.

From Lemma 2.7, for all t, s ∈ [0, 1], we have

tα−1

(
H1(1,qs) +

β

A

[∫ 1

0
H2(t,qs)dqt

])
6 G(t,qs) 6 H1(1,qs) +

β

A

[∫ 1

0
H2(t,qs)dqt

]
,

and

G(t,qs) 6 tα−1

(
1

Γq(α)
(1 − s)(α−ν−1) +

β

A

[∫ 1

0
H2(t,qs)dqt

])
. (2.5)

For convenience, we let

ϕ(s) = H1(1,qs) +
β

A

[∫ 1

0
H2(t,qs)dqt

]
, φ(s) =

1
Γq(α)

(1 − s)(α−ν−1) +
β

A

[∫ 1

0
H2(t,qs)dqt

]
, ∀s ∈ [0, 1].

Subsequently, we have

κ1ϕ(s) 6
∫ 1

0
G(t,qs)ϕ(t)dqt 6 κ2ϕ(s) for s ∈ [0, 1], (2.6)
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where κ1 =
∫1

0 t
α−1ϕ(t)dqt, κ2 =

∫1
0 ϕ(t)dqt.

Let E := C[0, 1], ‖u‖ := maxt∈[0,1] |u(t)| and P = {u ∈ E : u(t) > 0,∀t ∈ [0, 1]}. Then (E, ‖ · ‖) is a real
Banach space and P is a cone in E.

Let F(t, z) =

{
f(t, z) +M, z > 0,
f(t, 0) +M, z 6 0,

and w(t) = M
∫1

0 G(t,qs)dqs for t ∈ [0, 1]. Then we consider the

boundary value problem 
Dαqu(t) + F(t,u(t) −w(t)) = 0, t ∈ (0, 1),

u(0) = 0, Dqu(0) = 0, Dνqu(1) = β
∫ 1

0
Dνqu(t)dqt,

(2.7)

where β satisfies (H1). From Lemma 2.6, (2.7) is equivalent to the Hammerstein integral equation

u(t) =

∫ 1

0
G(t,qs)F(s,u(s) −w(s))dqs := (Bu)(t) for t ∈ [0, 1].

Then B : P → P is a completely continuous operator. Moreover the following claims are true:

(1) if u∗ is a positive solution of (2.1), then u∗ +w is a positive fixed point of B;
(2) if u is a positive fixed point of B and u(t) > w(t), t ∈ [0, 1], then u∗ = u−w is a positive solution of

(2.1).

Lemma 2.8. Let P0 := {u ∈ P : u(t) > tα−1‖u‖}. Then P0 is a cone in E and B(u) ⊂ P0.

To obtain a positive solution of (2.1), we seek a positive fixed point u of B with u > w. From (2.5), for
any u ∈ P0 we have

u(t) −w(t) = u(t) −M

∫ 1

0
G(t,qs)dqs

> u(t) −M
∫ 1

0
tα−1φ(s)dqs = u(t) −Mt

α−1
∫ 1

0
φ(s)dqs > u(t) −M

∫ 1

0
φ(s)dqs

u(t)

‖u‖
.

As a result, u(t) > w(t) for t ∈ [0, 1] if ‖u‖ >M
∫1

0 φ(s)dqs := κ3.

Lemma 2.9 ([6]). Let Ω ⊂ E be a bounded open set and A : Ω∩ P → P a completely continuous operator. If there
exists u0 ∈ P \ {0} such that u−Au 6= µu0 for all µ > 0 and u ∈ ∂Ω ∩ P, then i(A,Ω ∩ P,P) = 0, where i
denotes the fixed point index on P.

Lemma 2.10 ([6]). Let Ω ⊂ E be a bounded open set with 0 ∈ Ω. Suppose A : Ω ∩ P → P is a completely
continuous operator. If u 6= µAu for all u ∈ ∂Ω∩ P and 0 6 µ 6 1, then i(A,Ω∩ P,P) = 1.

3. Main results

From Lemma 2.6, we see that (1.1) is equivalent to the system of Hammerstein integral equations{
u(t) =

∫1
0 G(t,qs)f1(s,u(s), v(s))dqs,

v(t) =
∫1

0 G(t,qs)f2(s,u(s), v(s))dqs,

where G is defined by (2.2). Let Fi(t, x,y) =

{
fi(t, x,y) +M, x,y > 0,
fi(t, 0, 0) +M, x,y 6 0.

Then we can define the operators

Ti(u, v)(t) =
∫ 1

0
G(t,qs)Fi(s,u(s) −w(s), v(s) −w(s))dqs for u, v ∈ E,
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and
T(u, v)(t) = (T1,T2)(u, v)(t) for u, v ∈ E.

Therefore, if (u, v) is a positive fixed point for T with u(t) > w(t), v(t) > w(t) for t ∈ [0, 1], then (u∗, v∗) =
(u−w, v−w) is a positive solution for (1.1). Moreover, from the continuity of G and Fi(i = 1, 2), we know
that Ti : P× P → P, T : P× P → P× P are completely continuous operators.

Let K := maxt,s∈[0,1]G(t,qs), Bρ := {v ∈ E : ‖v‖ < ρ} for ρ > 0. In the sequel, we use c1, c ′1, c2, . . . ,d1,
d2, . . . to stand for different positive constants. Now, we list our assumptions on Fi(i = 1, 2).

(H3) There exist p,q ∈ C(R+, R+) such that
(i) p is concave and strictly increasing on R+;

(ii) there exist d1 > 0,d2 > 0, c1 > 0 such that d1d2κ
2
1 > 1 and

F1(t, x,y) > d1p(y) − c1, F2(t, x,y) > d2q(x) − c1,∀(t, x,y) ∈ [0, 1]×R+ ×R+;

(iii) p (d2Kq(u(s) −w(s))) > d2K(u(s) −w(s)) − c1 for u ∈ R+.
(H4) There exists M1 ∈

(
0, κ3κ

−1
2

)
such that

Fi(t, x,y) 6 M1, ∀(t, x,y) ∈ [0, 1]× [0, κ3]× [0, κ3] , i = 1, 2.

(H5) There exist M2 > 0, θ ∈ (0, 1) and t0 ∈ [θ, 1] such that tα−1
0 M2

∫1
θϕ(s)dqs > κ3 and

Fi(t, x,y) > M2 for (t, x,y) ∈ [θ, 1]× [0, κ3]× [0, κ3] , i = 1, 2.

(H6) There exist di > 0 (i = 3, 4, 5, 6) and c ′1 > 0 such that

κ2d3 < 1, κ2d6 < 1, ∆ :=

∣∣∣∣ 1 − κ2d3 −κ2d4
−κ2d5 1 − κ2d6

∣∣∣∣ > 0,

and

F1(t, x,y) 6 d3x+ d4y+ c
′
1, F2(t, x,y) 6 d5x+ d6y+ c

′
1, ∀(t, x,y) ∈ [0, 1]×R+ ×R+.

Theorem 3.1. Suppose that (H1)-(H4) hold. Then (1.1) has at least one positive solution.

Proof. We first want to show that there exists an adequately big positive number R > κ3 such that

(u, v) 6= T(u, v) + λ(ψ,ψ), ∀(u, v) ∈ ∂BR ∩ (P× P), λ > 0, (3.1)

where ψ ∈ P0 is a given function. Indeed, if not, there exist (u, v) ∈ ∂BR ∩ (P × P) and λ > 0 such that
(u, v) = T(u, v) + λ(ψ,ψ), and then u(t) > T1(u, v)(t), and v(t) > T2(u, v)(t) for t ∈ [0, 1]. In view of (H3),
we have

u(t) >
∫ 1

0
G(t,qs) (d1p(v(s) −w(s)) − c1)dqs

>
∫ 1

0
G(t,qs) (d1[p(v(s)) − p(w(s))] − c1)dqs > d1

∫ 1

0
G(t,qs)p(v(s))dqs− c2,

(3.2)

and

v(t) >
∫ 1

0
G(t,qs) (d2q(u(s) −w(s)) − c1)dqs > d2

∫ 1

0
G(t,qs)q(u(s) −w(s))dqs− c3.

By the concavity of p, we obtain

p(v(t) + c3) > p

(
d2

∫ 1

0
G(t,qs)q(u(s) −w(s))dqs

)
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>
∫ 1

0
p(d2G(t,qs)q(u(s) −w(s)))dqs

=

∫ 1

0
p

(
d2K

G(t,qs)
K

q(u(s) −w(s))

)
dqs >

∫ 1

0

G(t,qs)
K

p (d2Kq(u(s) −w(s)))dqs.

From (H3) (iii) we have

p(v(t)) > p(v(t) + c3) − p(c3)

>
∫ 1

0

G(t,qs)
K

p (d2Kq(u(s) −w(s)))dqs− p(c3)

>
∫ 1

0

G(t,qs)
K

[d2K(u(s) −w(s)) − c1]dqs− p(c3) > d2

∫ 1

0
G(t,qs)(u(s) −w(s))dqs− c4.

Combining this with (3.2), we obtain

u(t) > d1

∫ 1

0
G(t,qs)

(
d2

∫ 1

0
G(s,qτ)(u(τ) −w(τ))dqτ− c4

)
dqs− c2

> d1d2

∫ 1

0
G(t,qs)

∫ 1

0
G(s,qτ)u(τ)dqτdqs− c5.

Now multiplying by ϕ(t) and integrating over [0, 1], from (2.6) we obtain∫ 1

0
ϕ(t)u(t)dqt > d1d2κ

2
1

∫ 1

0
ϕ(t)u(t)dqt− c5κ2,

and thus ∫ 1

0
ϕ(t)u(t)dqt 6

c5κ2

d1d2κ
2
1 − 1

.

Note that u ∈ P0, we have ∫ 1

0
ϕ(t)tα−1‖u‖dqt 6

∫ 1

0
ϕ(t)u(t)dqt 6

c5κ2

d1d2κ
2
1 − 1

,

and
‖u‖ 6 c5κ2

κ1(d1d2κ
2
1 − 1)

.

On the other hand, by (3.2) we have

∫ 1

0
G(t,qs)p(v(s))dqs 6

c2 + ‖u‖
d1

6
c2 +

c5κ2
κ1(d1d2κ

2
1−1)

d1
:= N1,∀t ∈ [0, 1].

This implies ∫ 1

0
ϕ(t)p(v(t))dqt 6 N1.

Note that we may assume v(t) 6≡ 0 for t ∈ [0, 1]. Then ‖v‖ > 0 and p(‖v‖) > 0. For v ∈ P0, we have

κ1‖v‖ 6
∫ 1

0
ϕ(t)v(t)dqt =

‖v‖
p(‖v‖)

∫ 1

0
ϕ(t)

v(t)

‖v‖
p(‖v‖)dqt 6

‖v‖
p(‖v‖)

∫ 1

0
ϕ(t)p(v(t))dqt 6

‖v‖
p(‖v‖)

N1.

Hence, p(‖v‖) 6 κ−1
1 N1. From (H3), limz→+∞ p(z) = +∞, and thus there exists N2 > 0 such that ‖v‖ 6 N2.
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As a result, we can take R > max{κ3, c5κ2
κ1(d1d2κ

2
1−1) ,N2} such that (3.1) holds true. Lemma 2.9 implies

i(T,BR ∩ (P× P),P× P) = 0. (3.3)

From (H4) we have

T1(u, v)(t) =
∫ 1

0
G(t,qs)F1(s,u(s) −w(s), v(s) −w(s))dqs 6

∫ 1

0
ϕ(s)M1dqs < κ3 = ‖u‖.

This implies ‖T1(u, v)‖ < ‖u‖. Similarly, ‖T2(u, v)‖ < ‖v‖. Hence, ‖T(u, v)‖ < ‖(u, v)‖ for u, v ∈ ∂B3 ∩ P.
This indicates

(u, v) 6= λT(u, v),∀(u, v) ∈ ∂B3 ∩ (P× P), λ ∈ [0, 1].

It follows from Lemma 2.10 that
i(T,B3 ∩ (P× P),P× P) = 1. (3.4)

From (3.3) and (3.4) we have

i(T, (BR\B3)∩ (P× P),P× P) = 0 − 1 = −1.

Therefore the operator T has at least one fixed point in (BR\B3) ∩ (P × P), and then (1.1) has at least a
positive solution. This completes the proof.

Theorem 3.2. Suppose that (H1), (H2), (H5), (H6) hold. Then (1.1) has at least one positive solution.

Proof. By (H5) we have

T1(u, v)(t0) =

∫ 1

0
G(t0,qs)F1(s,u(s) −w(s), v(s) −w(s))dqs >

∫ 1

θ

tα−1
0 ϕ(s)M2dqs > κ3.

Hence, ‖T1(u, v)‖ > T1(u, v)(t0) > ‖u‖. Similarly, ‖T2(u, v)‖ > T2(u, v)(t0) > ‖v‖. This implies ‖T(u, v)‖ >
‖(u, v)‖ for u, v ∈ ∂B3 ∩ P. This yields

(u, v) 6= T(u, v) + λ(ψ,ψ), ∀(u, v) ∈ ∂B3 ∩ (P× P), λ > 0,

where ψ ∈ P0 is a given function. Lemma 2.9 implies

i(T,B3 ∩ (P× P),P× P) = 0. (3.5)

On the other hand, we prove that there exists an adequately big positive number R > κ3 such that

(u, v) 6= λT(u, v), ∀(u, v) ∈ ∂BR ∩ (P× P), λ ∈ [0, 1]. (3.6)

If not, there exist (u, v) ∈ ∂BR ∩ (P × P) and λ ∈ [0, 1] such that (u, v) = λT(u, v), and then u(t) 6
T1(u, v)(t), v(t) 6 T2(u, v)(t) for t ∈ [0, 1]. By (H6) we have

u(t) 6
∫ 1

0
G(t,qs)[d3(u(s) −w(s)) + d4(v(s) −w(s)) + c

′
1]dqs 6

∫ 1

0
G(t,qs)(d3u(s) + d4v(s))dqs+ c6,

v(t) 6
∫ 1

0
G(t,qs)[d5(u(s) −w(s)) + d6(v(s) −w(s)) + c

′
1]dqs 6

∫ 1

0
G(t,qs)(d5u(s) + d6v(s))dqs+ c6.

Now multiplying by ϕ(t) and integrating over [0, 1], by means of (2.6) we get∫ 1

0
ϕ(t)u(t)dqt 6 κ2

∫ 1

0
ϕ(t)(d3u(t) + d4v(t))dqt+ c6κ2,∫ 1

0
ϕ(t)v(t)dqt 6 κ2

∫ 1

0
ϕ(t)(d5u(t) + d6v(t))dqt+ c6κ2.
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This implies [
1 − κ2d3 −κ2d4
−κ2d5 1 − κ2d6

] [ ∫1
0 ϕ(t)u(t)dqt∫1
0 ϕ(t)v(t)dqt

]
6

[
c6κ2
c6κ2

]
.

Hence, we have [ ∫1
0 ϕ(t)u(t)dqt∫1
0 ϕ(t)v(t)dqt

]
6

1
∆

[
1 − κ2d6 κ2d4
κ2d5 1 − κ2d3

] [
c6κ2
c6κ2

]
.

Therefore, there exist N3 > 0,N4 > 0 such that[ ∫1
0 ϕ(t)u(t)dqt∫1
0 ϕ(t)v(t)dqt

]
6

[
N3
N4

]
.

Note that u, v ∈ P0, we have
‖u‖ 6 κ−1

1 N3, ‖v‖ 6 κ−1
1 N4.

As a result, we can take R > max{κ3, κ−1
1 N3, κ−1

1 N4} such that (3.6) holds true. Lemma 2.10 implies

i(T,BR ∩ (P× P),P× P) = 1. (3.7)

From (3.5) and (3.7) we have

i(T, (BR\B3)∩ (P× P),P× P) = 1 − 0 = 1.

Therefore the operator T has at least one fixed point in (BR\B3) ∩ (P × P), and thus (1.1) has at least a
positive solution. This completes the proof.
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[16] P. M. Rajković, S. D. Marinković, M. S. Stanković, Fractional integrals and derivatives in q-calculus, Appl. Anal.

Discrete Math., 1 (2007), 311–323. 2.3, 2
[17] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach,

USA, (1993).
[18] X. Su, Boundary value problem for a coupled systemof nonlinear fractional differential equations, Appl. Math. Lett., 22

(2009), 64–69.
[19] Y. Wang, L. Liu, X. Zhang, Y. Wu, Positive solutions of an abstract fractional semipositone differential system model for

bioprocesses of HIV infection, Appl. Math. Comput., 258 (2015), 312–324. 1
[20] W. Yang, Positive solutions for nonlinear semipositone fractional q-difference system with coupled integral boundary condi-

tions, Appl. Math. Comput., 244 (2014), 702–725.
[21] C. Yuan, Two positive solutions for (n− 1, 1)-type semipositone integral boundary value problems for coupled systems of

nonlinear fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 930–942. 1
[22] X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a singular fractional differential system involving deriva-

tives, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 1400–1409.
[23] X. Zhang, L. Liu, Y. Wu, The uniqueness of positive solution for a fractional order model of turbulent flow in a porous

medium, Appl. Math. Lett., 37 (2014), 26–33.
[24] X. Zhang, L. Liu, Y. Wu, B. Wiwatanapataphee, The spectral analysis for a singular fractional differential equation with

a signed measure, Appl. Math. Comput., 257 (2015), 252–263.
[25] K. Zhang, J. Xu, D. O’Regan, Positive solutions for a coupled system of nonlinear fractional differential equations, Math.

Meth. Appl. Sci., 38 (2015), 1662–1672. 1, 1


	Introduction
	Preliminaries
	Main results

