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Abstract
In this paper, we generalize the concept of α-well-posedness to a system of time-dependent hemivariational inequalities

without Volterra integral terms in Banach spaces. We establish some metric characterizations of α-well-posedness and prove
some equivalence results of strong α-well-posedness (resp., in the generalized sense) between a system of time-dependent
hemivariational inequalities and its derived system of inclusion problems. c©2017 All rights reserved.
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1. Introduction

In 1983, Panagiotopulos [27] introduced and studied the hemivariational inequality concerning non-
smooth and nonconvex energy functions, which is an important generalization of variational inequality.
As a useful tool, this type of inequalities and their systems have been used to describe many important
problems arising in mechanics and engineering, such as unilateral contact problems in nonlinear elas-
ticity, thermoviscoelastic frictional contact problems, and obstacles problems, see, e.g., [25, 26, 28]. By
using the generalized directional derivative (in the sense of Clarke) and the Clarke’s generalized gradient
(see definitions in Section 2), many kinds of hemivariational inequalities and systems of hemivariational
inequalities, including stationary hemivariational inequalities, evolutionary hemivariational inequalities
and their systems, etc., have been studied by many researchers in recent years. We can refer to, e.g.,
[1, 2, 6, 12, 24–26, 28, 34, 37–39] and the references therein for more details.
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There are two important approaches to study the existence and uniqueness of solution to various types
of hemivariational inequalities in the recent literature on hemivariational inequalities. One is closely re-
lated to Knaster-Kuratowski-Mazurkiewicz theorems and fixed point theorems, which are used by Pana-
giotopulos et al. [29], Repovs and Varga [30], Costea and Radulescu [10], and Zhang and He [41] to study
stationary hemivariational inequalities and systems of stationary hemivariational inequalities. The other
is closely related to surjectivity theorems concerning pseudomonotone and coercive operators, which are
captured by Migorski et al. [24], Carl et al. [1], Naniewicz and Panagiotopulos[26], Xiao and Huang [33],
and Liu [22] for various types of stationary hemivariational inequalities and evolutionary hemivariational
inequalities. Before that, Panagiotopulos formulated two systems of hemivariational inequalities for the
behavior of von Karman plates and linear thermoelastic materials in Chapter 7.3 of monograph [28], re-
spectively. However, the regularity hypotheses on the multi-valued terms were quite unnatural for the
existence of solutions to the two systems of hemivariational inequalities. Very recently, Xiao et al. [35]
studied a system of time-dependent hemivariational inequalities with Volterra integral terms by using
a surjectivity theorem for pseudomonotone and coercive operators, and the Banach fixed point theorem
for contraction mappings. Under some appropriate conditions, the existence and uniqueness result of
solution to the problem considered was established by proving that a derived vector inclusion problem
with Volterra integral term is solvable.

On the other hand, Tykhonov [31] first introduced and considered the well-posedness for a minimiza-
tion problem in 1966, which not only is one of the classical concepts in the optimization theory but also
has a profound impact on the development of optimization problems and their related problems. Af-
ter that, various kinds of results concerned with well-posedness for many optimization problems were
established and various kinds of well-posedness for optimization problems and their related ones were
studied extensively in recent years by a large number of researchers in many fields; see e.g., [8, 15, 21, 42]
and the references therein. In 1981, Lucchetti and Patrone [23] extended the notion of well-posedness
for optimization problems to a variational inequality for the first time. By using Ekeland’s theorem, they
gave a characterization of Tykhonov’s well-posedness for a minimizing problem with a convex lower
semi-continuous function on a closed convex set. Since then, various kinds of well-posedness for op-
timization problems, such as LP well-posedness and generalized well-posedness etc., are extended to
develop the well-posedness for variational inequalities and their related problems, such as equilibrium
problems, fixed point problems, inclusion problems and others; see e.g., [3, 11, 14, 17, 20].

It seems to be natural and easy to generalize the concept of well-posedness to hemivariational inequal-
ities and to many people that most results on well-posedness for variational inequalities should hold for
hemivariational inequalities under some similar conditions. However, it is not the truth. The Clarke’s
generalized directional derivative of a nonconvex and nonsmooth Lipschitz functional in hemivariational
inequalities makes it much difficult. Thus, the literature on well-posedness for hemivariational inequali-
ties is limit. In 1995, Goeleven and Mentagui [13] first introduced the well-posedness for a hemivariational
inequality and presented some basic results concerning the well-posed hemivariational inequality. Later,
using the concept of approximating sequence, Xiao et al. [34, 36] defined a concept of well-posedness for
a hemivariational inequality and a variational-hemivariational inequality. They gave some metric charac-
terizations for the well-posed hemivariational inequality and the well-posed variational-hemivariational
inequality, and proved the equivalence of well-posedness between the hemivariational inequality and the
corresponding inclusion problem. Till now, there are a few papers discussing the solvability of systems
of hemivariational inequalities since, due to the complex structure of systems of hemivariational inequal-
ities, it is much more difficult than the study of hemivariational inequalities. Very recently, Wang et al.
[32] introduced and considered the well-posedness for systems of hemivariational inequalities, gave some
metric characterizations of well-posedness and established the equivalence between well-posedness of a
system of hemivariational inequalities and its derived system of inclusion problems.

Inspired by the above research work of [32], in this paper we generalize the notion of α-well-posedness
to a system of time-dependent hemivariational inequalities without Volterra integral terms, establish some
metric characterizations of α-well-posedness and prove the equivalence between α-well-posedness of the
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system of time-dependent hemivariational inequalities and its derived system of inclusion problems. The
paper is structured as follows. In Section 2, we briefly recall some preliminaries. In Section 3, we de-
fine several notions of α-well-posedness for the system of time-dependent hemivariational inequalities
and, under some mild conditions on the operators involved, give some metric characterizations of α-well-
posedness for the system of time-dependent hemivariational inequalities. In Section 4, we establish two
equivalence results of α-well-posedness between the system of time-dependent hemivariational inequali-
ties and its derived system of inclusion problems. Finally, in Section 5, we give some concluding remarks
on our main results.

2. Preliminaries

In this section, we present the problem considered in this paper and recall some important notions
and useful results on nonlinear analysis, nonsmooth analysis and operators of monotone type, which can
be found in [9, 24, 26, 40].

Let V1 and V2 be real, separable and reflexive Banach spaces with dual spaces V∗1 and V∗2 , respectively.
Assume that X1 and X2 are real reflexive Banach spaces with dual spaces X∗1 and X∗2 , respectively. For
some T ∈ (0,+∞), we suppose that V1 = L2(0, T ;V1) and V2 = L2(0, T ;V2), and thus V∗1 = L2(0, T ;V∗1 )
and V∗2 = L2(0, T ;V∗2 ). Unless otherwise specifically stated in the paper, we always denote by 〈·, ·〉E∗×E
the duality pairing between Banach space E and its dual E∗, and by ‖ · ‖E, ‖ · ‖E∗ the norms on the space
E and its dual E∗, respectively, where E ∈ {Vi,Xi,Vi, i = 1, 2}. In this paper, we consider the following
system of time-dependent hemivariational inequalities without Volterra integral terms, which is specified
as follows: Find (u1,u2) ∈ V1 ×V2 such that

(STDHVI)


〈A1(t,u1(t)) +B1(t,u2(t)), v1〉V∗1×V1 + J

◦
1(t,M1(u1(t)),M2(u2(t));M1v1)

> 〈f1(t), v1〉V∗1×V1 , ∀v1 ∈ V1, a.e. t ∈ (0, T),

〈A2(t,u2(t)) +B2(t,u1(t)), v2〉V∗2×V2 + J
◦
2(t,M1(u1(t)),M2(u2(t));M2v2)

> 〈f2(t), v2〉V∗2×V2 , ∀v2 ∈ V2, a.e. t ∈ (0, T),

where, for i, j = 1, 2 and j 6= i, Ai : (0, T)× Vi → V∗i , Bi : (0, T)× Vj → V∗i , and fi : (0, T) → V∗i are
operators with images in V∗i . For i 6= j = 1, 2, Mi : Vi → Xi is a linear continuous and compact operator,
and J◦i (t, x1, x2; v) is the partial generalized directional derivative (in the sense of Clarke) of the locally
Lipschitz functional J : (0, T)× X1 × X2 → R with respect to the i-th argument at the point xi ∈ Xi in the
direction v ∈ Xi for the given xj ∈ Xj.

Suppose Z is a real Banach space with its dual Z∗ and 〈·, ·〉Z∗×Z is the duality pairing between Z∗ and
Z. Let u and {un} be a point and a sequence in Z, and let u∗ and {u∗n} be a point and a sequence in Z∗,
respectively. We use the notations un → u, un ⇀ u and u∗n

∗
⇀ u∗ to indicate the strong convergence

of {un} to u, the weak convergence of {un} to u and the weak∗ convergence of {u∗n} to u∗, respectively.
Recall that if Z is not reflexive, then the weak∗ topology of Z∗ is weaker than its weak topology and that
if Z is reflexive, then the weak∗ topology of Z∗ coincides with its weak topology. It is easy to see that if
{un} ⊂ Z, {u∗n} ⊂ V∗, un → u in Z and u∗n

∗
⇀ u∗ in Z∗, then 〈u∗n,un〉Z∗×Z → 〈u∗,u〉Z∗×Z as n→∞.

Definition 2.1. Let A : Z→ Z∗ be an operator. A is said to be

(i) demicontinuous, if for any sequence {un} ⊂ Z with un → u ∈ Z, A(un) ⇀ A(u) in Z∗;
(ii) hemicontinuous, if for all u, v ∈ Z, the function t 7→ 〈A(u+ t(v−u)), v−u〉Z∗×Z from [0, 1] into R is

continuous at 0+;
(iii) continuous, if for any sequence {un} ⊂ Z with un → u ∈ Z, A(un)→ A(u) in Z∗.

It is clear that, if A : Z→ Z∗ is continuous, then it is demicontinuous which, in turn, implies that A is
hemicontinuous. If A : Z → Z∗ is linear and demicontinuous, then it is continuous. It can be shown that
for monotone operator A : Z → Z∗ with D(A) = Z, the notions of demicontinuity and hemicontinuity
coincide.
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Definition 2.2. An operator A : Z→ Z∗ is said to be monotone if

〈Au−Av,u− v〉Z∗×Z > 0, ∀u, v ∈ Z.

Definition 2.3. Let h : Z→ R be a functional. h is said to be

(i) Lipschitz continuous, if there exists a constant L > 0 such that

|h(u1) − h(u2)| 6 L‖u1 − u2‖Z, ∀u1,u2 ∈ Z;

(ii) locally Lipschitz continuous, if for every u ∈ Z, there exist a neighborhood N(u) and a constant
Lu > 0 such that

|h(u1) − h(u2)| 6 Lu‖u1 − u2‖Z, ∀u1,u2 ∈ N(u).

Definition 2.4. Let Z1, Z2 be two real Banach spaces and h : Z1 ×Z2 → R be a functional. The functional
h is said to be

(i) Lipschitz continuous in the first variable if the functional h(·,u2) : Z1 → Z∗1 is Lipschitz continuous
on Z1 for any given u2 ∈ Z2;

(ii) locally Lipschitz continuous in the first variable, if the functional h(·,u2) : Z1 → Z∗1 is locally
Lipschitz continuous on Z1 for any given u2 ∈ Z2.

By the similar way, we can define the Lipschitz continuity and locally Lipschitz continuity of the
functional h : Z1 ×Z2 → R in the second variable.

Definition 2.5. Let h : Z→ R be a locally Lipschitz functional on Z and let u, v ∈ Z be two given elements.
The Clarke’s generalized directional derivative of h at the point u in the direction v, denoted by h◦(u; v),
is defined by

h◦(u; v) = lim sup
w→u,λ↓0

h(w+ λv) − h(w)

λ
.

The Clarke’s generalized gradient of h at u, denoted by ∂h(u), the subset of the dual Z∗, which is defined
by

∂h(u) = {ρ ∈ Z∗ : h◦(u; v) > 〈ρ, v〉Z∗×Z, ∀v ∈ Z}.

Remark 2.6. As pointed out in [1], if h : Z → R is convex and continuous, then the Clarke’s generalized
gradient ∂h(x) coincides with the subdifferential of h at x in the sense of convex analysis, and if h
is continuously differentiable, then, for all x ∈ Z, ∂h(x) = {h ′(x)}, where h ′(x) denotes the Fréchet
differential of h at x.

Proposition 2.7. Let h : Z → R be a locally Lipschitz functional on Z and let u, v ∈ Z be two given elements.
Then

(i) the function v 7→ h◦(u; v) is finite, positively homogeneous, subadditive and thus convex on Z;
(ii) h◦(u; v) is upper semicontinuous on Z×Z as a function of (u, v), i.e., for all u, v ∈ Z, {un} ⊂ Z, {vn} ⊂ Z

such that un → u and vn → v in Z, we have

lim sup
n→∞ h◦(un; vn) 6 h◦(u; v);

(iii) h◦(u;−v) = (−h)◦(u; v);
(iv) for all u ∈ Z, ∂h(u) is a nonempty, convex, bounded and weak∗-compact subset of Z∗;
(v) for all v ∈ Z, one has

h◦(u; v) = max{〈ξ, v〉Z∗×Z : ξ ∈ ∂h(u)};
(vi) the graph of the Clarke’s generalized gradient ∂h(u) is closed in Z × (w∗-Z∗) topology, where (w∗-Z∗)

denotes the space Z∗ equipped with weak∗ topology, i.e., if {un} ⊂ Z and {u∗n} ⊂ Z∗ are sequences such that
u∗n ∈ ∂h(un), un → u in Z and u∗n → u∗ weakly∗ in Z∗, then u∗ ∈ ∂h(u).
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Definition 2.8. Let h : Z→ R be a locally Lipschitz functional on Banach space Z. h is said to be regular
(in the sense of Clarke) at u ∈ Z if

(i) for all v ∈ Z, the directional derivative h ′(u, v) exists;
(ii) for all v ∈ Z, h ′(u, v) = h◦(u; v), where h ′(u, v) is the directional derivative of h at u ∈ Z in the

direction v ∈ Z.

Proposition 2.9. Let Z1 and Z2 be two Banach spaces. If H : Z1 × Z2 → R is locally Lipschitz on Z1 × Z2 and
either H or −H is regular at (u1,u2) ∈ Z1 × Z2, then ∂H(u1,u2) ⊆ ∂1H(u1,u2)× ∂2H(u1,u2), or for any point
(v1, v2) ∈ Z1 ×Z2, H◦(u1,u2; v1, v2) 6 H◦1(u1,u2; v1) +H

◦
2(u1,u2; v2). However, in general, the converses of the

above inclusion and inequality are not true.

Definition 2.10 (see [16]). Let S be a nonempty subset of Z. The measure of noncompactness µ of the set
S is defined by

µ(S) = inf{ε > 0 : S ⊆
n⋃
i=1

Si, diam(Si) < ε, i = 1, 2, · · · ,n},

where diam(Si) denotes the diameter of set Si.

Definition 2.11. Let A1,A2 be nonempty subsets of Z. The Hausdorff metric H(·, ·) between A1 and A2 is
defined by

H(A1,A2) = max{e(A1,A2), e(A2,A1)},

where e(A1,A2) = supa∈A1
d(a,A2) with d(a,A2) = infb∈A2 ‖a− b‖Z.

Note that, in [16], we can find some more properties of the Hausdorff metric between two sets. At the
end of this section, we give a lemma, which is important to our main results.

Theorem 2.12 (see [24]). Let C ⊆ Z be nonempty, closed and convex, C∗ ⊆ Z∗ be nonempty, closed, convex and
bounded, ϕ : Z → R be proper, convex and lower semicontinuous and y ∈ C be arbitrary. Assume that, for each
x ∈ C, there exists x∗(x) ∈ C∗ such that

〈x∗(x), x− y〉Z∗×Z > ϕ(y) −ϕ(x).

Then, there exists y∗ ∈ C∗ such that

〈y∗, x− y〉Z∗×Z > ϕ(y) −ϕ(x), ∀x ∈ C.

3. Well-posedness of STDHVI with metric characterizations

In this section, based on the concepts of well-posedness for a system of hemivariational inequalities
SHVI in [32], and α-well-posedness for a system of mixed quasivariational-like inequalities in [4], we
introduce the concept of α-well-posedness for a system of time-dependent hemivariational inequalities
STDHVI, and establish some metric characterizations of α-well-posedness for STDHVI under some ap-
propriate conditions.

Let V = V1×V2. Endowed with the norm defined by ‖u‖V := ‖u1‖V1 + ‖u2‖V2 for all u = (u1,u2) ∈ V ,
V is a reflexive Banach space with its dual V∗ and the duality pairing between V and V∗ is given by

〈u∗, u〉V∗×V = 〈u∗1 ,u1〉V∗1×V1 + 〈u
∗
2 ,u2〉V∗2×V2 , ∀u∗ = (u∗1 ,u∗2) ∈ V∗, u = (u1,u2) ∈ V .

Similarly, we can also construct the product spaces V = V1 × V2 and X = X1 × X2 and their dual V∗

and X∗.
For i = 1, 2, let αi : (0, T)× Vi → R+ = [0,∞) be a functional such that for a.e. t ∈ (0, T), αi(t, ·) is

convex, continuous and positively homogeneous, i.e., αi(t, λivi) = λiαi(t, vi) for all vi ∈ Vi and λi > 0.
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Definition 3.1. A sequence {un} ⊂ V with un = (un1 ,un2 ) is said to be an α-approximating sequence with
α = (α1,α2) for STDHVI if there exists εn > 0 with εn → 0 as n→∞ such that
〈A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t), v1 − u

n
1 (t)〉V∗1×V1 + J

◦
1(t,M1(u

n
1 (t)),M2(u

n
2 (t));M1(v1 − u

n
1 (t)))

> −εnα1(t, v1 − u
n
1 (t)), ∀v1 ∈ V1, a.e. t ∈ (0, T),

〈A2(t,un2 (t)) +B2(t,un1 (t)) − f2(t), v2 − u
n
2 (t)〉V∗2×V2 + J

◦
2(t,M1(u

n
1 (t)),M2(u

n
2 (t));M2(v2 − u

n
2 (t)))

> −εnα2(t, v2 − u
n
2 (t)), ∀v2 ∈ V2, a.e. t ∈ (0, T).

In particular, if for i = 1, 2, αi(t, xi − yi) = ‖xi − yi‖Vi for all xi,yi ∈ Vi, then {un} is said to be an
approximating sequence for STDHVI.

Definition 3.2. The system STDHVI of time-dependent hemivariational inequalities is said to be strongly
(resp., weakly) α-well-posed with α = (α1,α2) if it has a unique solution u and every α-approximating
sequence {un} for STDHVI has the property that for a.e. t ∈ (0, T), un(t) → u(t) (resp., un(t) ⇀ u(t)) in
V . In particular, if for i = 1, 2, αi(t, xi − yi) = ‖xi − yi‖Vi for all xi,yi ∈ Vi, then the system STDHVI of
time-dependent hemivariational inequalities is said to be strongly (resp., weakly) well-posed.

Remark 3.3. It is clear that, the strong α-well-posedness of STDHVI implies the weak α-well-posedness of
STDHVI, but the converse is not true in general.

Definition 3.4. The system STDHVI of time-dependent hemivariational inequalities is said to be strongly
(resp., weakly) α-well-posed in the generalized sense if the solution set S of STDHVI is nonempty and, for
every α-approximating sequence {un}, there always exists a subsequence {unk} such that for a.e. t ∈ (0, T),
unk(t)→ u(t) (resp., unk(t) ⇀ u(t)) in V for some u ∈ S. In particular, if for i = 1, 2,

αi(t, xi − yi) = ‖xi − yi‖Vi , ∀xi,yi ∈ Vi,

then the system STDHVI of time-dependent hemivariational inequalities is said to be strongly (resp.,
weakly) well-posed in the generalized sense.

Remark 3.5. Similarly, the strong α-well-posedness in the generalized sense for STDHVI implies the weak
α-well-posedness in the generalized sense for STDHVI, but the converse is not true in general.

Remark 3.6. The notions of strong and weak α-well-posedness of STDHVI introduced in this paper are
quite different from Definitions 3.1-3.2 and 3.4 in Wang et al. [32].

In order to establish the metric characterizations for the α-well-posedness of STDHVI, we first define
two sets in V = V1 ×V2 for any ε > 0 as follows:

Ωα,ε = {u = (u1,u2) ∈ V : the following hold for all v = (v1, v2) ∈ V and a.e. t ∈ (0, T)
〈A1(t,u1(t)) +B1(t,u2(t)) − f1(t), v1 − u1(t)〉V∗1×V1

+ J◦1(t,M1(u1(t)),M2(u2(t));M1(v1 − u1(t))) > −εα1(t, v1 − u1(t)),
〈A2(t,u2(t)) +B2(t,u1(t)) − f2(t), v2 − u2(t)〉V∗2×V2

+ J◦2(t,M1(u1(t)),M2(u2(t));M2(v2 − u2(t))) > −εα2(t, v2 − u2(t))},

and

∆α,ε = {u = (u1,u2) ∈ V : the following hold for all v = (v1, v2) ∈ V and a.e. t ∈ (0, T)
〈A1(t, v1) +B1(t,u2(t)) − f1(t), v1 − u1(t)〉V∗1×V1

+ J◦1(t,M1(u1(t)),M2(u2(t));M1(v1 − u1(t))) > −εα1(t, v1 − u1(t)),
〈A2(t, v2) +B2(t,u1(t)) − f2(t), v2 − u2(t)〉V∗2×V2

+ J◦2(t,M1(u1(t)),M2(u2(t));M2(v2 − u2(t))) > −εα2(t, v2 − u2(t))}.
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Moreover, we also define two multi-valued mappings Ωα,ε(·) : (0, T) → 2V and ∆α,ε(·) : (0, T) → 2V as
follows:

Ωα,ε(t) := {u(t) : u ∈ Ωα,ε} and ∆α,ε(t) := {u(t) : u ∈ ∆α,ε}, ∀t ∈ (0, T).

In order to prove some properties of the sets Ωα,ε and ∆α,ε, we first give some hypotheses on the
operators A1,A2,B1,B2 and J in the STDHVI.

(HAB) For i, j = 1, 2 and j 6= i, Ai(·, vi) : (0, T) → V∗i and Bi(·, vj) : (0, T) → V∗i both are measurable on
(0, T) for all v = (v1, v2) ∈ V , and the following hold:

(1) for a.e. t ∈ (0, T), A1(t, ·) : V1 → V∗1 is monotone;
(2) for a.e. t ∈ (0, T), A2(t, ·) : V2 → V∗2 is monotone;
(3) for a.e. t ∈ (0, T), A1(t, ·) : V1 → V∗1 is demicontinuous on V1;
(4) for a.e. t ∈ (0, T), A2(t, ·) : V2 → V∗2 is demicontinuous on V2.
(5) for a.e. t ∈ (0, T), B1(t, ·) : V2 → V∗1 is demicontinuous on V2;
(6) for a.e. t ∈ (0, T), B2(t, ·) : V1 → V∗2 is demicontinuous on V1.

(HJ) J(·, x1, x2) : (0, T)→ R is measurable on (0, T) for all (x1, x2) ∈ X = X1 ×X2, and the following hold:

(1) for a.e. t ∈ (0, T), J(t, ·, ·) : X1 × X2 → R is locally Lipschitz w.r.t. the first variable and second
variable on X1 ×X2;

(2) for a.e. t ∈ (0, T), J(t, x1, x2) + J(t,y1,y2) = J(t, x1,y2) + J(t,y1, x2), ∀(x1, x2), (y1,y2) ∈ X1 ×X2.

Lemma 3.7 ([32, Lemma 3.6]). Suppose that the functional J : (0, T)×X1×X2 → R satisfies the hypothesis (HJ).
Then, for any sequence xn = (xn1 , xn2 ) ∈ X1 × X2 converging strongly to x = (x1, x2) ∈ X1 × X2 and yni ∈ Xi
converging strongly to yi ∈ Xi, one has

lim sup
n→∞ J◦i (t, x

n
1 , xn2 ;yni ) 6 J

◦
i (t, x1, x2;yi), for a.e. t ∈ (0, T),

where i = 1, 2.

Lemma 3.8. Suppose that for i, j = 1, 2 and j 6= i, Ai(·, vi) : (0, T) → V∗i and Bi(·, vj) : (0, T) → V∗i satisfy the
hypotheses (1)-(4) in (HAB) and J : (0, T)× V1 × V2 → R satisfies the hypothesis (HJ). Then, Ωα,ε = ∆α,ε for all
ε > 0.

Proof. For a.e. t ∈ (0, T), by the monotonicity of operators A1(t, ·) : V1 → V∗1 and A2(t, ·) : V2 → V∗2 , we
can readily see that Ωα,ε ⊆ ∆α,ε for any ε > 0. Thus we only need to show ∆α,ε ⊆ Ωα,ε. Indeed, take an
arbitrary u = (u1,u2) ∈ ∆α,ε. Then the following hold for all v = (v1, v2) ∈ V and a.e. t ∈ (0, T),

〈A1(t, v1) +B1(t,u2(t)) − f1(t), v1 − u1(t)〉V∗1×V1

+ J◦1(t,M1(u1(t)),M2(u2(t));M1(v1 − u1(t))) > −εα1(t, v1 − u1(t)),
〈A2(t, v2) +B2(t,u1(t)) − f2(t), v2 − u2(t)〉V∗2×V2

+ J◦2(t,M1(u1(t)),M2(u2(t));M2(v2 − u2(t))) > −εα2(t, v2 − u2(t)).

(3.1)

For any w = (w1,w2) ∈ V1 × V2, λ ∈ (0, 1), and a.e. t ∈ (0, T), by letting v1 = u1(t) + λ(w1 − u1(t)) and
v2 = u2(t) + λ(w2 −u2(t)) in (3.1), we deduce from (3.1) and the positive homogeneousness of α1(t, ·) and
α2(t, ·) that for a.e. t ∈ (0, T)

〈A1(t,u1(t) + λ(w1 − u1(t))) +B1(t,u2(t)) − f1(t), λ(w1 − u1(t))〉V∗1×V1

+ J◦1(t,M1(u1(t)),M2(u2(t)); λM1(w1 − u1(t))) > −ελα1(t,w1 − u1(t)),
〈A2(t,u2(t) + λ(w2 − u2(t))) +B2(t,u1(t)) − f2(t), λ(w2 − u2(t))〉V∗2×V2

+ J◦2(t,M1(u1(t)),M2(u2(t)); λM2(w2 − u2(t))) > −ελα2(t,w2 − u2(t)).
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From property (i) of Proposition 2.7, we know that Clarke’s generalized directional derivative is positively
homogeneous w.r.t. its direction. So, it follows that

〈A1(t,u1(t) + λ(w1 − u1(t))) +B1(t,u2(t)) − f1(t),w1 − u1(t)〉V∗1×V1

+ J◦1(t,M1(u1(t)),M2(u2(t));M1(w1 − u1(t))) > −εα1(t,w1 − u1(t)),
〈A2(t,u2(t) + λ(w2 − u2(t))) +B2(t,u1(t)) − f2(t),w2 − u2(t)〉V∗2×V2

+ J◦2(t,M1(u1(t)),M2(u2(t));M2(w2 − u2(t))) > −εα2(t,w2 − u2(t)).

(3.2)

It is easy to see from the hypotheses (3), (4) in (HAB) that for a.e. t ∈ (0, T), operators A1(t, ·) : V1 → V∗1
and A2(t, ·) : V2 → V∗2 both are hemicontinuous. Thus, taking the limit as λ → 0+ at both sides of two
inequalities in (3.2) implies that for a.e. t ∈ (0, T),

〈A1(t,u1(t)) +B1(t,u2(t)) − f1(t),w1 − u1(t)〉V∗1×V1

+ J◦1(t,M1(u1(t)),M2(u2(t));M1(w1 − u1(t))) > −εα1(t,w1 − u1(t)),
〈A2(t,u2(t)) +B2(t,u1(t)) − f2(t),w2 − u2(t)〉V∗2×V2

+ J◦2(t,M1(u1(t)),M2(u2(t));M2(w2 − u2(t))) > −εα2(t,w2 − u2(t)),

which together with the arbitrariness of w = (w1,w2) ∈ V1 × V2, implies that u ∈ Ωα,ε, and hence
∆α,ε ⊆ Ωα,ε. This completes the proof.

Lemma 3.9. Let B1 : (0, T)× V2 → V∗1 satisfy the hypothesis (5) in (HAB), B2 : (0, T)× V1 → V∗2 satisfy the
hypothesis (6) in (HAB), and J : (0, T)× X1 × X2 → R satisfy the hypothesis (HJ). Then, for any ε > 0 and a.e.
t ∈ (0, T), ∆α,ε(t) is closed in V1 × V2.

Proof. We let t ∈ (0, T) be fixed. Let un(t) = (un1 (t),u
n
2 (t)) ∈ ∆α,ε(t) be a sequence converging strongly

to u(t) = (u1(t),u2(t)) in V1 × V2. Then
〈A1(t, v1) +B1(t,un2 (t)) − f1(t), v1 − u

n
1 (t)〉V∗1×V1

+ J◦1(t,M1(u
n
1 (t)),M2(u

n
2 (t));M1(v1 − u

n
1 (t))) > −εα1(t, v1 − u

n
1 (t)), ∀v1 ∈ V1,

〈A2(t, v2) +B2(t,un1 (t)) − f2(t), v2 − u
n
2 (t)〉V∗2×V2

+ J◦2(t,M1(u
n
1 (t)),M2(u

n
2 (t));M2(v2 − u

n
2 (t))) > −εα2(t, v2 − u

n
2 (t)), ∀v2 ∈ V2.

(3.3)

Note that by the hypotheses (5), (6) in (HAB), the mappings B1(t, ·) : V2 → V∗1 and B2(t, ·) : V1 → V∗2
both are demicontinuous. So, it follows that B1(t,un2 (t)) ⇀ B1(t,u2(t)) and B2(t,un1 (t)) ⇀ B2(t,u1(t)).
Thus, we get 

lim
n→∞〈A1(t, v1) +B1(t,un2 (t)) − f1(t), v1 − u

n
1 (t)〉V∗1×V1

= 〈A1(t, v1) +B1(t,u2(t)) − f1(t), v1 − u1(t)〉V∗1×V1 ,

lim
n→∞〈A2(t, v2) +B2(t,un1 (t)) − f2(t), v2 − u

n
2 (t)〉V∗2×V2

= 〈A2(t, v2) +B2(t,u1(t)) − f2(t), v2 − u2(t)〉V∗2×V2 .

(3.4)

Moreover, by the hypothesis (HJ) on the functional J, Lemma 3.7 implies that

lim sup
n→∞ J◦1(t,M1u

n
1 (t),M2u

n
2 (t);M1(v1 − u

n
1 (t)))

6 J◦1(t,M1u1(t),M2u2(t);M1(v1 − u1(t))),
lim sup
n→∞ J◦2(t,M1u

n
1 (t),M2u

n
2 (t);M2(v2 − u

n
2 (t)))

6 J◦2(t,M1u1(t),M2u2(t);M2(v2 − u2(t))).

(3.5)
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Also, from the continuity of α1(t, ·) and α2(t, ·) we get

lim
n→∞α1(t, v1 − u

n
1 (t)) = α1(t, v1 − u1(t)) and lim

n→∞α2(t, v2 − u
n
2 (t)) = α2(t, v2 − u2(t)). (3.6)

Therefore, taking the limsup as n→∞ at both sides of (3.3), we conclude from (3.4), (3.5) and (3.6) that
〈A1(t, v1) +B1(t,u2(t)) − f1(t), v1 − u1(t)〉V∗1×V1

+ J◦1(t,M1(u1(t)),M2(u2(t));M1(v1 − u1(t))) > −εα1(t, v1 − u1(t)), ∀v1 ∈ V1,
〈A2(t, v2) +B2(t,u1(t)) − f2(t), v2 − u2(t)〉V∗2×V2

+ J◦2(t,M1(u1(t)),M2(u2(t));M2(v2 − u2(t))) > −εα2(t, v2 − u2(t)), ∀v2 ∈ V2,

which implies that u(t) = (u1(t),u2(t)) ∈ ∆α,ε(t). Thus ∆α,ε(t) is closed in V1 × V2. This completes the
proof.

Remark 3.10. Let A1 : (0, T)× V1 → V∗1 , A2 : (0, T)× V2 → V∗2 , B1 : (0, T)× V2 → V∗1 and B2 : (0, T)× V1 →
V∗2 satisfy the hypothesis (HAB) and J : (0, T)× X1 × X2 → R satisfy the hypothesis (HJ). Then it can
be readily seen from Lemmas 3.8 and 3.9 that Ωα,ε(t) = ∆α,ε(t) is closed in V1 × V2 for any ε > 0 and
a.e. t ∈ (0, T).

Theorem 3.11. Assume that there hold the hypothesis (3) on A1 : (0, T) × V1 → V∗1 , hypothesis (4) on A2 :
(0, T)×V2 → V∗2 , hypothesis (5) on B1 : (0, T)×V2 → V∗1 and hypothesis (6) on A2 : (0, T)×V1 → V∗2 in (HAB).
Let J : (0, T)×X1 ×X2 → R satisfy the hypothesis (HJ). Then the system STDHVI is strongly α-well-posed if and
only if for a.e. t ∈ (0, T),

Ωα,ε(t) 6= ∅, ∀ε > 0 and diam(Ωα,ε(t))→ 0 as ε→ 0.

Proof. Necessity. Let STDHVI be strongly α-well-posed. Then STDHVI admits a unique solution
u = (u1,u2) ∈ V = V1 ×V2, i.e., for a.e. t ∈ (0, T),

〈A1(t,u1(t)) +B1(t,u2(t)) − f1(t), v1 − u1(t)〉V∗1×V1

+ J◦1(t,M1(u1(t)),M2(u2(t));M1(v1 − u1(t))) > 0, ∀v1 ∈ V1,
〈A2(t,u2(t)) +B2(t,u1(t)) − f2(t), v2 − u2(t)〉V∗2×V2

+ J◦2(t,M1(u1(t)),M2(u2(t));M2(v2 − u2(t))) > 0, ∀v2 ∈ V2.

This implies that u(t) ∈ Ωα,ε(t) for any ε > 0 and a.e. t ∈ (0, T), i.e., Ωα,ε(t) 6= ∅ for all ε > 0 and a.e.
t ∈ (0, T). If for some t0 ∈ (0, T), diam(Ωα,ε(t0)) 6→ 0 as ε→ 0, then there exist

un(t0) = (un1 (t0),un2 (t0)) ∈ Ωα,εn(t0), pn(t0) = (pn1 (t0),pn2 (t0)) ∈ Ωα,εn(t0), d > 0,

and 0 < εn → 0 such that

‖un(t0) − pn(t0)‖V1×V2 = ‖u
n
1 (t0) − p

n
1 (t0)‖V1 + ‖u

n
2 (t0) − p

n
2 (t0)‖V2 > d. (3.7)

Since the definition of Ωα,εn(t0) implies that un ∈ Ωα,εn and pn ∈ Ωα,εn , by the definition of the α-
approximating sequence for STDHVI, {un} and {pn} are two α-approximating sequences for STDHVI.
Thus it follows from the strong α-well-posedness of STDHVI that un(t0) → u(t0) and pn(t0) → u(t0) in
V , which contradicts (3.7).

Sufficiency. Assume that for a.e. t ∈ (0, T), Ωα,ε(t) 6= ∅, for all ε > 0 and diam(Ωα,ε(t))→ 0 as ε→ 0.
Then we show that the system of time-dependent hemivariational inequalities STDHVI is strongly α-well-
posed. Indeed, suppose that {un} with un = (un1 ,un2 ) is an α-approximating sequence for STDHVI. Then
there exists 0 < εn → 0 as n→∞, such that
〈A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t), v1 − u

n
1 (t)〉V∗1×V1

+ J◦1(t,M1(u
n
1 (t)),M2(u

n
2 (t));M1(v1 − u

n
1 (t))) > −εnα1(t, v1 − u

n
1 (t)), ∀v1 ∈ V1, a.e. t ∈ (0, T),

〈A2(t,un2 (t)) +B2(t,un1 (t)) − f2(t), v2 − u
n
2 (t)〉V∗2×V2

+ J◦2(t,M1(u
n
1 (t)),M2(u

n
2 (t));M2(v2 − u

n
2 (t))) > −εnα2(t, v2 − u

n
2 (t)), ∀v2 ∈ V2, a.e. t ∈ (0, T),
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which implies un ∈ Ωα,εn for all n > 1. Since diam(Ωα,εn(t))→ 0 as n→∞ for a.e. t ∈ (0, T), {un(t)} is a
Cauchy sequence in V for a.e. t ∈ (0, T). Without loss of generality, we may assume that for a.e. t ∈ (0, T),
{un(t)} converges strongly to u(t) = (u1(t),u2(t)) in V = V1 × V2.

Now, we claim that u is a unique solution to the system STDHVI of time-dependent hemivariational
inequalities. Indeed, since operators A1(t, ·) +B1(t, ·) and A2(t, ·) +B2(t, ·) are demicontinuous on V1×V2
(due to hypotheses (3)-(6) in (HAB)) and the functional J satisfies the hypothesis (HJ), we can obtain by
the similar arguments to those in (3.4) and (3.5) that for a.e. t ∈ (0, T),

〈A1(t,u1(t)) +B1(t,u2(t)) − f1(t), v1 − u1(t)〉V∗1×V1 + J
◦
1(t,M1(u1(t)),M2(u2(t));M1(v1 − u1(t)))

> lim
n→∞〈A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t), v1 − u

n
1 (t)〉V∗1×V1

+ lim sup
n→∞ J◦1(t,M1(u

n
1 (t)),M2(u

n
2 (t));M1(v1 − u

n
1 (t)))

= lim sup
n→∞ {〈A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t), v1 − u

n
1 (t)〉V∗1×V1

+ J◦1(t,M1(u
n
1 (t)),M2(u

n
2 (t));M1(v1 − u

n
1 (t)))}

> lim
n→∞− εnα1(t, v1 − u

n
1 (t))

= 0.

By the similar way, one has for a.e. t ∈ (0, T),

〈A2(t,u2(t)) +B2(t,u1(t)) − f2(t), v2 − u2(t)〉V∗2×V2 + J
◦
2(t,M1(u1(t)),M2(u2(t));M2(v2 − u2(t))) > 0.

Therefore, u is a solution to the system STDHVI.
Finally, we show the uniqueness of solutions of the system STDHVI. Suppose that u ′ is another

solution to the system STDHVI of time-dependent hemivariational inequalities. Since, for any ε > 0,
u, u ′ ∈ Ωα,ε,

‖u(t) − u ′(t)‖V1×V2 6 diam(Ωα,ε(t)),

which together with the condition diam(Ωα,ε(t)) → 0 as ε → 0 for a.e. t ∈ (0, T), implies that u = u ′.
This completes the proof.

Theorem 3.12. Let A1 : (0, T)× V1 → V∗1 ,A2 : (0, T)× V2 → V∗2 ,B1 : (0, T)× V2 → V∗1 and B2 : (0, T)× V1 →
V∗2 satisfy the hypothesis (HAB) and J : (0, T) × X1 × X2 → R satisfy the hypothesis (HJ). Then the system
STDHVI is strongly α-well-posed in the generalized sense if and only if for a.e. t ∈ (0, T),

Ωα,ε(t) 6= ∅, ∀ε > 0 and µ(Ωα,ε(t))→ 0 as ε→ 0.

Proof. Necessity. Suppose that the system STDHVI of time-dependent hemivariational inequalities is
strongly α-well-posed in the generalized sense. Then the solution set of the system STDHVI, S 6= ∅. We
define the multi-valued mapping S(t) : (0, T)→ 2V as follows:

S(t) := {u(t) : u ∈ S}, ∀t ∈ (0, T).

This means that, for any ε > 0 and a.e. t ∈ (0, T), Ωα,ε(t) 6= ∅ because S(t) ⊆ Ωα,ε(t). Moreover, we
claim here that the set S(t) is compact in V for a.e. t ∈ (0, T). Indeed, for any sequence {un(t)} ⊂ S(t)
with un(t) = (un1 (t),u

n
2 (t)), the corresponding {un} ⊂ S is an α-approximating sequence for STDHVI

and thus there exists a subsequence {unk} such that for a.e. t ∈ (0, T), unk(t)→ u(t) in V for some u ∈ S,
which implies that S(t) is compact in V for a.e. t ∈ (0, T). To complete the proof of necessity, we show
that µ(Ωα,ε(t))→ 0 as ε→ 0 for a.e. t ∈ (0, T). It follows from S(t) ⊆ Ωα,ε(t) for a.e. t ∈ (0, T) that

H(Ωα,ε(t),S(t)) = max{e(Ωα,ε(t),S(t)), e(S(t), Ωα,ε(t))} = e(Ωα,ε(t),S(t)).
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Since the set S(t) is compact for a.e. t ∈ (0, T), one has for a.e. t ∈ (0, T),

µ(Ωα,ε(t)) 6 2H(Ωα,ε(t),S(t)) = 2e(Ωα,ε(t),S(t)).

Now, to show µ(Ωα,ε(t)) → 0 as ε → 0 for a.e. t ∈ (0, T), it suffices to show that e(Ωα,ε(t),S(t)) → 0
as ε → 0 for a.e. t ∈ (0, T). Assume by contradiction that for some t0 ∈ (0, T), e(Ωα,ε(t0),S(t0)) 6→ 0 as
ε → 0. Then there exist a constant l > 0, a sequence {εn} ⊂ [0,∞) with εn → 0 and un(t0) ∈ Ωα,εn(t0)
such that

un(t0) 6∈ S(t0) +B(0, l), (3.8)

where B(0, l) is the closed ball centered at 0 with radius l. Since un(t0) ∈ Ωα,εn(t0) with εn → 0, the
corresponding {un} is an α-approximating sequence for STDHVI. So, there exists a subsequence {unk}
such that for a.e. t ∈ (0, T), unk(t)→ u(t) in V for some u ∈ S (due to the strong α-well-posedness in the
generalized sense of STDHVI). This is a contradiction to (3.8). Consequently, µ(Ωα,ε(t))→ 0 as ε→ 0 for
a.e. t ∈ (0, T).

Sufficiency. Assume that for a.e. t ∈ (0, T), Ωα,ε(t) 6= ∅, for all ε > 0 and µ(Ωα,ε(t))→ 0 as ε→ 0. We
show that the system STDHVI of time-dependent hemivariational inequalities is strongly α-well-posed in
the generalized sense. Indeed, we observe that for a.e. t ∈ (0, T),

S(t) =
⋂
ε>0

Ωα,ε(t).

Furthermore, since for a.e. t ∈ (0, T), µ(Ωα,ε(t))→ 0 as ε→ 0 and by Remark 3.10, Ωα,ε(t) is nonempty
and closed for any ε > 0, it follows from the theorem in [10] that for a.e. t ∈ (0, T), S(t) is nonempty
compact and

e(Ωα,ε(t),S(t)) = H(Ωα,ε(t)),S(t))→ 0 as ε→ 0. (3.9)

Next, to show the strong α-well-posedness in the generalized sense of STDHVI, let {un} ⊂ V with
un = (un1 ,un2 ) be an α-approximating sequence for STDHVI. Then there exists a nonnegative sequence
{εn} with εn → 0 such that
〈A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t), v1 − u

n
1 (t)〉V∗1×V1 + J

◦
1(t,M1(u

n
1 (t)),M2(u

n
2 (t));M1(v1 − u

n
1 (t)))

> −εnα1(t, v1 − u
n
1 (t)), ∀v1 ∈ V1, a.e. t ∈ (0, T),

〈A2(t,un2 (t)) +B2(t,un1 (t)) − f2(t), v2 − u
n
2 (t)〉V∗2×V2 + J

◦
2(t,M1(u

n
1 (t)),M2(u

n
2 (t));M2(v2 − u

n
2 (t)))

> −εnα2(t, v2 − u
n
2 (t)), ∀v2 ∈ V2, a.e. t ∈ (0, T),

which implies un(t) ∈ Ωα,εn(t). This together with (3.9), implies that for a.e. t ∈ (0, T),

d(un(t),S(t)) 6 e(Ωα,εn(t),S(t))→ 0. (3.10)

We claim that there exists a subsequence {unk} of {un} such that for a.e. t ∈ (0, T), unk(t)→ û(t) in V
for some û ∈ S. Indeed, suppose that for every subsequence {unj} of {un}, there exists t0 ∈ (0, T) such that
unj(t0) 6→ u(t0) in V for all u ∈ S. Then, from (3.10) and the compactness of S(t0), it follows that there
exists ūnj(t0) ∈ S(t0) such that as j→∞

‖unj(t0) − ūnj(t0)‖V1×V2 = d(u
nj(t0),S(t0)) 6 e(Ωα,εnj

(t0),S(t0))→ 0.

Again from the compactness of S(t0), we may, without loss of generality, that ūnj(t0) → ū(t0) in V for
some ū ∈ S. So, it follows that

‖unj(t0) − ū(t0)‖V1×V2 6 ‖u
nj(t0) − ūnj(t0)‖V1×V2 + ‖ū

nj(t0) − ū(t0)‖V1×V2 → 0,

that is, unj(t0)→ ū(t0) in V for some ū ∈ S, which reaches a contradiction. Therefore, the system STDHVI
is strongly α-well-posed in the generalized sense. This completes the proof.
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Remark 3.13. The system SHVI of hemivariational inequalities considered in [32] is extended to develop
the system STDHVI of time-dependent hemivariational inequalities without Volterra integral term. Our
Lemmas 3.8-3.9 and Theorems 3.11-3.12 improve, extend and develop Lemmas 3.7-3.8 and Theorems 3.10-
3.11 in [32] to a great extent because the system STDHVI of time-dependent hemivariational inequalities
without Volterra integral term is very different from the system SHVI of hemivariational inequalities
considered in [32, Lemmas 3.7-3.8 and Theorems 3.10-3.11].

4. Relations with well-posedness of SIP

In this section, we first introduce systems of inclusion problems in the product space V1 × V2 and
then define the concept of α-well-posedness for the system of inclusion problems. Moreover, we show
the equivalence results between the α-well-posedness of the system of time-dependent hemivariational
inequalities and the α-well-posedness of the corresponding system of inclusion problems.

Suppose that, for i = 1, 2, Γi : (0, T)× V1 × V2 → 2V
∗
i is a nonempty set-valued mapping. A system of

inclusion problems associated with mappings Γ1 and Γ2 is defined as follows:
Find (u1,u2) ∈ V1 ×V2 such that for a.e. t ∈ (0, T),

(SIP)

{
01 ∈ Γ1(t,u1(t),u2(t)),
02 ∈ Γ2(t,u1(t),u2(t)),

where for i = 1, 2, 0i ∈ V∗i represent the zero element in V∗i . For simplicity, we use the symbols as follows:

u = (u1,u2) ∈ V = V1 ×V2, 0 = (01, 02) ∈ V∗ = V∗1 × V∗2 , Γ(t, u(t)) = (Γ1(t, u(t)), Γ2(t, u(t))).

This allows us to simplify the system of inclusion problems as follows:
Find u ∈ V such that for a.e. t ∈ (0, T),

0 ∈ Γ(t, u(t)).

Definition 4.1. A sequence {un} ⊂ V1 × V2 with un = (un1 ,un2 ) is called an α-approximating sequence
for the system SIP of inclusion problems if there exist pn(t) = (pn1 (t),p

n
2 (t)) ∈ Γ(t, un(t)), n ∈ N for a.e.

t ∈ (0, T) and a nonnegative sequence {εn} with ‖pn(t)‖V∗1×V∗2 + εn → 0 as n→∞ for a.e. t ∈ (0, T), such
that for a.e. t ∈ (0, T),{

〈pn1 (t), v1 − u
n
1 (t)〉V∗1×V1 > −εnα1(t, v1 − u

n
1 (t)), ∀v1 ∈ V1, n ∈ N,

〈pn2 (t), v2 − u
n
2 (t)〉V∗2×V2 > −εnα2(t, v2 − u

n
2 (t)), ∀v2 ∈ V2, n ∈ N.

Definition 4.2. The system SIP is said to be strongly (resp., weakly) α-well-posed if it has a unique solution
u and every α-approximating sequence {un} has the property that for a.e. t ∈ (0, T), un(t) → u(t) (resp.,
un(t) ⇀ u(t)) in V .

Definition 4.3. The system SIP is said to be strongly (resp., weakly) α-well-posed in the generalized sense
if the solution set S of SIP is nonempty and, for every α-approximating sequence {un}, there always exists
a subsequence {unk} such that for a.e. t ∈ (0, T), unk(t)→ u(t) (resp., unk(t) ⇀ u(t)) in V for some u ∈ S.

For t ∈ (0, T) and v = (v1, v2) ∈ V , we define some operators as follows:
A : (0, T)× V → V∗, A(t, v) := (A1(t, v1) +B1(t, v2),A2(t, v2) +B2(t, v1)),
M : V → X = X1 ×X2, Mv := (M1v1,M2v2),
f : (0, T)→ V∗, f(t) := (f1(t), f2(t)).

In order to show that the α-well-posedness of the system of time-dependent hemivariational inequal-
ities is equivalent to the α-well-posedness of its corresponding system of inclusion problems, we first
give a lemma which establishes the equivalence between the system STDHVI and its derived system of
inclusion problems.
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Lemma 4.4. Let locally Lipschitz functional J(t, ·, ·) be regular on X for a.e. t ∈ (0, T). Then, u = (u1,u2) ∈
V1 × V2 is a solution to the system STDHVI of time-dependent hemivariational inequalities if and only if it solves
the following derived system of inclusion problems: Find u = (u1,u2) ∈ V1 ×V2 such that for a.e. t ∈ (0, T),

(DSIP)

{
f1(t) ∈ A1(t,u1(t)) +B1(t,u2(t)) +M

∗
1 ◦ ∂1J(t,M1u1(t),M2u2(t)),

f2(t) ∈ A2(t,u2(t)) +B2(t,u1(t)) +M
∗
2 ◦ ∂2J(t,M1u1(t),M2u2(t)),

where for i 6= j = 1, 2, M∗i is the adjoint operator of Mi, ∂iJ(t, x1, x2) denotes the Clarke’s generalized gradient of
the functional J(t, ·, xj) at xi.

Proof. First of all, we show the necessity. Indeed, assume that u = (u1,u2) ∈ V1 × V2 is a solution to
the system STDHVI of time-dependent hemivariational inequalities, i.e., for all v = (v1, v2) ∈ V and
a.e. t ∈ (0, T),{

〈A1(t,u1(t)) +B1(t,u2(t)) − f1(t), v1〉V∗1×V1 + J
◦
1(t,M1(u1(t)),M2(u2(t));M1v1) > 0,

〈A2(t,u2(t)) +B2(t,u1(t)) − f2(t), v2〉V∗2×V2 + J
◦
2(t,M1(u1(t)),M2(u2(t));M2v2) > 0,

which is hence equivalent to the following{
J◦1(t,M1(u1(t)),M2(u2(t));M1v1) > 〈f1(t) −A1(t,u1(t)) −B1(t,u2(t)), v1〉V∗1×V1 ,

J◦2(t,M1(u1(t)),M2(u2(t));M2v2) > 〈f2(t) −A2(t,u2(t)) −B2(t,u1(t)), v2〉V∗2×V2 .
(4.1)

Moreover, since J(t, ·, ·) is regular and Mi is linear bounded for i = 1, 2, it follows from Proposition
3.37 in monograph [24] that J◦1(t,M1(u1(t)),M2(u2(t));M1v1) = (J(t, ·,M2u2(t)) ◦M1)

◦(u1(t); v1) and
∂(J(t, ·,M2u2(t)) ◦M1)(u1(t)) = M∗1 ◦ ∂1J(t,M1u1(t),M2u2(t)) for all v1 ∈ V1 and a.e. t ∈ (0, T) and
that J◦2(t,M1(u1(t)),M2(u2(t));M2v2) = (J(t,M1u1(t), ·) ◦M2)

◦(u2(t); v2) and

∂(J(t,M1u1(t), ·) ◦M2)(u2(t)) =M
∗
2 ◦ ∂2J(t,M1u1(t),M2u2(t))

for all v2 ∈ V2 and a.e. t ∈ (0, T). So, it follows from (4.1) that for a.e. t ∈ (0, T),{
f1(t) ∈ A1(t,u1(t)) +B1(t,u2(t)) +M

∗
1 ◦ ∂1J(t,M1u1(t),M2u2(t)),

f2(t) ∈ A2(t,u2(t)) +B2(t,u1(t)) +M
∗
2 ◦ ∂2J(t,M1u1(t),M2u2(t)),

which implies that u = (u1,u2) ∈ V1 ×V2 is the solution to the system DSIP.
Sufficiency. Suppose that u = (u1,u2) ∈ V1 × V2 is a solution to the derived system DSIP of inclusion

problems, i.e., for a.e. t ∈ (0, T),

(DSIP)

{
f1(t) ∈ A1(t,u1(t)) +B1(t,u2(t)) +M

∗
1 ◦ ∂1J(t,M1u1(t),M2u2(t)),

f2(t) ∈ A2(t,u2(t)) +B2(t,u1(t)) +M
∗
2 ◦ ∂2J(t,M1u1(t),M2u2(t)).

Then, there exist η1(t) ∈ ∂1J(t,M1u1(t),M2u2(t)) and η2(t) ∈ ∂2J(t,M1u1(t),M2u2(t)) such that for
a.e. t ∈ (0, T),

f1(t) = A1(t,u1(t)) +B1(t,u2(t)) +M
∗
1η1(t) and f2(t) = A2(t,u2(t)) +B2(t,u1(t)) +M

∗
2η2(t). (4.2)

By multiplying the above two equalities in (4.2) with v1 and v2, respectively, we can obtain by the definition
of the Clarke’s generalized gradient, that for all v = (v1, v2) ∈ V1 × V2 and a.e. t ∈ (0, T),

〈f1(t), v1〉V∗1×V1 = 〈A1(t,u1(t)) +B1(t,u2(t)) +M
∗
1η1(t), v1〉V∗1×V1

= 〈A1(t,u1(t)) +B1(t,u2(t)), v1〉V∗1×V1 + 〈η1(t),Mv1〉V∗1×V1

6 〈A1(t,u1(t)) +B1(t,u2(t)), v1〉V∗1×V1 + J
◦
1(t,M1u1(t),M2u2(t);M1v1),
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and
〈f2(t), v2〉V∗2×V2 = 〈A2(t,u2(t)) +B2(t,u1(t)) +M

∗
2η2(t), v2〉V∗2×V2

= 〈A2(t,u2(t)) +B2(t,u1(t)), v2〉V∗2×V2 + 〈η2(t),Mv2〉V∗2×V2

6 〈A2(t,u2(t)) +B2(t,u1(t)), v2〉V∗2×V2 + J
◦
2(t,M1u1(t),M2u2(t);M2v2).

Therefore, u is a solution of the system STDHVI. This completes the proof.

Remark 4.5. It is easy to simplify the system DSIP as follows: Find u ∈ V such that for a.e. t ∈ (0, T),

0 ∈ A(t, u) − f(t) +Θ(t, u),

where Θ(t, v) := (M∗1 ◦ ∂1J(t,M1v1,M2v2),M∗2 ◦ ∂2J(t,M1v1,M2v2)) for all v = (v1, v2) ∈ V and t ∈ (0, T).

Theorem 4.6. Let locally Lipschitz functional J(t, ·, ·) be regular on X for a.e. t ∈ (0, T). Then, the system STDHVI
of time-dependent hemivariational inequalities is strongly α-well-posed if and only if the derived system DSIP of
inclusion problems is strongly α-well-posed.

Proof. Necessity. Suppose that the system STDHVI of time-dependent hemivariational inequalities is
strongly α-well-posed. Then there exists a unique u = (u1,u2) ∈ V1×V2 solving STDHVI. It follows from
Lemma 4.4 that u is the unique solution to DSIP. To show the strong α-well-posedness of DSIP, we let
un = (un1 ,un2 ) be an α-approximating sequence for DSIP. We claim that for a.e. t ∈ (0, T), un(t)→ u(t) in
V . Indeed, one knows that there exist pn(t) = (pn1 (t),p

n
2 (t)) ∈ A(t, u(t)) − f(t) +Θ(t, un(t)), n ∈ N for

a.e. t ∈ (0, T) and a nonnegative sequence {εn} with ‖pn(t)‖V∗1×V∗2 + εn → 0 as n→∞ for a.e. t ∈ (0, T),
such that for a.e. t ∈ (0, T),{

〈pn1 (t), v1 − u
n
1 (t)〉V∗1×V1 > −εnα1(t, v1 − u

n
1 (t)), ∀v1 ∈ V1, n ∈ N,

〈pn2 (t), v2 − u
n
2 (t)〉V∗2×V2 > −εnα2(t, v2 − u

n
2 (t)), ∀v2 ∈ V2, n ∈ N.

(4.3)

It is clear that for a.e. t ∈ (0, T),{
pn1 (t) −A1(t,un1 (t)) −B1(t,un2 (t)) + f1(t) ∈M∗1 ◦ ∂1J(t,M1u

n
1 (t),M2u

n
2 (t)),

pn2 (t) −A2(t,un2 (t)) −B2(t,un1 (t)) + f2(t) ∈M∗2 ◦ ∂2J(t,M1u
n
1 (t),M2u

n
2 (t)).

By the similar arguments to those in the proof of Lemma 4.4, one easily obtains that for all v = (v1, v2) ∈ V
and a.e. t ∈ (0, T),

J◦1(t,M1u
n
1 (t),M2u

n
2 (t);M1(v1 − u

n
1 (t)))

> 〈−A1(t,un1 (t)) −B1(t,un2 (t)) + f1(t) + p
n
1 (t), v1 − u

n
1 (t)〉V∗1×V1 ,

J◦2(t,M1u
n
1 (t),M2u

n
2 (t);M2(v2 − u

n
2 (t)))

> 〈−A2(t,un2 (t)) −B2(t,un1 (t)) + f2(t) + p
n
2 (t), v2 − u

n
2 (t)〉V∗2×V2 ,

which together with (4.3), implies that for all v = (v1, v2) ∈ V and a.e. t ∈ (0, T),
〈A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t), v1 − u

n
1 (t)〉V∗1×V1 + J

◦
1(t,M1u

n
1 (t),M2u

n
2 (t);M1(v1 − u

n
1 (t)))

> 〈pn1 (t), v1 − u
n
1 (t)〉V∗1×V1 > −εnα1(t, v1 − u

n
1 (t)),

〈A2(t,un2 (t)) +B2(t,un1 (t)) − f2(t), v2 − u
n
2 (t)〉V∗2×V2 + J

◦
2(t,M1u

n
1 (t),M2u

n
2 (t);M2(v2 − u

n
2 (t)))

> 〈pn2 (t), v2 − u
n
2 (t)〉V∗2×V2 > −εnα2(t, v2 − u

n
2 (t)).

This means that {un} is an α-approximating sequence for STDHVI. Therefore, it follows from the strong
α-well-posedness of STDHVI that for a.e. t ∈ (0, T), un(t) → u(t) in V . Consequently, DISP is strongly
α-well-posed.
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Sufficiency. Let the system DSIP of inclusion problems be strongly α-well-posed. Then there exists a
unique solution u to DSIP, which together with Lemma 4.4, implies that u is the unique solution to the
system STDHVI of time-dependent hemivariational inequalities as well. Let {un} be an α-approximating
sequence for STDHVI. Then there exists a nonnegative sequence {εn} with εn → 0 as n→∞ such that

〈A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t), v1 − u
n
1 (t)〉V∗1×V1

+ J◦1(t,M1(u
n
1 (t)),M2(u

n
2 (t));M1(v1 − u

n
1 (t)))

> −εnα1(t, v1 − u
n
1 (t)), ∀v1 ∈ V1, a.e. t ∈ (0, T),

〈A2(t,un2 (t)) +B2(t,un1 (t)) − f2(t), v2 − u
n
2 (t)〉V∗2×V2

+ J◦2(t,M1(u
n
1 (t)),M2(u

n
2 (t));M2(v2 − u

n
2 (t)))

> −εnα2(t, v2 − u
n
2 (t)), ∀v2 ∈ V2, a.e. t ∈ (0, T).

By virtue of Proposition 2.7 (v), one observes that for all v = (v1, v2) ∈ V and a.e. t ∈ (0, T),
J◦1(t,M1u

n
1 (t),M2u

n
2 (t);M1(v1 − u

n
1 (t)))

= max{〈h1,M1(v1 − u
n
1 (t))〉V∗1×V1 : h1 ∈ ∂1J(t,M1u

n
1 (t),M2u

n
2 (t))},

J◦2(t,M1u
n
1 (t),M2u

n
2 (t);M2(v2 − u

n
2 (t)))

= max{〈h2,M2(v2 − u
n
2 (t))〉V∗2×V2 : h2 ∈ ∂2J(t,M1u

n
1 (t),M2u

n
2 (t))}.

Thus, for any v = (v1, v2) ∈ V and a.e. t ∈ (0, T), there exist

h1(t,un1 (t),u
n
2 (t), v1) ∈ ∂1J(t,M1u

n
1 (t),M2u

n
2 (t)) and h2(t,un1 (t),u

n
2 (t), v2) ∈ ∂2J(t,M1u

n
1 (t),M2u

n
2 (t))

such that 
〈A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t), v1 − u

n
1 (t)〉V∗1×V1

+ 〈h1(t,un1 (t),u
n
2 (t), v1),M1(v1 − u

n
1 (t))〉V∗1×V1 > −εnα1(t, v1 − u

n
1 (t)),

〈A2(t,un2 (t)) +B2(t,un1 (t)) − f2(t), v2 − u
n
2 (t)〉V∗2×V2

+ 〈h2(t,un1 (t),u
n
2 (t), v2),M2(v2 − u

n
2 (t))〉V∗2×V2 > −εnα2(t, v2 − u

n
2 (t)).

(4.4)

According to Proposition 2.7 (iv), one knows that for a.e. t ∈ (0, T), both ∂1J(t,M1u
n
1 (t),M2u

n
2 (t)) and

∂2J(t,M1u
n
1 (t),M2u

n
2 (t)) are nonempty, convex, bounded and closed in V∗1 and V∗2 , respectively. So, it fol-

lows that for a.e. t∈(0, T), the sets {A1(t,un1 (t))+B1(t,un2 (t))+p1 − f1(t) : p1 ∈ ∂1J(t,M1u
n
1 (t),M2u

n
2 (t))}

and {A2(t,un2 (t)) + B2(t,un1 (t)) + p2 − f2(t) : p2 ∈ ∂2J(t,M1u
n
1 (t),M2u

n
2 (t))} are also nonempty, convex,

bounded and closed in V∗1 and V∗2 , respectively. Therefore, for i = 1, 2, it follows from (4.4) and Theorem
2.12 with ϕi(t, ·) = εnαi(t, ·− uni (t)) that for a.e. t ∈ (0, T), there exists

hn(t) = (hn1 (t),h
n
2 (t)) ∈ ∂1J(t,M1u

n
1 (t),M2u

n
2 (t))× ∂2J(t,M1u

n
1 (t),M2u

n
2 (t)),

which is independent from v = (v1, v2), such that for all v = (v1, v2) ∈ V and a.e. t ∈ (0, T),
〈A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t), v1 − u

n
1 (t)〉V∗1×V1

+ 〈hn1 (t),M1(v1 − u
n
1 (t))〉V∗1×V1 > −εnα1(t, v1 − u

n
1 (t)),

〈A2(t,un2 (t)) +B2(t,un1 (t)) − f2(t), v2 − u
n
2 (t)〉V∗2×V2

+ 〈hn2 (t),M2(v2 − u
n
2 (t))〉V∗2×V2 > −εnα2(t, v2 − u

n
2 (t)).

(4.5)

So, it follows from (4.5) that for a.e. t ∈ (0, T),{
〈pn1 (t), v1 − u

n
1 (t)〉V∗1×V1 > −εnα1(t, v1 − u

n
1 (t)), ∀v1 ∈ V1, n ∈ N,

〈pn2 (t), v2 − u
n
2 (t)〉V∗2×V2 > −εnα2(t, v2 − u

n
2 (t)), ∀v2 ∈ V2, n ∈ N,

(4.6)
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where
pn1 (t) = A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t) +M

∗
1h
n
1 (t),

and
pn2 (t) = A2(t,un2 (t)) +B2(t,un1 (t)) − f2(t) +M

∗
2h
n
2 (t).

It is clear that for a.e. t ∈ (0, T),{
pn1 (t) ∈ A1(t,un1 (t)) +B1(t,un2 (t)) − f1(t) +M

∗
1 ◦ ∂1J(t,M1u

n
1 (t),M2u

n
2 (t)), ∀n ∈ N,

pn2 (t) ∈ A2(t,un2 (t)) +B2(t,un1 (t)) − f2(t) +M
∗
2 ◦ ∂2J(t,M1u

n
1 (t),M2u

n
2 (t)), ∀n ∈ N.

That is, pn(t) = (pn1 (t),p
n
2 (t)) ∈ A(t, u(t)) − f(t) +Θ(t, un(t)),n ∈ N for a.e. t ∈ (0, T).

Next, to show ‖pn(t)‖V∗ → 0 as n → ∞ for a.e. t ∈ (0, T), it is sufficient to show ‖pni (t)‖V∗i → 0 as
n→∞ for a.e. t ∈ (0, T) where i = 1, 2. Indeed, let t ∈ (0, T) be fixed. Then, ‖pni (t)‖V∗i → 0 as n→∞ if
and only if for any ε > 0 there exists an integer N > 1 such that ‖pni (t)‖V∗i < ε for all n > N. If for some
t0 ∈ (0, T), ‖pni (t0)‖V∗i 6→ 0 as n→∞, then there exists εi > 0 and for each k > 1 there exists pnki (t0) such
that

‖pnki (t0)‖V∗i > εi.

Note that Vi is reflexive, i.e., Vi = V∗∗i . According to the normalized duality mapping Ji from V∗i to its
dual V∗∗i (= Vi) defined by

Ji(νi) = {xi ∈ Vi : 〈νi, xi〉V∗i×Vi = ‖νi‖
2
V∗i

= ‖xi‖2
Vi
}, ∀νi ∈ V∗i ,

we know that for each n ∈ N there exists ji(pni (t0)) ∈ Ji(p
n
i (t0)) such that

〈pni (t0), ji(pni (t0))〉V∗i×Vi = ‖p
n
i (t0)‖2

V∗i
= ‖ji(pni (t0))‖2

Vi
.

Putting t = t0 and vi = uni (t0) − ji(p
n
i (t0)) in (4.6), we get

〈pni (t0),−ji(pni (t0))〉V∗i×Vi > −εnαi(t0,−ji(pni (t0))), ∀n ∈ N,

which immediately implies that

− ‖pni (t0)‖2
V∗i

> −εnαi(t0,−ji(pni (t0))), ∀n ∈ N. (4.7)

Taking into account ‖ ji(p
nk
i (t0))

‖pnki (t0)‖V∗
i

‖Vi = 1 for all k > 1, we obtain that ‖εnk
ji(p

nk
i (t0))

‖pnki (t0)‖V∗
i

‖Vi → 0 as k → ∞.

Utilizing the continuity and positive homogeneity of αi(t0, ·), we deduce from (4.7) that

εi 6 ‖pnki (t0)‖V∗i 6
εnk

‖pnki (t0)‖V∗i
αi(t0,−ji(p

nk
i (t0)))

= αi(t0,−εnk
ji(p

nk
i (t0))

‖pnki (t0)‖V∗i
)→ 0 as k→∞,

which reaches a contradiction. This means that ‖pni (t)‖V∗i → 0 as n → ∞ for a.e. t ∈ (0, T) where
i = 1, 2. Hence, the sequence {un} with un = (un1 ,un2 ) is an α-approximating sequence for DSIP. So, it
follows from the strong α-well-posedness of DSIP that un(t)→ u(t) in V for a.e. t ∈ (0, T). Therefore, the
system of time-dependent hemivariational inequalities STDHVI is strongly α-well-posed. This completes
the proof.

Utilizing the similar arguments to those in the proof of Theorem 4.6, on can easily prove the following
equivalence between the strong α-well-posedness in the generalized sense of STDHVI and the strong
α-well-posedness in the generalized sense of the system DSIP.
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Theorem 4.7. Let locally Lipschitz functional J(t, ·, ·) be regular on X for a.e. t ∈ (0, T). Then, the system STDHVI
of time-dependent hemivariational inequalities is strongly α-well-posed in the generalized sense if and only if the
derived system DSIP of inclusion problems is strongly α-well-posed in the generalized sense.

Remark 4.8. Compared with [32, Theorems 4.5-4.6], our Theorems 4.6 and 4.7 use the system STDHVI of
time-dependent hemivariational inequalities in place of the system SHVI of hemivariational inequalities,
the derived system DSIP corresponding to STDHVI in place of the derived system DSIP corresponding
to SHVI and the α-well-posedness (resp., the α-well-posedness in the generalized sense) in place of the
well-posedness (resp., the well-posedness in the generalized sense), respectively. All in all, our Theorems
4.6 and 4.7 improve, extend and develop [32, Theorems 4.5-4.6] to a great extent.

5. Concluding remarks

The present paper generalizes the concept of α-well-posedness to a system STDHVI of time-dependent
hemivariational inequalities without Volterra integral terms in Banach spaces. We give several definitions
of α-well-posedness and, with assumptions (HAB), (HJ) on the operators involved in STDHVI, give some
metric characterizations of α-well-posedness for STDHVI considered. On the other hand, by establishing
an equivalence result between the system STDHVI and a derived system DSIP of inclusion problems, we
prove that the strong α-well-posedness (resp., in the generalized sense) of STDHVI is equivalent to the
strong α-well-posedness (resp., in the generalized sense) of DSIP.

Several problems related to the α-well-posedness of systems of time-dependent hemivariational in-
equalities remain to be considered in the future study. The first one is to exploit some conditions under
which the strong (resp., weak) α-well-posedness of systems of time-dependent hemivariational inequal-
ities is equivalent to the existence and uniqueness of their solutions. The second one is to generalize
the study of well-posedness (including α-well-posedness) to systems of time-dependent hemivariational
inequalities involving both nonsmooth functionals and proper, convex and lower semicontinuous func-
tionals, which are referred to as systems of time-dependent variational-hemivariational inequalities. In
addition, it is well-known that there are many other concepts of well-posedness in the literature on opti-
mization problems and variational inequalities, such as well-posedness by perturbations [2, 5] and Levitin-
Polyak well-posedness [3, 7, 18, 19]. Without question, extending these concepts of well-posedness to the
study of systems of time-dependent hemivariational inequalities is very interesting and quite valuable in
the future.
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