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Abstract

In this paper, based on the concept and properties of almost-complete closedness time scales (ACCTS), we investigate the
existence of weighted pseudo double-almost periodic mild solutions for non-autonomous impulsive evolution equations. We
also consider the exponential stability of weighted pseudo double-almost periodic solutions. Finally, we conclude our paper by
providing several illustrative applications to different types of dynamic equations and mathematical models. These applications
justify the practical usefulness of the established theoretical results. c©2017 All rights reserved.
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1. Introduction

The theory of time scales was introduced by Hilger in his Ph.D. thesis in 1988 [17] to unify continuous
and discrete analysis. “Dynamic equations on time scales” contains, links and extends the classical theory
of differential (T = R) and difference (T = Z) equations. The theory of dynamic equations on time
scales also extends to cases “in between”, e.g., to the so-called q-difference equations (T = qN0 := {qt :

t ∈ N0 forq > 1}) or (T = qZ := qZ ∪ {0}), and can be applied on different types of time scales such as
T = hN, T = N2, and T = Tn the space of the harmonic numbers. Several authors have expounded on
various aspects of this new theory (see [1, 2, 4, 7, 18, 33]).

The theory of almost periodic functions and systems initiated by Bohr was largely developed in the
last century (see [5, 14]), and many mathematicians consider almost periodic problems that exist in the
change and development in nature (see [8, 9]). To find a class of functions which are more general than
almost periodic functions, the notion of pseudo-almost periodic functions was introduced by Zhang in
[35, 36]. Generalizations were considered in [11, 13, 21] and the references therein. In [12], Diagana
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introduced a new concept which he called weighted pseudo-almost periodicity. The concepts of almost
periodicity and pseudo-almost periodicity, and their applications to dynamic equations on time scales
are very recent [3, 15, 27, 29]. However, all discussions of these topics are restricted to periodic time
scales and there is little work on almost periodic time scales. From a practical point of view, although
we live in the real world in which almost all natural phenomena move in circles, there still exist many
natural phenomena which cannot be described by periodic time scales. The required time intervals for
the recurrence of many common natural phenomena are usually not periodic. For example, the required
time intervals of a round for a celestial body motion, sun or earth etc., are “almost equivalent” but are
not precisely the same. If we consider the revolution of the earth, then we see that the position of the
earth is almost overlapping after almost a year rather than after a year. The second “almost” for the time
should not be ignored. Another example is tidal flood where its required time intervals of recurrence can
also not be precisely described by periodic time scales because every time interval is “almost equivalent”.
Hence, it is more realistic to consider that the object’s status with periodicity or almost periodicity will
be always the same or almost the same after “an almost-equivalent time interval”. In such a situation, we
say the object is with “double almost periodicity” (that is, the status and its time variable of the object
are almost periodic simultaneously). Time scales hZ and R have some very nice properties so that the
dynamic change of functions established on them can be described well because of the closedness for the
translation of time variables. All periodic time scales have a nice closedness for the translation of time
variables (see [20, 33]), and we say T is with “complete closedness” (CCTS). A time scale with such a
type of “complete closedness” assists in conquering the difficulties of defining and studying functions on
time scales. However, there exists a type of time scales that has “almost-complete closedness” but not
“complete closedness” (see [28, 30]). This type of time scales can describe the “double almost periodicity”
of an object’s status with almost periodic dynamic behavior in the real world and it is more general and
comprehensive than periodic time scales. Therefore, introducing and studying functions on time scales
with “almost-complete closedness” is important.

In addition, many phenomena in nature are characterized by the fact that their states are subject to
sudden changes at certain moments and can be described by impulsive systems (see [23, 31]). The ex-
istence of almost periodic solutions for abstract impulsive dynamic equations was considered by many
authors; see [10, 16, 24, 25]. To the best of our knowledge, weighted piecewise pseudo double-almost pe-
riodic solutions for impulsive dynamic equations on ACCTS have never been considered in any literature.

To fill this gap in the literature, in this paper, we investigate the existence and uniqueness of weighted
pseudo double-almost periodic mild solutions for impulsive evolution equations. Specifically, we study
the ε-equivalent impulsive evolution equations (ε-EIEE, see Definition 2.13) on time scales given by{

x∆(t) = A(t)x(t) + f(t, x), t ∈ RT(τ, ε), t 6= tki,ε, i ∈ Z,
∆x(tki,ε) = x(t

+
ki,ε

) − x(t−ki,ε) = Ik
(
x(tki,ε)

)
, t = tki,ε ∈ ∪Bε, i ∈ Z,

(1.1)

where A ∈ PCrd
(
T,B(X)

)
is a linear operator on the Banach space X and f ∈ PCrd(T×X, X). Now

f, Ii, ti satisfy suitable conditions that will be given later, and T is an almost-complete closedness time
scale (see Definition 2.6, RT(τ, ε) := T ∩ (∪τ∈ΠεT−τ\Aε−τ), Πε = E{T, ε}, Aετ is an ε-improper set of T,
where E{T, ε} is an ε-translation number set of T) and

Bε =
{
{tki,ε} ⊂ {tk} ⊂ T : tki,ε ∈ RT(τ, ε), tki,ε < tki+1,ε, i ∈ Z, lim

i→∞ tki,ε =∞},

which denotes all unbounded increasing sequences of real numbers and

∪Bε =
{
tki,ε ∈ {tk} : tki,ε ∈ RT(τ, ε), tki,ε < tki+1,ε, i ∈ Z, lim

i→∞ tki ,ε =∞}.

The notations x(t+ki,ε) and x(t−ki,ε) represent the right-hand and the left-hand side limits of x(·) at tki,ε,
respectively.
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The organization of this paper is as follows. In Section 2, we collect some preliminary results concern-
ing the theory of time scales and introduce the concept of ε-equivalent impulsive evolution equations.
In Section 3, conditions on the existence and uniqueness of weighted pseudo double-almost periodic
(mild) solutions for impulsive evolution equations on ACCTS are obtained. Also the exponential stabil-
ity of weighted pseudo double-almost periodic solutions is considered. In Sections 4, several illustrative
applications are provided which include applications to IBVP for ∆-partial dynamic equations and math-
ematical models.

2. ε-equivalent impulsive evolution equations

In this section, we first recall some basic definitions and lemmas which will be used in this paper. For
more details of time scales, see [7].

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump operators
σ, ρ : T→ T and the graininess µ : T→ R+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t) − t.

Definition 2.1 ([7]). The function f : T→ X is called rd-continuous provided that it is continuous at each
right-dense point and has a left-sided limit at left dense points, and we write f ∈ Crd(T) = Crd(T, X).
Let t ∈ Tk, and the Delta derivative of f at t denoted as f∆(t) satisfies the inequality

|f(σ(t)) − f(s) − f∆(t)[σ(t) − s]| 6 ε|σ(t) − s|

for any ε > 0 and all s ∈ U; here U is a neighborhood of t. Let F ∈ C(T, X) be a function, and it is called
antiderivative of f : T → X provided F∆(t) = f(t) for each t ∈ Tk. If F∆(t) = f(t), then we define the
Delta integral by

∫t
a f(s)∆s = F(t) − F(a).

Definition 2.2 ([7]). A function p : T → R is called µ-regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ Tk.
The set of all regressive and rd-continuous functions p : T→ R will be denoted by R = R(T) = R(T, R).
We define the set R+ = R+(T, R) = {p ∈ R : 1 + µ(t)p(t) > 0,∀ t ∈ T}.

Definition 2.3 ([7]). If r is a regressive function, then the generalized exponential function er is defined
by er(t, s) = exp

{∫t
s ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, where the µ-cylinder transformation is as in ξh(z) :=

1
h log(1 + zh).

Next, we introduce the concept of almost-complete closedness time scales which is more general than
the concept of almost periodic time scales proposed in [28, 30, 31].

Let τ be a number and Aετ be a subset of R, A denotes the closure of the set A, and we set the time
scales:

T := ∪i∈I[αi,βi], Tτ := T + τ = {t+ τ : ∀t ∈ T} := ∪i∈I[ατi ,βτi ], ∪i∈I[α̃τi , β̃τi ] = T\Aετ,

and define the distance between two time scales T\Aετ and Tτ by

d(T\Aετ, Tτ) = max
{

sup
i∈I

|α̃τi −α
τ
i |, sup

i∈I
|β̃τi −β

τ
i |

}
,

where I is an infinite index set and

ατi := inf
{
α ∈ Tτ : |αi −α|

}
and βτi := inf

{
β ∈ Tτ : |βi −β|

}
,

α̃τi := inf
{
α ∈ T\Aετ : |ατi −α|

}
and β̃τi := inf

{
β ∈ T\Aετ : |βτi −β|

}
.

Inspired by the relatively dense set in the book by Fink (see [14]), we introduce the following concept:
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Definition 2.4 ([29]). A subset S of Π is called relatively dense if there exists a positive number L ∈ Π such
that [a,a+ L]Π ∩ S 6= ∅ for all a ∈ Π. The number L is called the inclusion length.

In fact, Definition 2.4 can be generalized to the following definition of relatively dense set on any given
subset of R.

Definition 2.5. Let ΠR be an arbitrary subset of R and A ⊂ ΠR. We say that A is relatively dense in ΠR if
there exists a positive number l ∈ ΠR such that for all a ∈ ΠR we have [a,a+ l]ΠR

∩A 6= ∅, l is called the
inclusion length.

In what follows, we will give three equivalent definitions of ACCTS.
Let Π := {τ ∈ R : Tτ 6= ∅} 6= {0}, where Tτ = T∩Tτ.

Definition 2.6. We say T is an almost-complete closedness time scale (ACCTS) if for any given ε1 > 0,
there exist a constant l(ε1) > 0 such that each interval of length l(ε1) contains a τ(ε1) and sets Aε1

τ such
that

d(T\Aε1
τ , Tτ) < ε1

i.e., for any ε1 > 0, the following set

E{T, ε1} = {τ ∈ Π : d(T\Aε1
τ , Tτ) < ε1} := Πε1

is relatively dense in Π. Here, τ is called the ε1-translation number of T, l(ε1) is called the inclusion length
of E{T, ε1}, and E{T, ε1} the ε1-translation set of T, Aε1

τ is called the ε1-improper set of T, RT(τ, ε1) :=

T ∩ (∪τ∈Πε1
T−τ\Aε1

−τ) the ε1-main region of T, where Aε1
−τ = (Aε1

τ )−τ := {a− τ : a ∈ Aε1
τ }. Furthermore,

we can describe it in detail as follows:

(a) if for any p > 0, there exists a number P > p and τ ∈ E{T, ε1} ∩ (P,+∞), then we say T is a positive-
direction ACCTS;

(b) if for any q < 0, there exists a number Q < q and τ ∈ E{T, ε1} ∩ (−∞,Q), then we say T is a
negative-direction ACCTS;

(c) if for any p > 0, q < 0, there exist numbers Q < q, P > p and ±τ ∈ E{T, ε1} ∩
(
(−∞,Q) ∪ (P,+∞)

)
,

then we say T is a bi-direction ACCTS;
(d) we say T is an oriented-direction ACCTS if T is a positive-direction ACCTS or a negative-direction

ACCTS.

Remark 2.7. If ±τ ∈ E{T, ε1} in Definition 2.6 from [33], then there exists Aε1
±τ = T\T±τ such that

d(T\Aε1
±τ, T±τ) 6 d(T, T±τ) < ε1, which implies that almost periodic time scales introduced in [30, 31]

are bi-direction ACCTS with inf T = −∞, sup T = +∞. For more important comments and remarks of
almost periodic time scales, one may consult [3, 33].

Remark 2.8. According to Definition 2.6, one can obtain that for any τ ∈ Πε, it follows from d(T\Aετ, Tτ) <
ε that d(T−τ\Aε−τ, T) < ε.

Let µτ : Tτ → R+ be the graininess function of Tτ and Aτ be a set, satisfying

µτ(t+ τ) =

{
µ(t), t+ τ 6∈ T\Aτ,
µ(t+ τ), t+ τ ∈ T\Aτ.

(2.1)

Then, from (2.1), we can simplify Definition 2.6 as follows.

Definition 2.9. Let µ : T → R, µ(t) = σ(t) − t. We say T is an almost-complete closedness time scale if
for any ε > 0, there exists the set A−τ such that the set

Π∗∗ = {τ ∈ Π : |µ(t+ τ) − µ(t)| < ε, ∀t ∈ R̃T(τ)}

is relatively dense in Π, where R̃T(τ) := T∩ (∪τ∈ΠT−τ\A−τ), A−τ := {a− τ : a ∈ Aτ}.
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Remark 2.10. Since Π∗∗ is relatively dense in Π in Definition 2.9, one can observe that the graininess
function µ is bounded. From [33], we can see that ACCTS is the most general type of independent
variables with almost periodicity.

We can also introduce an equivalent definition that depends on sequential convergence.

Definition 2.11. If a time scale T fulfills the following conditions:

(1) for any given sequence α
′ ⊂ Π ∩ (0,+∞), there exist a subsequence α ⊂ α ′ and a sequence {A−αn}

such that {T−αn\A−αn} converges to a time scale T0, we say T is a positive-direction ACCTS;
(2) for any given sequence α

′ ⊂ Π ∩ (−∞, 0), there exist a subsequence α ⊂ α ′ and a sequence {A−αn}

such that {T−αn\A−αn} converges to a time scale T0, we say T is a negative-direction ACCTS;
(3) for any given sequence α

′ ⊂ Π, there exist a subsequence α ⊂ α ′ and a sequence {A−αn} such that
{T−αn\A−αn} converges to a time scale T0, we say T is a bi-direction ACCTS;

(4) if T is a positive-direction ACCTS or a negative-direction ACCTS, we say T is an oriented-direction
ACCTS.

Remark 2.12. Since the concept of almost periodic time scales from [33] is a particular case of Definition
2.6, if T is a bi-direction ACCTS (i.e., an almost periodic time scale), then RT(τ, ε) = T ∩ (∪TΠε), where
T∩ (∪TΠε) is the time variable set from Remark 5.4 in [30].

According to the concept of ∆-sub-derivative (i.e., Definition 2.5 from [32]), we can introduce a concept
of ε-equivalent impulsive evolution equations on ACCTS.

For any s ∈ Π and a set A−s := {a− s : a ∈ As} with µ∆(As) > 0, let

Bs =
{
{tki,s} ⊂ {tk} : tki,s ∈ T∩ (T−s\A−s), tki,s < tki+1,s, i ∈ Z, lim

i→∞ tki,s =∞},

which denotes all unbounded increasing sequences of real numbers and

∪Bs =
{
tki,s ∈ {tk} : tki,s ∈ T∩ (T−s\A−s), tki,s < tki+1,s, i ∈ Z, lim

i→∞ tki ,s =∞}.

Definition 2.13. Let T be an almost-complete closedness time scale. Consider the following impulsive
evolution equation with sub-derivative x∆−s(t) on T∩ (T−s\A−s):{

x∆−s(t) = f(t, x), t ∈ T∩ (T−s\A−s), t 6= tki,s, i ∈ Z,
∆x(tki,s) = Ik

(
x(tki,s)

)
, t = tki,s ∈ ∪Bs, i ∈ Z,

(2.2)

where s ∈ Π and f ∈ PCrd(T×X, X). We say the following impulsive evolution equation{
x∆(t) = f(t, x), t ∈ RT(s, ε), t 6= tki,s, i ∈ Z,
∆x(tki,s) = Ik

(
x(tki,s)

)
, t = tki,s ∈ ∪Bs, i ∈ Z,

is an ε-equivalent impulsive evolution equation for (2.2) if s ∈ Πε ⊂ Π.

3. Weighted piecewise pseudo double-almost periodic mild solutions

Throughout this paper, we shall assume that T is an almost-complete closedness time scale and denote
by X a Banach space; let B be the set consisting of all sequences {tk}k∈Z such that θ = infk∈Z(tk+1 −
tk) > 0. For {tk}k∈Z ∈ B, let BPCrd(T, X) be the space formed by all bounded rd-piecewise continuous
functions φ : T→ X such that φ(·) is continuous at t for any t 6∈ {tk}k∈Z and φ(tk) = φ(t−k ) for all k ∈ Z;
let Ω be a set of X and BPCrd(T ×Ω, X) be the space formed by all bounded piecewise continuous
functions φ : T×Ω → X such that for any x ∈ Ω, φ(·, x) ∈ BPCrd(T, X) and for any t ∈ T, φ(t, ·) is
continuous at x ∈ Ω.

In the following, we give the definition of rd-piecewise continuous functions in Banach space on time
scales.
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Definition 3.1. We say ϕ : T → X is rd-piecewise continuous with respect to a sequence {tk} ⊂ T which
satisfies tk < tk+1, k ∈ Z, if ϕ(t) is continuous on [tk, tk+1)T and rd-continuous on T\{tk}. Further,
[tk, tk+1)T are called intervals of continuity of the function ϕ(t).

Similarly, one can define a class of ld-piecewise continuous functions. For convenience, we denote the
space of all rd-piecewise continuous functions PCrd(T, X) and PCεrd(T, X) := {f|RT(τ,ε) : f ∈ PCrd(T, X)}.

Now, we introduce some definitions which will be used to introduce the concept of weighted piecewise
pseudo double-almost periodic functions on ACCTS. Let Bε =

{
{tki,ε} ⊂ {tk} : tki ∈ RT(τ, ε), tki,ε <

tki+1,ε, i ∈ Z, lim
i→∞ tki,ε =∞}.

Definition 3.2. Let {tki,ε} ∈ Bε, i ∈ Z. We say {t
j
ki,ε

} is an ε-derived sequence of {tki,ε} where tjki,ε =
tki+j,ε − tki,ε, i, j ∈ Z.

Definition 3.3. For any ε2 > ε1 > 0, let Γ ⊂ Πε1 be a set of real numbers and {tki,ε1} ∈ Bε1 . We say
{t
j
ki,ε1

}, i, j ∈ Z is equipotentially double-almost periodic on an almost-complete closedness time scale T

if for r ∈ Γ , there exists at least one integer q such that

|t
q
ki,ε1

− r| < ε2 for all i ∈ Z.

In the following, we introduce the concept of piecewise continuous double-almost periodic functions
on ACCTS.

Definition 3.4. Let T be an almost-complete closedness time scale and assume that {tki,ε1} ∈ Bε1 satisfying
the ε1-derived sequence {t

j
ki,ε1

}, i, j ∈ Z, is equipotentially almost periodic. We call a function ϕ ∈
PCε1
rd(T, Rn) double-almost periodic if:

(i) for any ε > 0, there is a positive number δ = δ(ε) such that if the points t
′

and t
′′

belong to the same
interval of continuity and t

′
, t
′′ ∈ RT(τ, ε1)\B

ε1 , |t
′
− t

′′
| < δ, then ‖ϕ(t ′) −ϕ(t ′′)‖ < ε;

(ii) for any ε2 > ε1 > 0, there is a relative dense set Γ of ε2-almost periods such that if τ ∈ Γ ⊂ Πε1 , then
‖ϕ(t+ τ) −ϕ(t)‖ < ε2 for all t ∈ RT(τ, ε1) which satisfy the condition |t− tki,ε1 | > ε2, i ∈ Z.

Remark 3.5. If we let T be a bi-direction ACCTS, then Definition 3.4 will become the concept of almost
periodic functions from [33]. Further, if let T be a bi-direction periodic time scale, i.e., ε1 → 0, then
Definition 3.4 will become the concept of piecewise almost periodic functions on periodic time scales
from [33]. For more properties and applications related to these functions and dynamic systems, one
should consult [30, 31].

We denote by DAP(T, X) the space of all rd-piecewise double-almost periodic functions. Obviously,
for any fixed ε > 0, the space DAPε(T, X) := {f|RT(τ,ε) : f ∈ DAP(T, X)} endowed with norm ‖φ‖ε =
supt∈RT(τ,ε) ‖φ(t)‖ for any φ ∈ DAPε(T, X) is a Banach space. We also denote by UPC(T, X) the space
of all functions φ ∈ PCrd(T, X) such that φ satisfies the condition (i) in Definition 3.4 and UPCε(T, X) :=
{f|RT(τ,ε) : f ∈ UPC(T, X)}. Now BPCrd(T, X) denotes the space of all bounded rd-piecewise functions
and BPCεrd(T, X) := {f|RT(τ,ε) : f ∈ BPCrd(T, X)}.

Similarly, we can also introduce the concept of uniformly piecewise double-almost periodic functions
on ACCTS as follows.

Definition 3.6. Let T be an almost-complete closedness time scale and assume that {tki,ε1} ∈ Bε1 satisfying
the ε1-derived sequence {t

j
ki,ε1

}, i, j ∈ Z, is equipotentially double-almost periodic. We call a function
f ∈ PCε1

rd(T×Ω, X) rd-piecewise double-almost periodic in t uniformly in x ∈ Ω if:

(i) for each compact set K ⊆ Ω, {f(·, x) : x ∈ K} is uniformly bounded;
(ii) for any ε > 0, there is a positive number δ = δ(ε) such that if the points t

′
and t

′′
belong to the

same interval of continuity and t
′
, t
′′ ∈ RT(τ, ε1)\B

ε1 , |t
′
− t

′′
| < δ, then ‖f(t ′ , x) − f(t ′′ , x)‖ < ε for

all x ∈ K;
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(iii) for any ε2 > ε1 > 0, there is relative dense set Γ of ε2-almost periods such that if τ ∈ Γ ⊂ Πε1 , then
‖f(t+ τ, x) − f(t, x)‖ < ε2 for all t ∈ RT(τ, ε1), x ∈ K, which satisfy the condition |t− tki,ε1 | > ε2, i ∈
Z.

Now, let U be the set of all functions ρ : T → (0,∞) which are positive and locally ∆-integrable over
T and let Uε :=

{
ρ|RT(τ,ε) : ρ ∈ U}. For a given r1, r2 ∈ RT(τ, ε), r2 > r1, we set

m(r1, r2, ρ) :=
∫r2

r1

ρ̃(s)∆s

for each ρ̃ ∈ Uε. Let Dr := r2 − r1 and Ũε∞ :=
{
ρ̃ ∈ Uε : lim

Dr→∞m(r1, r2, ρ̃) =∞},

Uε∞ =
{
ρ̃ ∈ Ũε∞ : ρ̃(s) 6≡ 0 for all s ∈ (t− δ, t+ δ)RT(τ,ε), where t ∈ RT(τ, ε), δ > 0

}
,

UεB :=
{
ρ̃ ∈ Uε∞ : ρ̃ is bounded and inf

s∈RT(τ,ε)
ρ̃(s) > 0

}
.

It is clear that for any ε > 0, UεB ⊂ Uε∞ ⊂ Uε. Now, for ρ̃ ∈ Uε∞, we define

WPDAPε0 (T, ρ̃) :=
{
φ ∈ BPCεrd(T, X) : lim

Dr→∞
1

m(r1, r2, ρ̃)

∫r2

r1

‖φ(s)‖ρ̃(s)∆s = 0
}

.

Similarly, we define

WPDAPε0 (T×X, ρ̃) :=
{
Φ ∈ BPCεrd(T×Ω, X) : lim

Dr→∞
1

m(r1, r2, ρ̃)

∫r2

r1

‖Φ(s, x)‖ρ̃(s)∆s = 0

uniformly with respect to x ∈ K, where K is an arbitrary compact subset of Ω
}

.

We are now ready to introduce the sets WPDAPε(T, ρ̃) and WPDAPε(T×X, ρ̃) of weighted pseudo
double-almost periodic functions on ACCTS:

WPDAPε(T, ρ̃) =
{
f = g+φ ∈ PCεrd(T, X) : g ∈ DAPε(T, X) andφ ∈WPDAPε0 (T, ρ̃)

}
,

WPDAPε(T×X, ρ̃) =
{
f = g+φ ∈ PCεrd(T×X, X) : g ∈ DAPε(T×X, X) and φ ∈WPDAPε0 (T×X, ρ̃)

}
.

In what follows, through the established results from [34], we can establish some theoretical results
for the existence and stability of weighted piecewise pseudo double-almost periodic mild solutions for
Eq. (1.1). For this, we need the following lemma.

Lemma 3.7. Let T be an almost-complete closedness time scale and 	ω ∈ R+. For all t ∈ RT(τ, ε) and α ∈ Πε,
there exist constants β1,β2 > 0 such that

β1µ(t) 6 µ(t+α) 6 β2µ(t). (3.1)

Then, there exist positive constants K∗ and ω∗ such that

e	ω(t+α, s+α) 6 K∗e	ω∗(t, s), t > s, t, s ∈ RT(τ, ε).

Proof. Obviously, if µ = 0, T = R, the result holds. Assume that µ 6≡ 0. Since 	ω ∈ R+, we have

e	ω(t+α, s+α) = exp
{∫t+α

s+α

1
µ(τ)

ln
1

1 + µ(τ)ω
∆τ

}
= exp

{∫t
s

1
µ(τ+α)

ln
1

1 + µ(τ+α)ω
∆τ

}
.

Since T is an almost-complete closedness time scale, µ is bounded. Hence, from the inequality (3.1), for
t, s ∈ RT(α, ε), t > s, we obtain

e	ω(t+α, s+α) 6 exp
{∫t

s

1
β1µ(τ)

ln
1

1 +β1µ(τ)ω
∆τ

}
=

{
exp
{∫t

s

ln(1 + µ(τ)(	β1ω))

µ(τ)

}} 1
β1

.
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Thus, there exists a positive constant K∗ > 0 such that

e	ω(t+α, s+α) =
[
e	β1ω(t, s)

] 1
β1 6 K∗e	ω∗(t, s),

where ω∗ = β1ω. This completes the proof.

Let T be an almost-complete closedness time scale, and consider the linear evolution system

x∆ = A(t)x, t ∈ RT(τ, ε), (3.2)

where A : RT(τ, ε)→ B(X) is a linear operator in the Banach space X. We denote by B(X, Y) the Banach
space of all bounded linear operators from X to Y. This is denoted as B(X) when X = Y.

Inspired by [22], we present Definitions 3.8-3.9.

Definition 3.8. Let T be an almost-complete closedness time scale. Now T(t, s) : RT(τ, ε)×RT(τ, ε) →
B(X) is called the linear evolution operator associated to (3.2) if T(t, s) satisfies the following conditions:

(1) T(s, s) = Id, where Id denotes the identity operator in X;
(2) T(t, s)T(s, r) = T(t, r);
(3) the mapping (t, s)→ T(t, s)x is continuous for any fixed x ∈ X.

Definition 3.9. An evolution operator T(t, s) is called exponentially stable on an almost-complete closed-
ness T if there exists K0 > 1 and ω > 0 such that

‖T(t, s)‖B(X) 6 K0e	ω(t, s), t > s, t, s ∈ RT(τ, ε).

Definition 3.10. A function x : T→ X is called an ε-mild solution of Eq. (1.1) if for any t ∈ RT(τ, ε), t >
c, c 6= tki,ε, i ∈ Z,

x(t) = T(t, c)x(c) +
∫t
c

T
(
t,σ(s)

)
f
(
s, x(s)

)
∆s+

∑
c<tki ,ε<t

T(t, tki,ε)Ik
(
x(tki,ε)

)
.

In the following, we shall consider the abstract differential system (1.1) with the following assump-
tions.

(H1) The family
{
A(t) : t ∈ RT(τ, ε1)

}
of operators in X generates an exponentially stable evolution

system {T(t, s) : t > s}, i.e., there exist K0 > 1 and ω > 0 such that

‖T(t, s)‖B(X) 6 K0e	ω(t, s), t > s, t, s ∈ RT(τ, ε1)

and for any ε2 > ε1 > 0, there exists a relatively dense set T̄ ⊂ Πε1 such that if τ ∈ T̄ , then

‖T(t+ τ, s+ τ) − T(t, s)‖B(X) < ε2e	ω(t, s), t > s, t, s ∈ RT(τ, ε1).

(H2) f = g+ φ ∈ WPDAPε(T, ρ̃), where ρ ∈ Uε∞ and f(t, ·) is uniformly continuous in each bounded
subset of Ω uniformly in t ∈ RT(τ, ε); {Ik} is a weighted pseudo-almost periodic sequence, Ik(x) is
uniformly continuous in x ∈ Ω uniformly in k ∈ Z, infi∈Z t

1
ki,ε = θε > 0.

(H3) X is a finite dimensional Banach space.
(H4) For any L > 0, let

H1L = sup
t∈RT(τ,ε1),‖x‖ε16L

‖f(t, x)‖ < +∞ and H2L = sup
‖x‖ε16L

‖Ik(x)‖ < +∞.

Moreover, there exists a number L0 > 0 such that

H1L0K0(1 + (µ̄+ ε1)ω)

ω
H1L0 +

H2L0K0

1 − e	ω(θε1 , 0)
6 L0,

where µ̄ = supt∈T µ and e	ω(θε1 , 0) := supi∈Z e	ω(tki+1,ε1 , tki,ε1).
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Remark 3.11. It is obvious that if assumption (H1) holds, then for any sequence {sn}
∞
n=1 ⊂ Πε, there exist a

subsequence {snm}
∞
m=1 ⊂ {sn}

∞
n=1 and a set sequence {A−snm } such that the limit set T0 of {T−snm\A−snm }

exists and limm→∞ T(t+ snm , s+ snm) uniformly exists on T0, i.e., T(t+ snm , s+ snm)→ T∗(t, s), m→∞,
for all t, s ∈ T0.

Lemma 3.12. In Remark 3.11, if (H1) holds, then there exist positive constants K∗∗ and ω∗ such that

‖T∗(t, s)‖B(X) 6 K
∗∗e	ω∗(t, s), t > s, t, s ∈ RT(τ, ε1),

and for any ε2 > ε1 > 0, τ ∈ T̄ ⊂ Πε1 ,

‖T∗(t+ τ, s+ τ) − T∗(t, s)‖B(X) 6 ε2K
∗e	ω∗(t, s), t > s, t, s ∈ RT(τ, ε1).

Proof. Denote T(t+ snm , s+ snm) by Tm(t, s). By Lemma 3.7, there exist positive constants K∗ and ω∗

such that
‖Tm(t, s)‖B(X) 6 K0e	ω(t+ snm , s+ snm) 6 K0K

∗e	ω∗(t, s), t > s, (3.3)

and for any ε2 > ε1 > 0, τ ∈ T̄ ⊂ Πε1 ,

‖Tm(t, s) − Tm(t+ τ, s+ τ)‖B(X) 6 ε2e	ω(t+ snm , s+ snm) 6 ε2K
∗e	ω∗(t, s). (3.4)

In (3.4), let m→∞, so that

‖T∗(t+ τ, s+ τ) − T∗(t, s)‖B(X) 6 ε2K
∗e	ω∗(t, s).

Also, by (3.4), we have
‖Tm(t+ τ, s+ τ) − T∗(t, s)‖B(X) 6 ε2K

∗e	ω∗(t, s),

thus, by (3.3) and (3.4), we have

‖T∗(t, s)‖B(X) = ‖Tm(t+ τ, s+ τ) − T∗(t, s) − Tm(t+ τ, s+ τ)‖B(X)

6 ‖Tm(t+ τ, s+ τ) − T∗(t, s)‖B(X) + ‖Tm(t+ τ, s+ τ)‖B(X)

6 ε2K
∗e	ω∗(t, s) +K0K

∗e	ω∗(t, s)
= (ε2K

∗ +K0K
∗)e	ω∗(t, s) := K∗∗e	ω∗(t, s), t > s.

This completes the proof.

To investigate the existence and uniqueness of a weighted pseudo double-almost periodic solution for
Eq. (1.1), we need the following lemma:

Lemma 3.13. Let v ∈ DAPε(T, X), µ ∈ DAPε(T, R+) and (H1)-(H2) be satisfied. If u : RT(τ, ε) → X is
defined by

u0(t) =

∫t
−∞ T

(
t,σ(s)

)
v(s)∆s+

∑
tki ,ε<t

T(t, tki,ε)Ik
(
v(tki,ε)

)
, t > s,

then u0(·) ∈ DAPε(T, X).

Proof. Let {sn}∞n=1 ⊂ Πε. Since v is double-almost periodic, there exist a subsequence {τn}
∞
n=1 ⊂ {sn}

∞
n=1

and a set sequence {A−τn} such that the limit set T0 of {T−τn\A−τn} exists and h(t) := limn→∞ v(t+ τn)
uniformly exists for t ∈ T0. Now, we consider

u(t+ τn) =

∫t+τn
−∞ T

(
t+ τn,σ(s)

)
v(s)∆s

=

∫t
−∞ T

(
t+ τn,σ(s+ τn)

)
v(s+ τn)∆s
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=

∫t
−∞ T

(
t+ τn,σ(s+ τn)

)
vn(s)∆s, where vn(s) = v(s+ τn), n = 1, 2, . . ..

Note that e	ω∗(t, s)
(
1 + µ(s)ω∗

)
= e	ω∗

(
t,σ(s)

)
, so we have e	ω∗(t, s) 6 e	ω∗

(
t,σ(s)

)
, and further,

let µε : RT(τ, ε1) → R+, thus, we have |µ(t) − µε(t)| < ε for t ∈ RT(τ, ε). Thus, by (H1) and Lemma 3.7,
we obtain

‖u(t+ τn)‖ 6
∫t
−∞
∥∥T(t+ τn,σ(s+ τn)

)
vn(s)

∥∥∆s
6
∫t
−∞ K0e	ω

(
t+ τn,σ(s+ τn)

)
‖vn(s)‖∆s

6 K0

∫t
−∞
(
1 + µε(t)

)
e	ω(t+ τn, s+ τn)‖vn(s)‖∆s

6
(
1 + (µ̄+ ε)ω

)
K0K

∗‖v‖ε
∫t
−∞ e	ω∗

(
t,σ(s)

)
∆s

=

(
1 + (µ̄+ ε)ω

)
K0K

∗‖v‖ε
	ω∗

[
e	ω∗(t,−∞) − e	ω∗(t, t)

]
=
K0K

∗‖v‖ε
(
1 + (µ̄+ ε)ω

)(
1 + (µ̄+ ε)ω∗

)
ω∗

,

where µ̄ = supt∈T µ(t).
On the other hand, since µ ∈ DAPε(T, R+), we have µ(t+ τn)→ µ∗(t), n→∞, i.e., σ(t+ τn) − τn →

σ∗(t), n → ∞, thus σ(t+ τn) → σ∗(t) + τn, n → ∞. Therefore, by the condition (3) in Definition 3.8, we
have

T
(
t+ τn,σ(s+ τn)

)
→ T

(
t+ τn,σ∗(s) + τn

)
→ T∗

(
t,σ∗(s)

)
, t, s ∈ RT(τ, ε), n→∞.

Further, it is easy to see that vn(s)→ h(s) as n→∞, for all s ∈ RT(τ, ε). Thus, for any t > s, Lebesgue’s
dominated convergence theorem gives

lim
n→∞u(t+ τn) =

∫t
−∞ T∗

(
t,σ∗(s)

)
h(s)∆s.

Next, we consider

u
′
(t+ τn) =

∑
tki ,ε<t+τn

T(t+ τn, tki,ε)Ik
(
v(tki,ε)

)
=
∑
tki ,ε<t

T(t+ τn, tki,ε + τn)Ik
(
v(tki,ε + τn)

)
=
∑
tki ,ε<t

T(t+ τn, tki,ε + τn)Ik(vin),

where v(tki,ε + τn) := vin. By Lemma 3.7, we have

‖u ′(t+ τn)‖ =
∥∥∥∥ ∑
tki ,ε<t+τn

T(t+ τn, tki,ε)Ik
(
v(tki,ε)

)∥∥∥∥ =

∥∥∥∥ ∑
tki ,ε<t

T(t+ τn, tki,ε + τn)Ik(vin)
∥∥∥∥

6 IK0
∑
tki ,ε<t

e	ω(t+ τn, tki,ε + τn) 6 IK0K
∗
∑
tki ,ε<t

e	ω∗(t, tki,ε) 6
IK0K

∗

1 − e	ω∗(θε, 0)
.

Since v ∈ DAPε(T, X), vin → h(tki,ε), n→∞, for all i ∈ Z. Hence, for any t > tki,ε, i ∈ Z, by Lebesgue’s
dominated convergence theorem, we get

lim
n→∞u ′(t+ τn) =

∑
tki ,ε<t

T∗(t, tki,ε)Ik
(
h(tki,ε)

)
.
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Thus, it follows that
lim
n→∞u0(t+ τn) = lim

n→∞u(t+ τn) + lim
n→∞u ′(t+ τn)

uniformly exists on T0. Therefore, u0(·) ∈ DAPε(T, X). This completes the proof.

Theorem 3.14. Let f
(
·, ϑ(·)

)
∈ WPDAPε(T, ρ̃), where ϑ ∈ WPDAPε(T, ρ̃) and {T(t, s), t > s} is exponentially

stable, ρ ∈ Uε∞. Then, for all t ∈ RT(τ, ε),

F(·) :=
∫ (·)
−∞ T

(
·,σ(s)

)
f
(
s, ϑ(s)

)
∆s+

∑
tki ,ε<·

T(·, tki,ε)Ik
(
ϑ(tki,ε)

)
∈WPDAPε(T, ρ̃).

Proof. Fix ϑ ∈ WPDAPε(T, X), then we have f
(
·, ϑ(·)

)
= φ1(·) + φ2(·), where φ1 ∈ DAPε(T, X), φ2 ∈

WPDAPε0 (T, X). Thus,∫t
−∞ T

(
t,σ(s)

)
f
(
s, ϑ(s)

)
∆s =

∫t
−∞ T

(
t,σ(s)

)
φ1(s)∆s+

∫t
−∞ T

(
t,σ(s)

)
φ2(s)∆s := I1(t) + I2(t)

and ∑
tki ,ε<t

T(t, tki,ε)Ik
(
ϑ(tki,ε)

)
=
∑
tki ,ε<t

T(t, tki,ε)βi +
∑
tki ,ε<t

T(t, tki,ε)γi := Υ1(t) +Υ2(t).

By Lemma 3.13, it is clear that I1,Υ1 ∈ DAPε(T, X). Moreover, it follows from Theorem 2.15 in [6] and
(H1) that

1
m(r1, r2, ρ̃)

∫r2

r1

‖I2(t)‖∆t =
1

m(r1, r2, ρ̃)

∫r2

r1

∥∥∥∥ ∫t
−∞ T

(
t,σ(s)

)
φ2(s)∆s

∥∥∥∥∆t
6

1
m(r1, r2, ρ̃)

∫r2

r1

∆t

∫t
−∞ K0e	ω

(
t,σ(s)

)
‖φ2(s)‖∆s

=
1

m(r1, r2, ρ̃)

∫r2

r1

∆t

( ∫r1

−∞ K0e	ω
(
t,σ(s)

)
‖φ2(s)‖∆s

+

∫t
r1

K0e	ω
(
t,σ(s)

)
‖φ2(s)‖∆s

)
=

1
m(r1, r2, ρ̃)

∫r1

−∞ ‖φ2(s)‖∆s
∫r2

r1

K0e	ω
(
t,σ(s)

)
∆s

+
1

m(r1, r2, ρ̃)

∫r2

r1

‖φ2(s)‖∆s
∫r2

s

K0e	ω
(
t,σ(s)

)
∆t := I01 + I

0
2.

Clearly,

I01 =
1

m(r1, r2, ρ̃)

∫r1

−∞ ‖φ2(s)‖∆s
∫r2

r1

K0e	ω
(
t,σ(s)

)
∆t

=
1

m(r1, r2, ρ̃)

∫r1

−∞ ‖φ2(s)‖∆s
∫r2

r1

K0

1 + µε(t)(	ω)
e	ω

(
σ(t),σ(s)

)
∆t

6
1

m(r1, r2, ρ̃)
K0
(
1 + (µ̄+ ε)ω

) ∫r1

−∞ ‖φ2(s)‖∆s
∫r2

r1

eω
(
σ(s),σ(t)

)
∆t

=
1

m(r1, r2, ρ̃)
K0
(
1 + (µ̄+ ε)ω

)
ω

∫r1

−∞ ‖φ2(s)‖
[
eω(σ(s), r1) − eω(σ(s), r2)

]
∆s

6
1

m(r1, r2, ρ̃)
K0
(
1 + (µ̄+ ε)ω

)
ω

‖φ2‖ε
( ∫r1

−∞ e	ω(r1,σ(s))∆s−
∫r1

−∞ e	ω(r2,σ(s))∆s
)
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=
1

m(r1, r2, ρ̃)
K0
(
1 + (µ̄+ ε)ω)

ω

‖φ2‖ε
	ω

(
e	ω(r1,−∞) − e	ω(r1, r1)

− e	ω(r2,−∞) + e	ω(r2, r1)
)
→ 0 as r2 − r1 := Dr →∞,

and

I02 =
1

m(r1, r2, ρ̃)

∫r2

r1

‖φ2(s)‖∆s
∫r2

s

K0e	ω
(
t,σ(s)

)
∆t

=
1

m(r1, r2, ρ̃)

∫r2

r1

‖φ2(s)‖∆s
∫r2

s

1
1 + µε(t)(	ω)

e	ω
(
σ(t),σ(s)

)
∆t

6
1

m(r1, r2, ρ̃)
K0
(
1 + (µ̄+ ε)ω

) ∫r2

r1

‖φ2(s)‖∆s
∫r2

s

eω
(
σ(s),σ(t)

)
∆t

=
1

m(r1, r2, ρ̃)
K0
(
1 + (µ̄+ ε)ω

)
ω

∫r2

r1

‖φ2(s)‖
[
eω(σ(s), s) − eω(σ(s), r2)

]
∆s

6
1

m(r1, r2, ρ̃)
K0
(
1 + (µ̄+ ε)ω

)2

ω

∫r2

r1

‖φ2(s)‖∆s.

Since φ2 ∈WPDAPε0 (T, ρ), we find that limDr→∞ 1
m(r1,r2,ρ̃)

∫r2
r1
‖φ2(s)‖∆s = 0. Hence, limDr→∞ I02 = 0.

It remains to show that Υ2 ∈WPDAPε0 (T, ρ̃). For any Dr > 0, there exist i(r), j(r) such that

ti(r)−1 < r1 6 ti(r) < . . . < tj(r) 6 r2 < tj(r)+1.

Since γi ∈WPDAPε0 (Z, ρ), Mγi = supi∈Z ‖γi‖ <∞, and from the fact that for a ∈ RT(τ, ε), e	ω(t,a) =(
1 + µε(t)ω

)
eω
(
a,σ(t)

)
, we find

1
m(r1, r2, ρ̃)

∫r2

r1

‖Υ2(t)‖∆t =
1

m(r1, r2, ρ̃)

∫r2

r1

∥∥∥∥ ∑
tki ,ε<t

T(t, tki,ε)γi

∥∥∥∥∆t
6

1
m(r1, r2, ρ̃)

∫r2

r1

∑
tki ,ε<t

K0e	ω(t, tki,ε)‖γi‖∆t

6
1

m(r1, r2, ρ̃)

∑
tki ,ε<r1

K0e	ω(r1, tki,ε)‖γi‖
∫r2

r1

e	ω(t, r1)∆t

+
1

m(r1, r2, ρ̃)

∑
r1<tki ,ε<r2

‖γi‖
∫r2

r1

K0e	ω(t, tki,ε)∆t

6
1

m(r1, r2, ρ̃)

∑
tki ,ε<r1

K0
(
1 + (µ̄+ ε)ω

)
ω

Mγie	ω(r1, tki,ε)

+
1

m(r1, r2, ρ̃)

∑
r1<tki ,ε<r2

K0
(
1 + (µ̄+ ε)ω

)
ω

‖γi‖

6
1

m(r1, r2, ρ̃)
K0Mγi

(
1 + (µ̄+ ε)ω

)
ω

1
1 − e	ω(θε, 0)

+
K0
(
1 + (µ̄+ ε)ω

)
ω

1
m(r1, r2, ρ̃)

j(r)∑
k=i(r)

‖γk‖.

Since γi ∈WPDAPε0 (Z, ρ̃), and for Dr →∞, m(r1, r2, ρ̃)→∞, we have

lim
Dr→∞

1
m(r1, r2, ρ̃)

j(r)∑
k=i(r)

‖γk‖ = lim
Dr→∞

1
j(r)∑
k=i(r)

ρ̃(tk)µ(tk)

j(r)∑
k=i(r)

‖γk‖ = 0.
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Further, as Dr →∞, one has

1
m(r1, r2, ρ̃)

K0Mγi

(
1 + (µ̄+ ε)ω)

ω

1
1 − e	ω(θε, 0)

→ 0.

Hence, it follows that

lim
Dr→∞

1
m(r1, r2, ρ̃)

∫r2

r1

‖Υ2(t)‖∆t = 0.

Thus,
∑
tki ,ε<· T(·, tki,ε)Ik

(
ϑ(tki,ε)

)
∈ WPDAPε0 (T, ρ̃), and hence F(·) ∈ WPDAPε(T, ρ̃). This completes

the proof.

The first existence result is based on the Schauder fixed point theorem.

Theorem 3.15. Suppose conditions (H1)-(H4) hold. Then Eq. (1.1) has a weighted pseudo double-almost periodic
solution.

Proof. Let D = {ϕ ∈WPDAPε(T, X)∩UPCε(T, X) : ‖ϕ‖ε 6 L0}. Define an operator Γ on D by

Γϕ =

∫t
−∞ T

(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<t

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
.

We will show that Γ has a fixed point in D. From Theorem 3.14, it follows that for every ϕ ∈ D,
Γϕ ∈WPDAPε(T, ρ).

Step 1. We will show that ‖Γϕ‖ε 6 L0. For every ϕ ∈ D, by (H1) and (H4), we have

‖Γϕ(t)‖ =
∥∥∥∥ ∫t

−∞ T
(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<t

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)∥∥∥∥
6
∫t
−∞ K0e	ω

(
t,σ(s)

)∥∥f(s,ϕ(s))∥∥∆s+ ∑
tki ,ε<t

K0e	ω(t, tki,ε)
∥∥Ik(ϕ(tki,ε))∥∥

6 H1L0K0

∫t
−∞ e	ω

(
t,σ(s)

)
∆s+H2L0K0

∑
tki ,ε<t

e	ω(t, tki,ε)

6
H1L0K0

(
1 + (µ̄+ ε)ω

)
ω

H1L0 +
H2L0K0

1 − e	ω(θε, 0)
6 L0,

thus ‖Γϕ‖ε 6 L0.

Step 2. We will show that for every ϕ ∈ D, Γϕ ∈ UPCε(T, X).
Suppose ϕ ∈ D, t

′
, t
′′ ∈ (tki,ε, tki+1,ε)RT(τ,ε), i ∈ Z, by conditions (1) and (3) in Definition 3.8, we can

easily see that for any ε∗ > ε > 0, there exists δ0 > 0 such that 0 < t
′
− t

′′
< δ0 =

ε∗ω

3K0
(
1 + (µ̄+ ε)ω

)
H1L0

implies

‖T(t ′ , t ′′) − I‖ < min
{

ε∗ω

3K0
(
1 + (µ̄+ ε)ω

)
H1L0

,
ε∗(1 − e	ω(θε, 0))

3H2L0K0

}
.

Thus, we have

‖Γϕ(t ′) − Γϕ(t ′′)‖ =
∥∥∥∥ ∫t

′

−∞ T
(
t
′
,σ(s)

)
f
(
s,ϕ(s)

)
∆s−

∫t ′′
−∞ T

(
t
′′
,σ(s)

)
f
(
s,ϕ(s)

)
∆s

+
∑

tki ,ε<t
′

T(t
′
, s)Ik

(
ϕ(tki,ε)

)
−
∑

tki ,ε<t
′′

T(t
′′
, tki,ε)Ik

(
ϕ(tki,ε)

)∥∥∥∥



C. Wang, R. P. Agarwal, D. O’Regan, J. Nonlinear Sci. Appl., 10 (2017), 3863–3886 3876

6

∥∥∥∥ ∫t
′′

−∞
[
T
(
t
′
,σ(s)

)
− T
(
t
′′
,σ(s)

)]
f
(
s,ϕ(s)

)
∆s

∥∥∥∥+ ∥∥∥∥ ∫t
′

t
′′
T
(
t
′
,σ(s)

)
f
(
s,ϕ(s)

)
∆s

∥∥∥∥
+

∥∥∥∥ ∑
tki ,ε<t

′′

[
T(t

′
, tki,ε) − T(t

′′
, tki,ε)

]
Ik
(
ϕ(tki,ε)

)∥∥∥∥
6
∫t ′′
−∞
∥∥T(t ′′ ,σ(s))∥∥‖T(t ′ , t ′′) − I‖∥∥f(s,ϕ(s))∥∥∆s+ ∫t ′

t
′′

∥∥T(t ′ ,σ(s))∥∥∥∥f(s,ϕ(s))∥∥∆s
+
∑

tki ,ε<t
′′

‖T(t ′′ , tki,ε)‖‖T(t
′
, t
′′
) − I‖

∥∥Ik(ϕ(tki,ε))∥∥
6 K0H1L0

ε∗ω

3K0
(
1 + (µ̄+ ε)ω

)
H1L0

∫t ′′
−∞ e	ω

(
t
′′
,σ(s)

)
∆s

+H1L0K0
1 + (µ̄+ ε)ω

ω

ε∗ω

3H1L0K0
(
1 + (µ̄+ ε)ω

)
+H2L0K0

ε∗(1 − e	ω(θε, 0))
3H2L0K0

∑
tki ,ε<t

′′

e	ω(t
′′
, tki,ε) <

ε∗

3
+
ε∗

3
+
ε∗

3
= ε∗,

which shows that Γϕ ∈ UPCε(T, X). Hence, ΓD ⊆ D.

Step 3. We will show that Γ is continuous.
Let {ϕn} ⊂ D ⊂ PCεrd(T, X), ϕn → ϕ in PCεrd(T, X) as n → ∞. Then, we can find a bounded subset

K ⊆ Ω such that ϕ
(
RT(τ, ε)

)
⊆ K, n ∈ N. By (H2), for any ε∗ > 0, there exists δ

′
ε∗ > 0 such that x,y ∈ K

and ‖x− y‖ < δ ′ε∗ implies that

‖f(t, x) − f(t,y)‖ < ε∗ for all t ∈ RT(τ, ε),
and

‖Ik(x) − Ik(y)‖ < ε∗ for all k ∈ Z.

For the above δ
′
ε∗ , there exists n0 such that ‖ϕn(t) −ϕ(t)‖ < δ

′
ε∗ for n > n0 and t ∈ RT(τ, ε), thus for

n > n0, we have ∥∥f(t,ϕn(t))− f(t,ϕ(t))∥∥ < ε∗ for all t ∈ RT(τ, ε),
and ∥∥Ik(ϕn(tki,ε))− Ik(ϕ(tki,ε))∥∥ < ε∗ for all i ∈ Z.

Hence,

‖Γϕn(t) − Γϕ(t)‖ =
∥∥∥∥ ∫t

−∞ T
(
t,σ(s)

)[
f
(
s,ϕn(s)

)
− f
(
s,ϕ(s)

)]
∆s

+
∑
tki ,ε<t

T(t, tki,ε)
[
Ik
(
ϕn(tki,ε)

)
− Ik

(
ϕ(tki,ε)

)]∥∥∥∥
6
∫t
−∞ K0e	ω

(
t,σ(s)

)∥∥f(s,ϕn(s))− f(s,ϕ(s))∥∥∆s
+
∑
tki ,ε<t

K0e	ω(t, tki,ε)
∥∥Ik(ϕn(tki,ε))− Ik(ϕ(tki,ε))∥∥

6

[
K0
(
1 + (µ̄+ ε)ω

)
ω

+
K0

1 − e	ω(θε, 0)

]
ε∗,

from which it follows that Γ is continuous.
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Step 4. We will show that Dt = {Γϕ(t) : ϕ ∈ D} is a relatively compact subset of X for each t ∈ RT(τ, ε).
By condition (3) in Definition 3.8, for any ε∗ > ε > 0, there exists ηε∗ > 0, such that |t− s| < ηε∗ implies

‖T(t, s) − I‖B(X) < ε∗. Hence, we find that for 0 < |t− s| < ηε∗ , T(t, s) is a bounded linear operator in
X. From (H3), i.e., X is a finite dimensional Banach space, T(t, s) is compact. Let ‖T(t, s)‖B(X) 6 N0 for
0 < t− tc < ηε∗ , where

ηε∗ = min
{

ωε∗

2N0K0H1L0

(
1 + (µ̄+ ε)ω

) ,
(1 − e	ω(θε, 0))ε∗

2N0K0C2L0

}
.

For t ∈ RT(τ, ε), we define

Γtcϕ(t) =

∫tc
−∞ T

(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<tc

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
= T(t, tc)

[ ∫tc
−∞ T

(
tc,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<tc

T(tc, tki,ε)Ik
(
ϕ(tki,ε)

)]
= T(t, tc)Γϕ(tc),

and then we have

Γϕ(t) − Γtcϕ(t) =

∫t
−∞ T

(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<t

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
−

∫tc
−∞ T

(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<tc

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
= T(t, tc)

[ ∫tc
−∞ T

(
tc,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<tc

T(tc, tki,ε)Ik
(
ϕ(tki,ε)

)
+

∫t
tc

T
(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tc<t

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
−

∫tc
−∞ T

(
tc,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<tc

T(tc, tki,ε)Ik
(
ϕ(tki,ε)

)]
= T(t, tc)Γ0ϕ(t),

where Γ0ϕ(t) =
∫t
tc
T
(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s +

∑
tc<t

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
. Since {Γϕ(tc) : ϕ ∈ D} is

bounded and T(t, tc) is compact, {T(t, tc)Γϕ(tc) : ϕ ∈ D} is a relatively compact subset of X.
Further, we have

‖Γϕ(t) − Γtcϕ(t)‖ =
∥∥∥∥ ∫t
tc

T
(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tc<t

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)∥∥∥∥‖T(t, tc)‖B(X)

6

[
K0H1L0

(
1 + (µ̄+ ε)ω

)
ω

∫t
tc

e	ω
(
t,σ(s)

)
∆s+K0H2L0

∑
tc<t

e	ω(t, tki,ε)
]
‖T(t, tc)‖B(X)

6

[
N0K0H1L0

(
1 + (µ̄+ ε)ω

)
ω

+
N0K0H2L0

1 − e	ω(θε, 0)

]
η <

ε∗

2
+
ε∗

2
= ε∗.

Thus, Dt = {Γϕ(t),ϕ ∈ D} is a relatively compact subset of X for each t ∈ RT(τ, ε).
By Step 2, we find that {Γϕ : ϕ ∈ D} is equicontinuous at each interval (tki,ε, tki+1,ε)RT(τ,ε), i ∈ Z.

Further, since {Γϕ : ϕ ∈ D} ⊂ PCεh0
(T, X), it is a relatively compact set, and hence Γ is a compact operator.

Since D is a closed convex set, it follows from the Schauder fixed point theorem that Γ has a fixed point
ϕ in D. This fixed point ϕ satisfies the integral equation

ϕ(t) =

∫t
−∞ T

(
t,σ(s)

)
∆s+

∑
tki ,ε<t

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
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for all t ∈ RT(τ, ε). For fixed t∗ ∈ RT(τ, ε), t∗ 6= tki,ε, i ∈ Z, we have

ϕ(t∗) =

∫t∗
−∞ T

(
t∗,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<t∗

T(t∗, tki,ε)Ik
(
ϕ(tki,ε)

)
.

Since the family
{
A(t) : t ∈ RT(τ, ε)

}
of operators in X generates an exponentially stable evolution system{

T(t, s) : t > s, t, s ∈ RT(τ, ε)
}

, we find

ϕ(t) =

∫t
−∞ T

(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<t

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
=

∫t∗
−∞ T

(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
tki ,ε<t∗

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
+

∫t
t∗
T
(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
t∗<tki ,ε<t

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
= T(t, t∗)ϕ(t∗) +

∫t
t∗
T
(
t,σ(s)

)
f
(
s,ϕ(s)

)
∆s+

∑
t∗<tki ,ε<t

T(t, tki,ε)Ik
(
ϕ(tki,ε)

)
.

Therefore, ϕ is a weighted piecewise pseudo double-almost periodic mild solution for Eq. (1.1) on an
almost-complete closedness time scale T. This completes the proof.

The following existence result is based on the contraction principle.

Theorem 3.16. Assume the following conditions hold:

(A1) The family
{
A(t) : t ∈ RT(τ, ε)

}
of operators in X generates an exponentially stable evolution system{

T(t, s) : t > s, t, s ∈ RT(τ, ε)
}

, i.e., there exist K0 > 1 and ω > 0 such that

‖T(t, s)‖B(X) 6 K0e	ω(t, s), t > s,

and for any ε2 > ε1 > 0, there exists a relatively dense set T̄ ⊂ Πε1 such that if τ ∈ T̄ , then

‖T(t+ τ, s+ τ) − T(t, s)‖B(X) < ε2e	ω(t, s), t > s, t, s ∈ RT(τ, ε1);

(A2) f ∈WPDAPε(T×Ω, ρ̃), and f satisfies the Lipschitz condition with respect to the second argument, i.e.,

‖f(t, x) − f(t,y)‖ 6 L1‖x− y‖, t ∈ RT(τ, ε), x,y ∈ Ω;

(A3) Ik is a weighted pseudo-almost periodic sequence, and there exists a number L2 > 0 such that

‖Ik(x) − Ik(y)‖ 6 L2‖x− y‖

for all x,y ∈ Ω, k ∈ Z.

Further, assume that
K0L1

(
1 + (µ̄+ ε)ω

)
ω

+
K0L2

1 − e	ω(θε, 0)
< 1,

where µ̄ = supt∈T µ and e	ω(θε, 0) := supi∈Z e	ω(tki+1,ε, tki,ε). Then, Eq. (1.1) has a weighted pseudo
double-almost periodic solution.
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Proof. Define the operator Γ on WPDAPε(T, ρ̃) ∩UPCε(T, X) as in the proof of Theorem 3.15. For ϕ ∈
WPDAPε(T, ρ̃)∩UPCε(T, X), by (A2) and (A3), we have∥∥f(t,ϕ(t))∥∥ 6

∥∥f(t,ϕ(t))− f(t, 0)
∥∥+ ‖f(t, 0)‖ 6 L1‖ϕ(t)‖+ ‖f(t, 0)‖,

and ∥∥Ik(ϕ(tki,ε))∥∥ 6
∥∥Ik(ϕ(tki,ε))− Ii(0)∥∥ 6 L2‖ϕ(tki,ε)‖+ ‖Ik(0)‖.

Thus, f
(
·,ϕ(·)

)
∈ PCεrd(T, X) and Ik

(
ϕ(tki,ε))

)
is a bounded sequence. Therefore, it follows from the

proof of Theorem 3.15 that Γϕ ∈WPDAPε(T, ρ̃)∩UPCε(T, X). Hence, Γ
(
WPDAPε(T, ρ̃)∩UPCε(T, X)

)
⊂

WPDAPε(T, ρ̃) ∩UPCε(T, X). It suffices now to show that the operator Γ has a fixed point in WPDAPε

(T, ρ̃) ∩UPCε(T, X). For ϕ1,ϕ2 ∈WPDAPε(T, ρ̃)∩UPCε(T, X), we have

‖Γϕ1(t) − Γϕ2(t)‖ =
∥∥∥∥ ∫t

−∞ T
(
t,σ(s)

)[
f
(
s,ϕ1(s)

)
− f
(
s,ϕ2(s)

)]
∆s

+
∑
tki ,ε<t

T(t, tki,ε)
[
Ik
(
ϕ1(tki,ε)

)
− Ik

(
ϕ2(tki,ε)

)]∥∥∥∥
6
∫t
−∞ K0e	ω(t,σ(s))‖f(s,ϕ1(s)) − f(s,ϕ2(s))‖∆s

+
∑
tki ,ε<t

K0e	ω(t, tki,ε)
∥∥Ik(ϕ1(tki,ε)

)
− Ik

(
ϕ2(tki,ε)

)∥∥
6
∫t
−∞ K0e	ω

(
t,σ(s)

)
L1‖ϕ1(s) −ϕ2(s)‖∆s

+
∑
tki ,ε<t

K0e	ω(t, tki,ε)L2‖ϕ1(tki,ε) −ϕ2(tki,ε)‖

6

[
K0L1

(
1 + (µ̄+ ε)ω

)
ω

+
K0L2

1 − e	ω(θε, 0)

]
‖ϕ1 −ϕ2‖.

Since
K0L1

(
1 + (µ̄+ ε)ω

)
ω

+
K0L2

1 − e	ω(θε, 0)
< 1, Γ is a contradiction. Hence, Γ has a fixed point in

WPDAPε(T, ρ̃) ∩UPCε(T, X). Thus Eq. (1.1) has a weighted pseudo double-almost periodic solution.
This completes the proof.

Finally, we investigate the stability of a weighted pseudo double-almost periodic solution for Eq. (1.1).

Theorem 3.17. Suppose the conditions of Theorem 3.16 hold. Assume further that (	ω)⊕ p < 0, where p =
K0L1

(
1+ (µ̄+ ε)ω

)
, µ̄ = supt∈T µ(t). Then, Eq. (1.1) has an exponentially stable weighted pseudo double-almost

periodic mild solution.

Proof. By Theorem 3.16, we know that Eq. (1.1) has a weighted piecewise pseudo double-almost periodic
mild solution u(t), and in integral form can be written as:

u(t) = T(t, s0)u(s0) +

∫t
s0

T
(
t,σ(s)

)
f
(
s,u(s)

)
∆s+

∑
s0<tki ,ε<t

T(t, tki,ε)Ik
(
u(tki,ε)

)
,

where t > s0, s0 6= tki,ε, i ∈ Z.
Let u(t) = u(t, s0) and v(t) = v(t, s0) be two solutions of Eq. (1.1), then

u(t) = T(t, s0)u(s0) +

∫t
s0

T
(
t,σ(s)

)
f
(
s,u(s)

)
∆s+

∑
s0<tki ,ε<t

T(t, tki,ε)Ik
(
u(tki,ε)

)
,

v(t) = T(t, s0)v(s0) +

∫t
s0

T
(
t,σ(s)

)
f
(
s, v(s)

)
∆s+

∑
s0<tki ,ε<t

T(t, tki,ε)Ik
(
v(tki,ε)

)
.
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Thus, it follows that

‖u(t) − v(t)‖ 6 ‖T(t, s0)[u(s0) − v(s0)]‖+
∥∥∥∥ ∫t
s0

T
(
t,σ(s)

)[
f
(
s,u(s)

)
− f
(
s, v(s)

)]
∆s

∥∥∥∥
+

∥∥∥∥ ∑
s0<tki ,ε<t

T(t, tki,ε)
[
Ik
(
u(tki,ε)

)
− Ik

(
v(tki,ε)

)]∥∥∥∥
6 ‖T(t, s0)‖‖u(s0) − v(s0)‖+

∫t
s0

∥∥T(t,σ(s))∥∥∥∥f(s,u(s))− f(s, v(s))∥∥∆s
+

∑
s0<tki ,ε<t

‖T(t, tki,ε)‖
∥∥[Ik(u(tki,ε))− Ik(v(tki,ε))]∥∥

6 K0e	ω(t, s0)‖u(s0) − v(s0)‖+
∫t
s0

K0L1e	ω
(
t,σ(s)

)
‖u(s) − v(s)‖∆s

+
∑

s0<tki ,ε<t

K0L2e	ω(t, tki,ε)‖u(tki,ε) − v(tki,ε)‖.

Let y(t) = ‖u(t) − v(t)‖eω(t, t0), so that the above inequality can be written as

y(t) 6 K0y(s0) +K0L1
(
1 + (µ̄+ ε)ω

) ∫t
s0

y(s)∆s+K0L2
∑

s0<tki ,ε<t

y(tki,ε).

Now, from Gronwall-Bellman’s inequality on time scales, we have

y(t) 6 K0y(s0)
∏

s0<tki ,ε<t

K0L2ep(t, t0), t ∈ RT(τ, ε),

which is the same as

‖u(t) − v(t)‖ 6 K0‖u(s0) − v(s0)‖
∏

s0<tki ,ε<t

K0L2ep(t, t0)e(	ω)⊕p(t, t0).

Hence, Eq. (1.1) has an exponentially stable weighted pseudo double-almost periodic mild solution. This
completes the proof.

4. Applications

Here we propose some new dynamic models based on ACCTS in the real world, and some practical
applications of our main results will be provided, which indicate that this theory works well, and not
only unifies continuous and discrete situations, but also includes the situations “in between” in a broader
sense. The models established on ACCTS are more suitable for precisely describing the reality with the
law of almost cycle in practice.

The first application is to investigate the existence and stability of weighted pseudo double-almost
periodic solutions of IBVP for a ∆-partial dynamic equation.

Application 4.1. Let T be an almost-complete closedness time scale with µ̄ <
5
3

and u ∈ PCεrd
(
T ×

[0,π]T, R
)
. Consider the following impulsive partial dynamic equation:

∂

∆1t
u(t, x) =

∂2

∆2x2u(t, x) +
1

180
(

sin t+ sin
√

2t+ g(t)
)

cosu(t, x),

t ∈
(
RT(τ, ε)

)
\∪Bε, x ∈ [tki1 ,ε, tki2 ,ε]RT(τ,ε), i1, i2 ∈ Z,

∆u(tki,ε, x) = βku(tki,ε, x), i ∈ Z, x ∈ [tki1 ,ε, tki2 ,ε]RT(τ,ε), tki ,ε ∈ ∪Bε,
u(t, tki1 ,ε) = u(t, tki2 ,ε) = ε, t ∈ RT(τ, ε),

(4.1)
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where g ∈ UPCε(T, R) satisfies |g(t)| 6 1,
(
t ∈ RT(τ, ε)

)
and

tki1 ,ε = inf
{
t ∈ RT(τ, ε) : t > 0

}
, tki2 ,ε = sup

{
t ∈ RT(τ, ε) : t < π

}
,

ρ̃(t) = | sin t|+ 1, βk =
1

180
(

sink+ sin
√

2k+ g(k)
)
,

and

Bε =

{
tki,ε = ki +

1
8
| sinki − sin

√
2ki| : i ∈ Z

}
.

Let X = L2[tki1 ,ε, tki2 ,ε]RT(τ,ε), and let Au =
∂2

∆2x2u(t, x), u ∈ D(A). It follows from the same discus-

sion as in Section 3.1 of [19] that the evolution system {T(t, s) : t > s} satisfies ‖T(t, s)‖ 6 e	 1
2
(t, s) (t > s)

with K0 = 1, ω = 1/2. Further, it is easy to check that {tjki,ε}, i, j ∈ Z is an equipotentially almost periodic
sequence on R, and

t1
k = tk+1 − tk = 1 +

1
8
| sin(k+ 1) − sin

√
2(k+ 1)|−

1
8
| sink− sin

√
2k|

> 1 −
1
8
| sin(k+ 1) − sink− [sin

√
2(k+ 1) − sin

√
2k]|

> 1 −
1
4

∣∣∣∣ sin
1
2

cos
2k+ 1

2

∣∣∣∣− 1
2

∣∣∣∣ sin
√

2
2

cos
√

2(2k+ 1)
2

∣∣∣∣
> 1 −

1
4

sin
1
2
−

1
2

sin
√

2
2
>

2
5

.

Hence, for any {sn} ⊂ Z, there exists a subsequence {snm} such that limm→∞ tsnmki ,ε
uniformly exists for all

i ∈ Z, let
I0 =

{
i0 : tki0 ,ε ∈ RT(τ, ε)

}
,

and one can obtain that for any {sn} ⊂ Z, there exists a subsequence {snm} such that limm→∞ tsnmki0 ,ε

uniformly exists for all i0 ∈ I0. Thus, {tki0 ,ε} ∈ Bε is an equipotentially almost periodic sequence and

θε = infi0∈I0(tki0+1,ε − tki0 ,ε) >
2
5
+ ε > 0, (tki0 ,ε ∈ ∪Bε). Now, let f(t,u) = ĉ

1
180

(
sin t + sin

√
2t +

g(t)
)

cosu, where ĉ is some constant related to the number ε satisfying ĉ < 1 − e	ω(θε, 0) and Ik(u) =

βku =
1
60
ĉu.

Clearly, both f and Ik satisfy the assumptions of Theorems 3.16 and 3.17 with L1 = L2 =
1

60
ĉ. Moreover,

K0L1
(
1 + (µ̄+ ε)ω

)
ω

+
K0L2

1 − e	ω(θε, 0)
<

1
30
ĉ

(
11
6

+
ε

2

)
+

ĉ

60(1 − e	ω(θε, 0))

<
1
30

(
11
6

+
ε

2

)
+

1
60

<
1
30

(
11
6

+
1
2

)
+

1
60
≈ 0.0944 < 1 for ε < 1,

and since µ̄ <
5
3

, it follows that 1 + (µ̄+ ε)ω <
11
6

, and hence

(	ω)⊕ p = −
ω

1 + µεω
+K0L1

(
1 + (µ̄+ ε)ω

)
−
K0L1ωµε

(
1 + (µ̄+ ε)ω

)
(1 + µεω)

6 −
ω

1 + (µ̄+ ε)ω
+K0L1

(
1 + (µ̄+ ε)ω

)
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< −0.2143 + 0.0389ĉ < −0.2143 + 0.0389 < 0 for ε < 1.

Therefore, Eq. (4.1) has a weighted piecewise pseudo double-almost periodic mild solution which is
exponentially stable.

Now, we apply our results to study dynamical models occurring in economics.

Application 4.2. A famous economic model is known as the Keynesian-Cross model that was earlier stud-
ied in [26]. However one sees that the classical Keynesian-Cross model has several deficiencies to describe
aggregate income precisely in practice since several factors like the aggregate demand, the aggregate con-
sumption, the aggregate investment and the government spending are not always almost the same after
an exactly equivalent time interval, but they may always follow the law that they are almost the same
after an almost equivalent time interval. Therefore, government is only able to strike a rough balance
between supply and demand after an almost equivalent time interval rather than after the exactly equiv-
alent time interval. Furthermore, some factors like the aggregate demand, the aggregate consumption,
the aggregate investment and the government spending may suffer from sudden changes, for example,
bankrupt of an enterprise will lead to a sudden decrease of personal income that will facilitate consump-
tion level. Considering the almost periodicity of time variables and sudden changes of status of the
model, we should optimize and fill the gaps of the classical Keynesian-Cross model. In the following, we
consider the dynamic model in a simple closed economy with impulses on an almost-complete closedness
time scale T:

D(t) = C(t) + I0(t,y) +G(t,y), t ∈
(
RT(τ, ε)

)
\∪Bε, (4.2)

C(t) = C0(t,y) + cy(t), t ∈ (RT(τ, ε))\∪Bε, (4.3)

y∆(t) = δ[Dσ − y], t > a, t ∈ (RT(τ, ε))\∪Bε, t 6= tki,ε, i ∈ Z, (4.4)
∆y(tki,ε) = I

(
y(tki,ε)

)
= y(t+ki,ε) − y(t

−
ki,ε), t = tki,ε ∈ ∪B

ε, i ∈ Z,

where D is the aggregate demand, y is the aggregate income, C is the aggregate consumption, I0 is the
aggregate investment, G is the government spending, δ < 1 is a positive constant known as the speed of
adjustment term, C0 is the additional consumer income, and c is non-negative constant.

In [26], G and I0 are taken as constants in (4.2), and current consumption is assumed to depend on
current income in (4.3). Also, Eq. (4.4) means that the change in income is a fraction of excess demand
at σ(t) over income at t (see [26]). However the aggregate investment I0 and the government spending G
always depend on the aggregate income in real application. Hence, it is more appropriate to assume that
I0,G,C0 : T×R→ R are weighted pseudo double-almost periodic functions, which satisfy the followings:

|I0(t, x) − I0(t,y)| 6 L1|x− y|, ∀x,y ∈ R,
|G(t, x) −G(t,y)| 6 L2|x− y|, ∀x,y ∈ R,

|C0(t, x) −C0(t,y)| 6 L3|x− y|, ∀x,y ∈ R.

It is worth noting that we have introduced the impulsive effect term in Eq. (4.4) since the aggregate
income may have a sudden change in some special cases if an economic crisis happens.

Substituting (4.2) and (4.3) in (4.4), we obtain{
y∆ = δ[C0(t,y) + cyσ + I0(t,y) +G(t,y) − y], t ∈ (RT(τ, ε))\∪Bε, t 6= tki,ε, i ∈ Z,
∆y(tki,ε) = I

(
y(tki,ε)

)
= y(t+ki,ε) − y(t

−
ki,ε

), t = tki,ε ∈ Bε, i ∈ Z.

Now, using the formula yσ = y+ µy∆ and assuming that 1 − δcµ 6= 0 for t > a, we have
y∆ =

δ(c− 1)
1 − δcµ(t)

y+
δ(C0(t,y) + I0(t,y) +G(t,y))

1 − δcµ(t)
:= a(t)y+ g(t,y),

t ∈
(
RT(τ, ε)

)
\∪Bε, t 6= tki,ε, i ∈ Z,

∆y(tki,ε) = I
(
y(tki,ε)

)
= y(t+ki,ε) − y(t

−
ki,ε

), t = tki,ε ∈ ∪Bε, i ∈ Z.

(4.5)
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Note that T is an almost-complete closedness time scale, thus the graininess functions |µε(t) − µ(t)| < ε.

Moreover, we assume that |I(y1) − I(y2)| 6 L|y1 − y2|, for all y1,y2 ∈ R, and c < 1 or µ(t) >
1
cδ

for
every t ∈ T, i.e,

c < 1 or µε(t) >
1
cδ

− ε for every t ∈ RT(τ, ε),

and then we find that (4.5) admits exponential dichotomy with the projection P = E, where E is the
identity projection, i.e., ‖T(t, s)‖ = |X(t)X−1(s)| 6 K0e	ω(t, s), t > s, t, s ∈ RT(τ, ε). Hence, (A1)-(A2) of
Theorem 3.16 are satisfied. Further, if we assume that

max
16i63

{Li} <
ω

2K0
(
1 + (µ̄+ ε)ω

) andL <
1 − e	ω(θε, 0)

2K0
,

where θε = infi t1
ki,ε and {tki,ε} ∈ Bε, then (A3) of Theorem 3.16 is also satisfied. Therefore, we con-

clude that Eq. (4.5) has a weighted piecewise pseudo double-almost periodic solution. Furthermore, if
max{L1,L2,L3} is small enough, we can easily see that all the conditions of Theorem 3.17 are also satis-
fied. Hence, Eq. (4.5) has a unique weighted piecewise pseudo double-almost periodic solution which is
exponentially stable.

Application 4.3. Consider the following dynamic equation on an almost-complete closedness time scale
T: {

x∆(t) = Ax(t) + f(t, x), t ∈
(
RT(τ, ε)

)
\∪Bε, t 6= tki,ε = ki, ki ∈ I0,

∆x(tki,ε) = Ik(tki,ε, x), t = tki,ε = k0 ∈ ∪Bε,
(4.6)

where

T = Pa,| sin
√

3t+sin
√

7t|, ki ∈ I0 :=
{
k0 ∈

(
RT(τ, ε)

)
∩
(
∪+∞k=−∞ {k+ | sin

√
3k+ sin

√
7k|}

)
, k ∈ Z

}
,

A =

(
−7 0
0 −7

)
, f(t, x) =

 1
30

cos
√

2tx2

1
40

sin
√

3tx1

 , t 6= tki,ε = ki, i ∈ Z,

Ik(tki,ε, x) =

 3
40
d̂ cos 2

√
3kix1(ki)

5
60
d̂ sin 2

√
2kix2(ki)

 , t = tki,ε = ki, i ∈ Z.

Assume that for all t ∈ T, there exists some ε0 > 0 such that
∣∣∣∣µ(t) − 1

7

∣∣∣∣ > ε0. Hence, we can obtain∣∣∣∣µε(t) − 1
7

∣∣∣∣ > ∣∣∣∣|µ(t) − µε(t)|− ∣∣µ(t) − 1
7

∣∣∣∣∣∣ > ε0 − ε, t ∈ RT(τ, ε),

which implies that µε(t) 6=
1
7

for ε < ε0.

Therefore, for all t ∈ RT(τ, ε), E+µ(t)A is invertible, so A ∈ R. It is a routine calculation to show that
the eigenvalues of the coefficient matrix A are λ1 = λ2 = −7, and hence in view of Theorem 5.35 in [7,
pp.201], the P-matrices are given by

P0 =

(
1 0
0 1

)
, P1 = (A− λ1E)P0 =

(
0 0
0 0

)
.

We choose r∆1 = −7r1, r1(t0) = 1, r∆2 = r1 − 7r2, r2(t0) = 0. Solving the first IVP for r1, we find r1 =
e−7(t, t0). Next, solving the second IVP, that is, r∆2 = −7r2 + e−7(t, t0), r2(t0) = 0, we obtain

r2 = e−7(t, t0)

∫t
t0

∆s

1 − 7µ(s)
.
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Thus, from Theorem 5.35 in [7, pp.201], we get

eA(t, t0) = r1(t)P0 + r2(t)P1 = e−7(t, t0)

(
1 0
0 1

)
.

Therefore, for t > s, we have

‖X(t)P0X
−1(s)‖ =

∥∥∥∥e−7(t, t0)

(
1 0
0 1

)
e	−7(s, t0)

(
1 0
0 1

)∥∥∥∥ 6
√

2e	3(t, s).

Hence, Eq. (4.6) admits an exponential dichotomy with a projection P = E, where E is the identity

projection. Further, since L1 =

√
2

30
, L2 =

3
√

3
20

d̂, K0 =
√

2, ω = 3, for 0 6 µ̄ 6 2 and d̂ < 1 − e	ω(θε, 0),
we have

K0L1
(
1 + (µ̄+ ε)ω

)
ω

+
K0L2

1 − e	ω(θε, 0)
<

1
45

(7 + 3ε) < 0.2222 < 1 for ε < 1,

and (	ω)⊕ p = −
ω

1 + µεω
+ K0L1

(
1 + (µ̄ + ε)ω

)
−
K0L1ωµε

(
1 + (µ̄+ ε)ω

)
(1 + µεω)

6 −0.2333 < 0 for ε < 1,

where p = K0L1
(
1 + (µ̄ + ε)ω

)
. Hence, by Theorems 3.16 and 3.17, Eq. (4.6) has a unique weighted

pseudo double-almost periodic solution satisfying:

x(t) =

∫t
−∞ e−7

(
t,σ(s)

)(1 0
0 1

) 1
30

cos
√

2sx2

1
40

sin
√

3sx1

∆s+ ∑
−∞<ki<t e−7(t,ki)

 3
40

cos 2
√

3kix1(ki)

5
60

sin 2
√

2kix2(ki)

 , i ∈ Z,

which is exponentially stable.

Application 4.4. Consider the following impulsive BAM neural networks:

x∆i (t) =
m∑
j=1
aij(t)xj(t) +

m∑
j=1
αij(t)fj

(
yj(t)

)
+ γi(t), t 6= tkξ,ε, t ∈ RT(τ, ε), ξ ∈ Z,

∆xi(tkξ,ε) = aikxi(tkξ,ε) + Iik
(
xi(tkξ,ε)

)
+ pik, t = tkξ,ε ∈ ∪Bε, i = 1, 2, . . . ,n,

y∆j (t) =
n∑
i=1

bji(t)yj(t) +
n∑
i=1

βji(t)gi
(
xi(t)

)
+ νj(t), t 6= tkξ,ε, t ∈ RT(τ, ε), ξ ∈ Z,

∆yj(tkξ,ε) = bjkyj(tkξ,ε) + Jjk
(
yj(tkξ,ε)

)
+wjk, t = tkξ,ε ∈ ∪Bε, j = 1, 2, . . . ,m,

(4.7)

where n,m are the numbers of neurons in layers, xi(t) and yj(t) denote the activations of the ith neuron
and the jth neuron at time t, aij and bji represent the rate with which the ith neuron and the jth neuron
will reset their potential to the resting state in isolation when they are disconnected from the network and
the external inputs at time t, fj,gi are the input-output functions (the activation functions), αij,βji are
elements of feedback templates at time t, γi,νj denote biases of the ith neuron and the jth neuron at time
t, ∆xi(tkξ,ε) = xi(t

+
kξ,ε) − xi(t

−
kξ,ε), ∆yj(tkξ,ε) = yj(t

+
kξ,ε) − yj(t

−
kξ,ε) are impulses at moments tkξ,ε and

tk1 < tk2 < . . . is a strictly increasing sequence such that lim
ξ→∞ tkξ,ε = +∞, aik,bjk,pik,wjk ∈ R, Iik, Jjk ∈

C(R, R), i = 1, 2, . . . ,n, j = 1, 2, . . . ,m.
We introduce the following conditions.

(H1) The functions aij,bji,αij,βji,γi,νj ∈ PCrd(T, R) are weighted piecewise pseudo double-almost
periodic on T, i = 1, 2, . . . ,n, j = 1, 2, . . . ,m. We denote by λi(t) the eigenvalues of matrix A(t).
There exist positive constants αij, βji, λ such that

sup
t∈T

|αij| = αij <∞, sup
t∈T

|βji| = βji <∞, Reλi0(t) < −λ, i0 = 1, 2, . . . ,m+n.
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(H2) {aik}, {bjk}, {pik}, {wjk} are weighted pseudo almost periodic sequences and Iik, Jjk are weighted
pseudo almost periodic uniformly with respect to xi,yj ∈ R, respectively, satisfying Iik(0) =
Ijk(0) = 0, i = 1, 2, . . . ,n, j = 1, 2, . . . ,m, and the following holds

|Iik(x) − Iik(y)| 6 Ii|x− y|, |Jjk(x) − Jjk(y)| 6 Jj|x− y|, x,y ∈ R, k ∈ Z.

(H3) The functions fj, gi ∈ C(R, R), i = 1, 2, . . . ,n, j = 1, 2, . . . ,m, satisfy

0 < sup
x∈R

|fj(x)| <∞, fj(0) = 0, 0 < sup
x∈R

|gi(x)| <∞, gi(0) = 0,

and there exist constants Fj > 0 and Gi > 0 such that

|fj(x) − fj(y)| < Fj|x− y|, |gi(x) − gi(y)| < Gi|x− y|, x,y ∈ R.

(H4) The set of sequences {t
j
kξ,ε} are equipotentially almost periodic and infξ t1

kξ,ε = θε > 0, where

t
j
kξ,ε = tkξ+j,ε − tkξ,ε, ξ ∈ Z, j ∈ Z.

(H5) r < 1, where

r =
K
(
1 + λ(µ̄+ ε)

)
λ

( n∑
i=1

m∑
j=1

(
αijFj +βjiGi

))
+

K

1 − e−λ(θε, 0)

( n∑
i=1

Ii +

m∑
j=1

Jj

)
,

where supξ e−λ(tkξ+1,ε, tkξ,ε) := e−λ(θε, 0).

(H6) (	λ)⊕ p < 0, where

p = K
(
1 + (µ̄+ ε)λ

) n∑
i=1

m∑
j=1

(αijFj +βjiGi).

From the hypotheses (H1)-(H6), it follows that all conditions of Theorems 3.16 and 3.17 are satisfied, and
thus the system (4.7) has a unique weighted piecewise pseudo double-almost periodic solution which is
exponentially stable.
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