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aInstitute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
bDepartment of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

Communicated by A. Atangana

Abstract
Our work aims to study weakly ν-Lindelöf (briefly wν-Lindelöf) space in generalized topological spaces. Some char-

acterizations of wν-Lindelöf subspaces and subsets are showed. Furthermore, we shall show that the wν-Lindelöf generalized
topological space is not a hereditary property. Finally, the effect of some mappings and decompositions of continuity are studied.
The main result that we obtained on is the effect of almost (ν,µ)-continuous function on wν-Lindelöf generalized topological
space. c©2017 All rights reserved.
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1. Introduction

A lot of attention has been made to study properties of covering in topological spaces, which include
open and different kind of generalized open sets. Further, several authors have been introduced the
generalization of Lindelöf space separately for many reasons and according to the sets that they are
interested in such as [17, 22]. Moreover, in a few last years the generalization of Lindelöf spaces have been
extended and generalized to bitopological setting as in [23, 25].

In 1997, essential kind of sets was introduced by Császár [8], namely generalized open sets, that pro-
duced generalized topological spaces. Afterwords, a lot of authors have been achieved to generalize the
topological notions to generalized topological surroundings. In literature, there are several generaliza-
tions of the notion of regular sets, and these are studied separately for different reasons and purposes.
In 2008, Császár [13] defined ν-regular open (resp. ν-regular closed) sets. In 2012, Sarsak [27] intro-
duced and studied ν-compact (resp. ν-Lindelöf) sets in generalized topological spaces. After that in 2014,
Arar [5] gave the corresponding definitions of paracompact spaces in generalized topological spaces. In
2015, Kiliçman and Abuage studied some spaces generated by ν-regular sets [16]. Also, in [3] and [1]
Abuage and Kiliçman introduced nearly ν -Lindelöf (briefly. nν-Lindelöf) and almost ν-Lindelöf (briefly
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aν-Lindelöf) space in generalized topological spaces respectively. Currently, our purpose is to define a
new generalization of ν-Lindelöf space namely; wν-Lindelöf.

In the third section, we shall introduce the concept of wν-Lindelöf generalized topological spaces,
and obtain some results. Furthermore, the relation among wν-Lindelöf, ν-Lindelöf, nν-Lindelöf and
aν-Lindelöf GTS have been given.

In the forth section, some characterizations of the concept of wν-Lindelöf subspaces and subsets are
investigated. The primary result is that the wν-Lindelöf generalized topological space is not a hereditary
property. In the fifth section, we shall introduce the effect of some mappings and decompositions. The
main result of our study is that almost (ν,µ)-continuous image of wν-Lindelöf generalized topological
space is wν-Lindelöf.

2. Preliminaries

Suppose a nonempty set XG, P(XG) denotes the power set of XG and ν be a nonempty family of P(XG).
The symbol ν implies a generalized topology (briefly GT ) on XG [9] if the empty set ∅ ∈ ν and Uγ ∈ ν
where γ ∈ Ω implies

⋃
γ∈ΩUγ ∈ ν. The pair (XG,ν) is called generalized topological space (briefly GTS)

and we always denote it by GTS (XG,ν) or XG. Each element of GT ν is said to be ν-open set and the
complement of ν-open set is called ν-closed set. Let A be a subset of a GTS (XG,ν), then iν(A) (resp.
cν(A)) denotes the union of all ν-open sets contained in A (resp. denotes the intersection of all ν-closed
sets containing in A), and XG\A denotes the complement of A, cν(XG\A) = XG\(iνA). Moreover, A is
said to be ν-regular open (resp. ν-regular closed) if and only if A = iνcν(A) (resp. A = cνiν(A)) [13].

If a set XG ∈ ν, then a GTS (XG,ν) is called ν-space [21], and will be denoted by a ν-space (XG,ν) or
a ν-space XG. XG is said to be quasi-topological space [12], if the finite intersection of ν-open sets of ν
belongs to ν and denoted by QTS (XG,ν). If B ⊆ P(XG) and ∅ ∈ B. Then B is called a ν-base [10] for ν if
{∪B′ : B′ ⊆ B} = ν, and we say that ν is generated by B. A GT ν generated by ν-regular open sets of a GTS
(XG,ν) is said to be ν-semiregularization [16] of (XG,ν), denoted by GTS (XG,νδ). A GTS XG is said to
be G-regular [19] if for each t ∈ Λν and each ν-closed set F with t /∈ F, there are disjoint ν-open sets U and
V such that t ∈ U and F∩Λν ⊆ V , where Λν is the union of all ν-open sets in XG. A GTS (XG,ν) is called
submaximal [14] if every ν-dense set of XG is ν-open, and is said to be ν-extremally disconnected [10] if
the ν-closure of every ν-open set is ν-open. Moreover, a subset A of a GTS (XG,ν) is called ν-clopen if it
is both ν-open and ν-closed subset.

Proposition 2.1 ([16]).

(a) A GTS (XG,ν) is G-semiregular if for each point t ∈ Λν and each ν-open set U containing t, there exists
ν-open set V such that t ∈ V ⊆ iνcν(V)∩Λν ⊆ U.

(b) A GTS (XG,ν) is almost G-regular if each point t ∈ Λν and each ν-regular open set U containing t, there
exists ν-open set V such that t ∈ V ⊆ cνV ∩Λν ⊆ U.

Definition 2.2. A GTS (XG,ν) is said to be

(a) ν-Lindelöf [27] if for each ν-open cover {Uγ : γ ∈ Ω} of Λν admits a countable sub-collection
{Uγn : n ∈N} such that Λν =

⋃
n∈NUγn .

(b) nν-Lindelöf [3] (resp. aν-Lindelöf [1]) if for each ν-open cover {Uγ : γ ∈ Ω} ofΛν admits a countable
sub-collection {Uγn : n ∈N} such that

Λν =
⋃
n∈N

(iνcν(Uγn)) (resp. Λν =
⋃
n∈N

(cν(Uγn))).

Definition 2.3 ([2]). A GTS (XG,ν) is called nν-paracompact if each ν-regular open cover of Λν admits a
locally finite ν-open refinement.
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Lemma 2.4 ([13]).

(a) If F is ν-closed set then iν(F) is ν-regular open.

(b) If U is ν-open set then cν(U) is ν-regular closed.

3. wν-Lindelöf generalized topological spaces

Definition 3.1. A GTS (XG,ν) is said to be wν-Lindelöf if each ν-open cover {Uγ : γ ∈ Ω} of Λν admits a
countable sub-collection {Uγn : n ∈N} such that

Λν = cν(
⋃
n∈N

Uγn).

Proposition 3.2. A GTS (XG,ν) is wν-Lindelöf if and only if every collection {Fγ : γ ∈ Ω} of ν-closed sets of XG
such that (

⋂
γ∈Ω Fγ)∩Λν = ∅ admits a countable sub-collection {Fγn : n ∈N} such that iν(

⋂
n∈N Fγn)∩Λν =

∅.

Proof. (⇒) Let {Fγ : γ ∈ Ω} be a collection of ν-closed sets of XG such that (
⋂
γ∈Ω Fγ) ∩Λν = ∅. Then

Λν = XG\(
⋂
γ∈Ω Fγ) =

⋃
γ∈Ω(XG\Fγ), i.e., the collection {XG\Fγ : γ ∈ Ω} is a ν-open cover of Λν. Since

XG is wν-Lindelöf, there is a countable sub-collection {XG\Fγn : n ∈N} such that

Λν = cν(
⋃
n∈N

(XG\Fγn)).

Thus,
XG\Λν = XG\(cν(

⋃
n∈N

(XG\Fγn))) = iν(XG\
⋃
n∈N

(XG\Fγn)) = iν(
⋂
n∈N

Fγn).

So, iν(
⋂
n∈N Fγn)∩Λν = ∅.

(⇐) Suppose {Uγ : γ ∈ Ω} is a ν-open cover of Λν, then Λν =
⋃
γ∈ΩUγ and {XG\Uγ : γ ∈ Ω} is

a collection of ν-closed sets of XG. Thus (XG\
⋃
γ∈ΩUγ) ∩Λν = ∅, i.e.,

⋂
γ∈Ω(XG\Uγ) ∩Λν = ∅. By

hypothesis, there is a countable sub-collection {XG\Uγn : n ∈N} such that iν(
⋂
n∈N(XG\Uγn))∩Λν = ∅.

Then,
Λν = XG\(iν(

⋂
n∈N

(XG\Uγn))) = cν(XG\
⋂
n∈N

(XG\Uγn)) = cν(
⋃
n∈N

Uγn),

which implies that a GTS (XG,ν) is a wν-Lindelöf.

Proposition 3.3. A GTS (XG,ν) is wν-Lindelöf if and only if every collection {Fγ : γ ∈ Ω} of ν-closed sets of
Λν for which every countable sub-collection {Fγn : n ∈ N} satisfies iν(

⋂
n∈N Fγn) ∩Λν 6= ∅, the intersection

(
⋂
γ∈Ω Fγ)∩Λν 6= ∅.

Proof. (⇒) Let {Fγ : γ ∈ Ω} be a collection of ν-closed sets of XG for which every countable sub-collection
{Fγn : n ∈N} satisfies iν(

⋂
n∈N(Fγn))∩Λν 6= ∅. Assume that (

⋂
γ∈Ω Fγ)∩Λν = ∅, hence

XG\Λν =
⋂
γ∈Ω

Fγ ⇒ Λν = XG\
⋂
γ∈Ω

Fγ =
⋃
γ∈Ω

(XG\Fγ).

So, {XG\Fγ : γ ∈ Ω} forms a ν-open cover of Λν. Since XG is wν-Lindelöf, there is a countable sub-
collection {XG\Fγn : n ∈N} such that Λν = cν(

⋃
n∈N(XG\Fγn)). Thus,

XG\Λν = XG\cν(
⋃
n∈N

(XG\Fγn)) = iν(XG\
⋃
n∈N

(XG\Fγn)) = iν(
⋂
n∈N

Fγn).

So, iν(
⋂
n∈N Fγn)∩Λν = ∅ which is contradiction.
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(⇐) Let that XG is not wν-Lindelöf GTS, then there exists ν-open cover {Uγ : γ ∈ Ω} of Λν with
no countable sub-collection {Uγn : n ∈ N} such that Λν = cν(

⋃
n∈NUγn). Then Λν 6= cν(

⋃
n∈NUγn)

for any countable sub-collection {Uγn : n ∈ N}. It follows that XG\cν(
⋃
n∈NUγn) ∩ Λν 6= ∅, i.e.,

iν(XG\
⋃
n∈NUγn) ∩Λν 6= ∅ or iν(

⋂
n∈N(XG\Uγn)) ∩Λν 6= ∅. Thus {XG\Uγ : γ ∈ Ω} is a collection of

ν-closed sets of XG and satisfies iν(
⋂
n∈N(XG\Uγn)) ∩Λν 6= ∅ for which every countable sub-collection

{XG\Uγn : n ∈ N}. By hypothesis, (
⋂
γ∈Ω XG\Uγ) ∩Λν 6= ∅, and thus XG\(

⋃
γ∈ΩUγ) ∩Λν 6= ∅, i.e.,

Λν 6=
⋃
γ∈ΩUγ. This is contradiction with the fact that a collection {Uγ : γ ∈ Ω} is a ν-open cover of a

Λν. Then XG is wν-Lindelöf GTS.

Proposition 3.4. Let (XG,ν) be a GTS. If

(a) XG is wν-Lindelöf;

(b) every ν-regular open cover {Uγ : γ ∈ Ω} of Λν admits a countable subcover {Uγn : n ∈ N} with ν-dense
union in Λν;

(c) each collection {Fγ : γ ∈ Ω} of ν-regular closed sets of XG such that (
⋂
γ∈Ω Fγ) ∩Λν = ∅ has a countable

sub-collection {Fγn : n ∈N} such that iν(
⋂
n∈N Fγn)∩Λν = ∅, then the relation: (a)⇒ (b)⇔ (c) is true.

Further, if a GTS XG is G-semiregular, then (b)⇒ (a).

Proof. (a)⇒ (b): It is obvious since every ν-regular open set is ν-open.
(b)⇔ (c) : If {Fγ : γ ∈ Ω} is a collection of ν-regular closed sets of XG such that (

⋂
γ∈Ω Fγ)∩Λν = ∅,

thus XG\Λν =
⋂
γ∈Ω Fγ, and hence Λν =

⋃
γ∈Ω(XG\Fγ), i.e., the collection {XG\Fγ : γ ∈ Ω} is a ν-regular

open cover of Λν by (b), there is a countable sub-collection {XG\Fγn : n ∈ N} with ν-dense union in XG,
i.e., Λν = cν(

⋃
n∈N(XG\Fγn)). So, XG\cν(

⋃
n∈N(XG\Fγn))∩Λν = ∅, that implies

iν(XG\
⋃
n∈N

(XG\Fγn))∩Λν = ∅.

Thus iν(
⋂
n∈N Fγn)∩Λν = ∅.

Conversely, suppose that {Uγ : γ ∈ Ω} is a ν-regular open cover of Λν. Then Λν =
⋃
γ∈ΩUγ, {XG\Uγ :

γ ∈ Ω} is a collection of ν-regular closed sets of XG, hence XG\(
⋃
γ∈ΩUγ)∩Λν = ∅, i.e., (

⋂
γ∈Ω XG\Uγ)∩

Λν = ∅. By (c), there is a countable sub-collection {XG\Uγn : n ∈N} such that iν(
⋂
n∈N(XG\Uγn))∩Λν =

∅. Thus,
Λν = XG\iν(

⋂
n∈N

(XG\Uγn)) = cν(XG\
⋂
n∈N

(XG\Uγn)) = cν(
⋃
n∈N

Uγn),

and (b) is proved.
(b) ⇒ (a) Let U = {Uγ : γ ∈ Ω} be a ν-open cover of XG. By G-semiregularity, for each t ∈ XG,

t ∈ Vt ⊆ Ut for some Ut ∈ U, and some ν-regular open set Vt. Thus by (b) there exist {tn : n ∈ N} such
that

Λν =
⋃
n∈N

(Vtn) ⊆
⋃
n∈N

(Utn) ⊆ cν(
⋃
n∈N

(Utn)).

Thus, {Utn : n ∈ N} is a countable sub-collection such that Λν = cν(
⋃
n∈N(Utn)), and then XG is a

wν-Lindelöf GTS.

Definition 3.5 ([6]). A GTS (XG,ν) is called ν-separable if XG contains a countable ν-dense subset.

Proposition 3.6. If a ν-space (XG,ν) is ν-separable, then it is wν-Lindelöf.

Proof. Suppose {Uγ : γ ∈ Ω} is ν-open cover of ν-separable ν-space (XG,ν). Then XG admits a countable
ν-dense subset D = {t1, t2, · · · , tn, · · · }. Now, for every tk ∈ D, there is γk ∈ Ω with tk ∈ Uγk . Thus
XG = cν(D) = cν(

⋃
k∈N{tk}) = cν(

⋃
k∈NUγk). This proves that a ν-space (XG,ν) is wν-Lindelöf.
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Question 3.7. Dose the wν-Lindelöf property imply aν-Lindelöf?

Our speculation for Question 3.7, that the answer is no, and we can answer it if the GTS (XG,ν) is
weak P-G-space as follows.

Definition 3.8. A GTS (XG,ν) is said to be weak P-G-space if for each countable collection {Un : n ∈ N}

of ν-open sets in XG, then cν(
⋃
n∈NUγn) =

⋃
n∈N cν(Uγn).

Proposition 3.9. In weak P-G-spaces, aν-Lindelöf property is equivalent to wν-Lindelöf property.

Proof. the proof follows directly from the Definition above.

Proposition 3.10 ([1]). Every almost G-regular aν-Lindelöf GTS is nν-Lindelöf.

On using Propositions 3.9, 3.10, we have the following corollary.

Corollary 3.11. A wν-Lindelöf, almost G-regular and weak P-G-spaces is nν-Lindelöf.

Definition 3.12. A GTS (XG,ν) is said to be nν-normal [3] if for each ν-regular closed sets F1 and F2 with
F1 ∩ F2 = ∅, there are disjoint ν-open sets U,V such that F1 ∩Λν ⊆ U, F2 ∩Λν ⊆ V .

Proposition 3.13 ([3]). Every nν-Lindelöf almost G-regular GTS is nν-normal.

Corollary 3.14. A wν-Lindelöf, almost G-regular and weak P-G-space is nν-normal.

Proof. The proof is directly deduced from Propositions 3.10, 3.13.

Corollary 3.15 ([1]). Every ν-extremally disconnected, aν-Lindelöf and G-semiregular GTS is ν-Lindelöf.

Corollary 3.16. A wν-Lindelöf, ν-extremally disconnected, G-semiregular and weak P-G-spaces is ν-Lindelöf.

Lemma 3.17. If {Uα : α ∈ Γ } be a locally finite system of sets in a QTS (XG,ν), then cν(
⋃
α∈Γ Uα) =⋃

α∈Γ cν(Uα).

Proof. Obviously,
⋃
α∈Γ cν(Uα) ⊆ cν(

⋃
α∈Γ Uα). On the other hand, suppose t ∈ cν(

⋃
α∈Γ Uα). Thus

Vt ∩ (
⋃
α∈Γ Uα) 6= ∅ for every ν-open set Vt containing t. Now {Uα : α ∈ Γ } is ν-locally finite, so there

is a ν-open set Vt containing t intersects only finitely many of the sets Uα, say {Uαk : k = 1, 2, · · · ,n},
i.e., Vt ∩Uαk 6= ∅ for each k = 1, 2, · · · ,n. Since every ν-open set of Vt containing t intersects

⋃
α∈Γ Uα,

every ν-open set of Vt containing t must be then intersect
⋃n
k=1Uαk ,i.e., Vt ∩

⋃n
k=1Uαk 6= ∅. Hence, t ∈

cν(
⋃n
k=1Uαk) =

⋃n
k=1(cν(Uαk)), so that for some k, t ∈ cν(Uαk) ⊆

⋃
α∈Γ cν(Uα). Thus cν(

⋃
α∈Γ Uα) ⊆⋃

α∈Γ cν(Uα), this completes the proof.

Proposition 3.18. A wν-Lindelöf, G-semiregular and nν-paracompact QTS (XG,ν) is an aν-Lindelöf.

Proof. Suppose {Uγ : γ ∈ Ω} is a ν-regular open cover of Λν. Since QTS XG is nν-paracompact, then
this cover admits a locally finite ν-open refinement {Vα : α ∈ Γ }. Since XG is wν-Lindelöf, there is a
countable sub-collection {Vαn : n ∈ N} such that Λν = cν(

⋃
n∈N Vαn). By Lemma 3.17, cν(

⋃
n∈N Vαn) =⋃

n∈N cν(Vαn). Choosing, for each n ∈N, γn ∈ Ω such that Vαn ⊆ Uγn , thus

Λν =
⋃
n∈N

cν(Vαn) ⊆
⋃
n∈N

cν(Uγn).

This proves that a QTS (XG,ν) is an aν-Lindelöf.

3.1. wν-Lindelöf subspaces and subsets
In [27], Sarsak defined the generalized topological subspace in GTS, since a collection {U∩A : U ∈ ν}

is the subspace generalized topology on a subset A of a GTS (XG,ν), and (A,ν(A)) denotes the general-
ized topological subspace (A,ν(A)).
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Definition 3.19. Let a GTS (XG,ν) and A ⊆ XG, then A is said to be:

(a) aν(A)-Lindelöf if for any ν(A)-open cover {Uγ : γ ∈ Ω} of A∩Λν admits a countable sub-collection
{Uγn : n ∈N} such that

A∩Λν = cν(A)(
⋃
n∈N

Uγn);

(b) aν-Lindelöf relative to XG if for each ν-open cover {Uγ : γ ∈ Ω} of Λν where A∩Λν ⊆
⋃
γ∈Ω(Uγ),

there exists a countable sub-collection {Uγn : n ∈N} such that

A∩Λν ⊆ cν(
⋃
n∈N

Uγn).

Proposition 3.20. Let A be a subset of a GTS (XG,ν). Then A is a wν-Lindelöf relative to XG if and only if for
each collection {Fγ : γ ∈ Ω} of ν-closed sets of XG such that (

⋂
γ∈Ω Fγ) ∩ (A ∩Λν) = ∅, there is a countable

sub-collection {Fγn : n ∈N} such that iν(
⋂
n∈N Fγn)∩ (A∩Λν) = ∅.

Proof. Suppose {Fγ : γ ∈ Ω} is a collection of ν-closed subsets of a GTS XG such that

(
⋂
γ∈Ω

Fγ)∩ (A∩Λν) = ∅.

Then (A ∩ Λν) ⊆ XG\(
⋂
γ∈Ω Fγ) =

⋃
γ∈Ω(XG\Fγ), so {XG\Fγ : γ ∈ Ω} forms a collection of ν-open

subsets of XG covering A ∩Λν. By hypothesis, there is a countable subcollection {XG\Fγn : n ∈ N} such
that A∩Λν ⊆ cν(

⋃
n∈N(XG\Fγn)). Hence

(XG\(cν(
⋃
n∈N

(XG\Fγn))))∩ (A∩Λν) = ∅,

i.e., iν(XG\
⋃
n∈N(XG\Fγn))∩ (A∩Λν) = ∅. Thus iν(

⋂
n∈N Fγn)∩ (A∩Λν) = ∅.

Conversely, let {Uγ : γ ∈ Ω} be a collection of ν-open subsets in XG such that A ∩Λν ⊆
⋃
γ∈ΩUγ.

Then (XG\
⋃
γ∈ΩUγ) ∩ (A ∩Λν) = ∅, i.e., (

⋂
γ∈Ω(XG\Uγ)) ∩ (A ∩Λν) = ∅. Since {XG\Uγ : γ ∈ Ω} is a

collection of ν-closed subsets of XG, by hypothesis there is a countable sub-collection {XG\Uγn : n ∈ N}

such that iν(
⋂
n∈N(XG\Uγn))∩ (A∩Λν) = ∅. Therefore,

A∩Λν ⊆ XG\iν(
⋂
n∈N

(XG\Uγn)) = cν(XG\(
⋂
n∈N

(XG\Uγn))) = cν(
⋃
n∈N

Uγn).

This completes the proof.

Proposition 3.21. Let a GTS (XG,ν) and A ⊆ XG, for the following conditions:

(a) A is wν-Lindelöf relative to XG;

(b) every ν-regular open sets {Uγ : γ ∈ Ω} of XG that cover A∩Λν admits a countable sub-collection

{Uγn : n ∈N},

with ν-dense union in A∩Λν;

(c) each collection {Fγ : γ ∈ Ω} of ν-regular closed sets of XG such that
⋂
γ∈Ω Fγ∩ (A∩Λν) = ∅ has a countable

sub-collection {Fγn : n ∈ N} such that iν(
⋂
n∈N Fγn)∩ (A∩Λν) = ∅, then the relation: (a)⇒ (b)⇔ (c)

is true. Further, if a GTS XG is G-semiregular, then (b)⇒ (a).

Proof. The proof of this proposition is similar to the proof of Proposition 3.4, so we omitted.
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Proposition 3.22. Suppose a GTS (XG,ν) and A ⊆ XG, if A is a wν(A)-Lindelöf then A is a wν-Lindelöf relative
to XG.

Proof. Suppose {Uγ : γ ∈ Ω} is a collection of ν-open sets of XG that cover A ∩Λν. Then for each γ, we
can find ν-open set Vγ of A ∩Λν with Uγ ∩ (A ∩Λν) = Vγ. Thus {Vγ : γ ∈ Ω} is ν(A)-open cover. Since
A is wν(A)-Lindelöf, then there is a countable sub-collection {Vγn : n ∈N} such that

A∩Λν = cν(A)(
⋃
n∈N

Vγn) ⊆ cν(
⋃
n∈N

Uγn).

Therefore, A is a wν-Lindelöf relative to XG.

Question 3.23. Is the converse of Proposition 3.22 above true?

Our speculation for the question above that the answer is no, and the converse of Proposition 3.22
holds if we restrict a GTS (XG,ν) to be a QTS and A ⊆ XG to be a ν-open subset. We prove that as
follows.

Proposition 3.24. Let (XG,ν) be a QTS and A be a ν-open subset of XG. Then A is a wν(A)-Lindelöf if and only
if it is wν-Lindelöf relative to XG.

Proof. (⇒) The necessity of proof was shown in Proposition 3.22.
(⇐) Sufficiency, since A be a ν-open then A∩Λν = A. Now, let {Vγ : γ ∈ Ω} be a ν(A)-open cover of

A, then for each γ ∈ Ω, Vγ = Uγ ∩A where Uγ is ν-open, and A ⊆
⋃
γ∈ΩUγ. Thus by hypothesis there

is a countable sub-collection {Uγn : n ∈ N} of Uγ such that A ⊆ cν(
⋃
n∈NUγn), then

A ⊆ cν(
⋃
n∈N

Uγn)∩A = cν(
⋃
n∈N

(Uγn ∩A)) = cν(A)

⋃
n∈N

(Vγn).

It follows that a subset A is wν(A)-Lindelöf.

Note that, in Proposition 3.24 above it shows that in a ν-open set of a GTS (XG,ν), wν-Lindelöf
property and wν-Lindelöf relative to XG are equivalent. If we consider XG itself is a wν-Lindelöf GTS,
we conclude the following proposition.

Proposition 3.25. Every ν-regular closed subset of wν-Lindelöf and G-semiregular QTS (XG,ν) is wν-Lindelöf
relative to XG.

Proof. Let A be a ν-regular closed subset of XG. If {Uγ : γ ∈ Ω} is a cover of A ∩Λν by ν-regular open
subsets of XG, then Λν = (

⋃
γ∈ΩUγ) ∪ (XG\A ∩Λν). Hence the collection {Uγ : γ ∈ Ω} ∪ {XG\A ∩Λν}

forms a ν-regular open cover of Λν. Since XG is a wν-Lindelöf, by Proposition 3.24 there will be a
countable sub-collection {XG\A∩Λν,Uγ1 ,Uγ2 , · · · } such that

Λν = cν(
⋃
n∈N

(Uγn ∪ (XG\A∩Λν))) = cν((
⋃
n∈N

Uγn)∪XG\A∩Λν).

Then,
Λν = cν(

⋃
n∈N

Uγn)∪ cν(XG\A∩Λν) = cν(
⋃
n∈N

Uγn)∪ (XG\A∩Λν),

but A ∩Λν and XG\A ∩Λν are disjoint. Hence A ∩Λν ⊆ cν(
⋃
n∈NUγn). This proves that A is wν-

Lindelöf relative to XG.

Since every ν-clopen subset is ν-regular closed, we have the next corollary.

Corollary 3.26. Every ν-clopen subset of wν-Lindelöf and G-semiregular QTS (XG,ν) is wν-Lindelöf relative to
XG.
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Question 3.27. Is ν-closed (ν-regular open) subset of wν-Lindelöf QTS XG wν-Lindelöf?

We leave the answer for readers.
So, we can say that in general wν-Lindelöf property is not a hereditary property.

Definition 3.28. A GTS (XG,ν) is said to be hereditary wν-Lindelöf if every subspace of XG is wν-
Lindelöf.

Proposition 3.29. Let (XG,ν) be a G-semiregular GTS. Then XG is hereditary wν-Lindelöf GTS if and only if
any A ∈ νδ is wν(A)-Lindelöf.

Proof. (⇒) Suppose XG is a G-semiregular GTS and ν-open hereditary wν-Lindelöf. Since νδ ⊆ ν, it is
obvious that any A ∈ νδ implies A ∈ ν and hence A is wν(A)-Lindelöf.

(⇐) Let V ⊆ XG be a ν-open subset of GTS XG. By Proposition 3.24, it is sufficient to prove that
V is wν-Lindelöf relative to XG. Let {Uγ : γ ∈ Ω} be a collection of ν-open subsets of XG such that
V ∩Λν ⊆

⋃
γ∈ΩUγ. By Lemma 2.4, we have {iνcνUγ : γ ∈ Ω} is a collection of ν-regular open subsets

of XG. The set A ∩Λν =
⋃
γ∈Ω iνcν(Uγ) ∈ νδ, since A is wν(A)-Lindelöf. Then there is a countable

sub-collection {iνcν(Uγn) : n ∈N} such that

A∩Λν = cν(
⋃
n∈N

iνcν(Uγn)) ⊆ cν(
⋃
n∈N

cν(Uγn)) ⊆ cν(
⋃
n∈N

(Uγn)).

Therefore, V ∩Λν ⊆ A∩Λν ⊆ cν(
⋃
n∈N(Uγn)) and this completes the proof.

4. Mapping properties

The notions of continuous functions in generalized topological spaces was introduced by Császár [9]
in 2002. Let ν and µ be generalized topologies on XG and YG, respectively. Then a function g : (XG,ν)→
(YG,µ) from a ν-space (XG,ν) into a µ-space (YG,µ) is called (ν,µ)-continuous, if and only if U ∈ µ
implies that g−1(U) ∈ ν.

Definition 4.1. Let A be a subset of GTS (XG,ν), then A is called ν-preopen (resp. ν-β-open) [11] if
A ⊆ iνcν(A) (resp. A ⊆ cνiνcν(A)). The complement of ν-preopen (resp. ν-β-open) is said to be ν-
preclosed (resp. ν-β-closed), we denote by π the class of all ν-preopen sets in XG, by β the class of all
ν-β-open sets in XG.

Definition 4.2. A function g : (XG,ν) −→ (YG,µ) is called:

(1) almost (ν,µ)- continuous [18], if for each t ∈ XG and each µ-open set U containing g(t), there is a
ν-open set V with t ∈ V such that g(V) ⊆ iµcµ(U);

(2) almost (π,µ) - continuous (resp. almost (β,µ)- continuous) [3] if for each t ∈ XG and each µ-regular
open set U in YG containing g(t), there is a ν-preopen (resp. ν-β-open ) set V containing t such that
g(V) ⊆ U.

Remark 4.3. Let g : (XG,ν)→ (YG,µ) be a function between GTS’s (XG,ν) and (YG,µ). Then we have the
following implications but the reverse relations may not be true in general:

almost (ν,µ)-continuous⇒ almost (π,µ)-continuous⇒ almost (β,µ)-continuous.

Example 4.4. Let XG = {a,b, c} and ν = {∅, {a,b}} be a GT on XG. Then π = ν ∪ {{a}, {b}}. Define a function
g : (XG,ν) → (XG,ν) as follows: g(a) = a, g(b) = g(c) = c. Then g is almost (π,µ)-continuous function but
not almost (ν,µ)-continuous.

Example 4.5. Let XG = {a,b, c} and
ν = {∅, {a}, {b}, {a,b}},

be a GT on XG. Then π = ν and β = ν∪ {{a,b}, {a, c},XG}. Consider a function g : (XG,ν)→ (XG,ν) defined by
g(a) = g(b) = b, g(c) = a. Then g is almost (β,µ)-continuous function without begin almost (π,µ)-continuous.
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Proposition 4.6. Let g : (XG,ν)→ (YG,µ) be an almost (ν,µ)-continuous surjection from a ν-space (XG,ν) into
a µ-space (YG,µ), if a ν-space XG is wν-Lindelöf then a µ-space YG is so.

Proof. Suppose {Uγ : γ ∈ Ω} is a µ-open cover of YG. Then by Lemma 2.4 {iµcµ(Uγ) : γ ∈ Ω} is a µ-regular
open cover of YG. Since g is almost (ν,µ)-continuous, that means g−1(iµcµ(Uγ)) is a ν-open in a ν-space
XG. Thus {g−1(iµcµ(Uγ)) : γ ∈ Ω} is a ν-open cover of wν-Lindelöf ν-space (XG,ν), then there is a
countable sub-collection {g−1(iµcµ(Uγn)) : n ∈N} such that

XG = cν(
⋃
n∈N

g−1(iµcµ(Uγn))) ⊆ cν(
⋃
n∈N

g−1(cµ(Uγn)))

= cν(g
−1(

⋃
n∈N

(cµ(Uγn)))) ⊆ cν(g−1(cµ(
⋃
n∈N

(Uγn)))).

Since cµ(
⋃
n∈N(Uγn)) is µ-regular closed in a µ-space YG and g is an almost (ν,µ)-continuous, we have

g−1(cµ(
⋃
n∈N(Uγn))) is ν-closed in a ν-space XG. Thus

XG = cν(g
−1(cµ(

⋃
n∈N

(Uγn)))) = g
−1(cµ(

⋃
n∈N

(Uγn))).

Since g is surjective, YG = g(XG) = g(g−1(cµ(
⋃
n∈N(Uγn)))) = cµ(

⋃
n∈N(Uγn)). Then a µ-space YG is

wµ-Lindelöf.

By the definitions above, it is clear that every (ν,µ)-continuous function is almost (ν,µ)-continuous
then we conclude the following corollary.

Corollary 4.7. wν-Lindelöf property is a generalized topological property.

Since every ν-space under finite intersection is topological space, so by Proposition 3.18 and Proposi-
tion 4.6 above, we have the following corollary.

Corollary 4.8. Let g : (XG,ν)→ (YG, τ) be an almost (ν, τ)-continuous surjection from a ν-space (XG,ν) into a
space (YG, τ), if XG is wν-Lindelöf and YG is semiregular and paracompact then it is almost Lindelöf space.

Obviously, if XG ∈ ν in GTS(XG,ν) then cν(∅) = ∅, so the following proposition is proved immediately
by [14, Theorem 30].

Proposition 4.9. Let (XG,ν) be a submaximal and ν-extremally disconnected ν-space. Then a function
g : (XG,ν)→ (YG,µ) is an almost (ν,µ)-continuous if and only if it is almost (β,µ)-continuous.

Corollary 4.10. Let g : (XG,ν) → (YG,µ) be an almost (β,µ)-continuous surjection. If XG is submaximal,
ν-extremally disconnected and wν-Lindelöf ν-space, then a µ-space YG is wµ-Lindelöf.

Proof. The proof follows directly from Proposition 4.6 and Proposition 4.9.

Lemma 4.11. Let a (XG,ν) be a submaximal QTS then every ν-preopen set is ν-open.

Proof. Assume, a subset V is a ν-preopen, then by [26, Proposition 3.11] V = U ∩A for some ν-regular
open set U and ν-dense set A of XG. Since (XG,ν) is submaximal QTS, so A is ν-open set of XG and thus
V is ν-open set of XG.

Next proposition is proved directly, by Lemma 4.11, so the proof is omitted.

Proposition 4.12. Let (XG,ν) be a submaximal QTS then a function g : (XG,ν) → (YG,µ) is an almost (ν,µ)-
continuous if and only if it is almost (π,µ)-continuous.

By Proposition 4.6 and Proposition 4.12 the following corollary is concluded.
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Corollary 4.13. Let g : (XG, τ)→ (YG,µ) be an almost (π,µ)-continuous surjection. If a space XG is submaximal
and weakly Lindelöf then a µ-space YG is wµ-Lindelöf.

Definition 4.14 ([4]). A function g : (XG,ν) −→ (YG,µ) is said to be:

(a) almost (ν, µ)-open if g(V) ⊆ iµcµ(g(V)) for each ν-open set V in XG;

(b) contra (ν,µ)-continuous if g−1(U) is ν-closed in XG for every µ-open set U in YG.

In [4], Al-Omari, and Noiri showed that if a function g from a ν-space (XG,ν) into a µ-space (YG,µ)
is an almost (ν,µ)-open and contra (ν,µ)-continuous, then g is almost (ν,µ)-continuous. Moreover, if
g is a contra (ν,µ)-continuous and a µ-space YG is µ-extremally disconnected, then g is almost (ν,µ)-
continuous. On using Proposition 4.6 above, we conclude the following corollaries.

Corollary 4.15. Let g : (XG,ν)→ (YG,µ) be an almost (ν,µ)-open and contra (ν,µ)-continuous surjection from
a ν-space (XG,ν) into a µ-space (YG,µ), if a ν-space XG is wν-Lindelöf, then a µ-space YG is so.

Corollary 4.16. Let g : (XG,ν) → (YG,µ) be a contra (ν,µ)-continuous and a µ-space YG is µ-extremally
disconnected from a ν-space (XG,ν) into a µ-space (YG,µ), if a ν-space XG is wν-Lindelöf then a µ-space YG is so.

Definition 4.17. A function g : (XG,ν)→ (YG,µ) is called:

(i) (δ, δ′)-continuous [19] (resp. almost (δ, δ′)-continuous) if for each t ∈ XG and each µ-regular open
set U containing g(t), there is a ν-regular open set V containing t such that g(V) ⊆ U (resp. g(V) ⊆
cµ(U));

(ii) super (ν,µ)-continuous [20] if for each t ∈ XG and each µ-open set U containing g(t), there is a
ν-open set V containing t such that g(iνcνV) ⊆ U;

(iii) θ(ν,µ)-continuous [9] (resp. strongly θ(ν,µ)-continuous [20]) if for each t ∈ XG and each µ-open set
U containing g(t), there is a ν-open set V containing t such that g(cνV) ⊆ cµ(U) (resp. g(cνV) ⊆ U).

Remark 4.18. From the definition above we obtain the following implications but the reverse relations, in
general are not true (see [18–20]).

strongly θ(ν,µ)-continuous⇒ super (ν,µ)-continuous⇒ (δ, δ′)-continuous⇒ almost (ν,µ)-continuous.

On using Remark 4.18 and Proposition 4.6 above we conclude the corollary below.

Corollary 4.19. Let g : (XG,ν) → (YG,µ) be a strongly θ(ν,µ)-continuous (resp. super (ν,µ)-continuous,
(δ, δ′)-continuous) surjection, if a ν-space XG is wν-Lindelöf space then so is a µ-space YG.

Lemma 4.20. Let a function g : (XG,ν)→ (YG,µ) be a θ(ν,µ)-continuous and a µ-space YG is almost G-regular
then g is almost (ν,µ)-continuous function.

Proof. Let t ∈ XG and V be any µ-open set of YG containing g(t). Since (YG,µ) is almost G-regular, we
can claim that there exists a µ-regular open set U such that g(t) ∈ U ⊆ cµU ⊆ iµcµV . Since V is µ-open,
then by Lemma 2.4 F = cµiµ(YG\V) is µ-regular closed and g(t) /∈ F. Moreover, there are µ-open sets V ′1
and V ′2 such that g(t) ∈ V ′1, F ⊆ V ′2 and V ′1 ∩ V ′2 = ∅. Thus cµ′1 ∩ V ′2 = ∅ and hence cµV ′1 ⊆ YG\V ′2 ⊆ YG\F.
So, g(t) ∈ V ′1 ⊆ cµV ′1 ⊆ YG\F. Again V ′1 ⊆ iµcµV ′1 ⊆ YG\F. Therefore, if U = iµcµV

′
1 then

V ′1 ⊆ U ⊆ cµU ⊆ cµV ′1 ⊆ iµcµV .

Hence
g(t) ∈ U ⊆ cµU ⊆ iµcµV .

Since g is θ(ν,µ)-continuous and cµU is µ-closed in YG, there is a ν-open set H ∈ µ containing t such that
g(cνH) ⊆ cµU ⊆ iµcµV , and hence g(H) ⊆ iµcµV . Then g is almost (ν,µ)-continuous function.
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Since every ν-extremally disconnected GTS is almost G-regular, by Lemma 4.20, we conclude the
following results.

Corollary 4.21. Let a function g : (XG,ν) → (YG,µ) be a θ(ν,µ)-continuous and a µ-space YG is ν-extremally
disconnected then g is almost (ν,µ)-continuous function.

Corollary 4.22. Let g : (XG,ν) → (YG,µ) be a θ(ν,µ)-continuous surjection and a µ-space YG is almost G-
regular (ν-extremally disconnected), if a ν-space XG is wν-Lindelöf space then so is a µ-space YG

Proposition 4.23. Let g : (XG,ν)→ (YG,µ) be an almost (δ, δ′)-continuous surjection from a ν-space XG into a
µ-space YG. If XG is nν-Lindelöf then YG is wµ-Lindelof.

Proof. Let {Uγ : γ ∈ Ω} be a µ-regular open cover of a µ-space YG. Let t ∈ XG and each Uγt containing
g(t). Since g is an almost (δ, δ′)-continuous, then there is ν-regular open set Vγt of XG containing t such
that g(Vγt) ⊆ cµ(Uγt). So, {Vγt : γ ∈ Ω} is ν-regular open cover of nν-Lindelöf ν-space XG. Thus there
exists a countable sub-collection {Vγtn : n ∈N} such that XG =

⋃
n∈N(Vγtn ). Thus

YG = g(XG) = g(
⋃
n∈N

(Vγtn )) =
⋃
n∈N

g(Vγtn ) ⊆
⋃
n∈N

cµ(Uγtn ) ⊆ cµ(
⋃
n∈N

Uγtn ).

This implies that a µ-space YG is wν-Lindelöf.

Lemma 4.24. Let a function g : (XG,ν)→ (YG,µ) is θ(ν,µ)-continuous, then g is almost (δ, δ′)-continuous.

Proof. Let t ∈ XG and a µ-regular open set U of YG containing g(t). Since g is θ(ν,µ)-continuous, then
there exists a ν-open set V of XG containing t such that g(cνV) ⊆ cµ(U). Thus iνcνV is ν-regular open set
of XG containing t such that g(iνcνV) ⊆ g(cνV) ⊆ cµ(U). This implies that g is almost (δ, δ′)-continuous
function.

The converse is not true, as the following example.

Example 4.25. Let XG = {a,b, c,d} and YG = {r, s, t}, we define the GT ′s

ν = {∅, {a,b}, {b, c}, {b,d}, {a,b, c}, {a,b,d}, {b, c,d},XG},

and
µ = {∅, {r}, {s}, {r, s}, YG},

on XG and YG, respectively. If a function g : (XG,ν)→ (YG,µ) defined as g(A) = r, g(b) = s, g(c) = g(d) = t,
then g is almost (δ, δ′)-continuous function but it is not θ(ν,µ)-continuous, since for a µ-open set {r} containing
g(a) there is no ν-open set V containing a such that g(cνV) ⊆ cµ({r}).

Corollary 4.26. Let g : (XG,ν) → (YG,µ) be a θ(ν,µ)-continuous surjection from a ν-space XG into a µ-space
YG. If XG is nν-Lindelöf then YG is wµ-Lindelof.

On using Corollaries 3.11 and 3.14, Proposition 4.6, we have the following result.

Corollary 4.27. Let g : (XG,ν)→ (YG,µ) be an almost (ν,µ)-continuous surjection from a ν-space (XG,ν) into
almost G-regular weak P-G-space (YG,µ), if a ν-space XG is wν-Lindelöf then a µ-space YG is nµ-Lindelöf (resp.
nµ-normal).

By Proposition 3.18 and Proposition 4.6, we also conclude the following.

Corollary 4.28. Let g : (XG,ν) → (YG, τ) be an almost (ν, τ)-continuous surjection from a ν-space (XG,ν) into
semiregular and nearly paracompact space (YG, τ), if a ν-space XG is wν-Lindelöf, then (YG, τ) is almost Lindelöf
space.
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