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Abstract
In this paper, we consider higher-order ordered Bell functions and derive their Fourier series expansions. Moreover, we

express those functions in terms of Bernoulli functions. c©2017 All rights reserved.
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1. Introduction

For r ∈ Z>0, the ordered Bell polynomials b(r)m (x) of order r are defined by the generating function(
1

2 − et

)r
ext =

∞∑
m=0

b
(r)
m (x)

tm

m!
. (1.1)

When x = 0, b(r)m = b
(r)
m (0) are called the ordered Bell numbers of order r. In particular, bm(x) = b

(1)
m (x)

and bm = b
(1)
m are respectively called the ordered Bell polynomials and the ordered Bell numbers.

The first appearance of the ordered Bell numbers bm goes back to as early as 1859, when Cayley used
them to count certain plane trees with m+ 1 totally ordered leaves. Since then, they have been studied
in many counting problems in number theory and enumerative combinatorics (see [2, 3, 5, 8, 12, 14, 15]).
The ordered Bell numbers bm are all positive integers, as we can see from

bm =

m∑
n=0

n!S2(m,n) =
∞∑
n=0

nm

2n+1 , (m > 0).
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On the other hand, the ordered Bell polynomial bm(x) has degree m and is a monic polynomial with
integral coefficients, as we can see, for example, from

b0(x) = 1,bm(x) = xm +

m−1∑
l=0

(
m

l

)
bl(x), (m > 1).

From (1.1), we can derive

d

dx
b
(r)
m (x) = mb

(r)
m−1(x), (m > 1), b

(r)
m (x+ 1) − b(r)m (x) = b

(r)
m (x) − b

(r−1)
m (x), (m > 0).

In turn, from these we obtain

b
(r)
m (1) − b(r)m = b

(r)
m − b

(r−1)
m , (m > 0),∫ 1

0
b
(r)
m (x)dx =

1
m+ 1

(
b
(r)
m+1(1) − b

(r)
m+1

)
=

1
m+ 1

(
b
(r)
m+1 − b

(r−1)
m+1

)
.

(1.2)

As is well-known, the Bernoulli polynomials Bm(x) are given by the generating function

t

et − 1
ext =

∞∑
m=0

Bm(x)
tm

m!
.

For any real number x, let
< x >= x− [x] ∈ [0, 1)

denote the fractional part of x.
The reader may refer to any book (for example, see [1, 13, 16]) for elementary facts about Fourier

analysis. Also, we will need the following well-known facts about Bernoulli functions Bn(< x >):

(a) for m > 2,

Bm(< x >) = −m!
∞∑

n=−∞,n 6=0

e2πinx

(2πin)m
;

(b) for m = 1,

−

∞∑
n=−∞,n 6=0

e2πinx

2πin
=

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

Here we will consider the higher-order ordered Bell functions b(r)m (< x >), and derive its Fourier series
expansions. In addition, we will express those functions in terms of Bernoulli functions.

As to the higher-order ordered Bell functions b(r)m (< x >), we note that the polynomial identity (1.3)
follows immediately from Theorems 2.1 and 2.2, which can be derived in turn from the Fourier series
expansion of b(r)m (< x >),

b
(r)
m (x) =

1
m+ 1

m∑
j=0

(
m+ 1
j

)(
b
(r)
m−j+1 − b

(r−1)
m−j+1

)
Bj(x). (1.3)

Finally, the reader may refer to [4, 6, 7, 9–11] for some recent related works.

2. Fourier series of higher-order ordered Bell functions

From now on, we will assume that m > 1 and r > 2. The case of r = 1 has been treated as a special
case of the results in [4].



T. Kim, D. S. Kim, G.-W. Jang, J. K. Kwon, J. Nonlinear Sci. Appl., 10 (2017), 3851–3855 3853

b
(r)
m (< x >) is piecewise C∞. Moreover, in view of (1.2), b(r)m (< x >) is continuous for those integers

(r,m) with b(r)m = b
(r−1)
m , and is discontinuous with jump discontinuities at integers for those (r,m) with

b
(r)
m 6= b(r−1)

m .
The Fourier series of b(r)m (< x >) is

∞∑
n=−∞A

(r,m)
n e2πinx,

where

A
(r,m)
n =

∫ 1

0
b
(r)
m (< x >)e−2πinxdx =

∫ 1

0
b
(r)
m (x)e−2πinxdx.

Now, we would like to determine the Fourier coefficients A(r,m)
n .

Case 1: n 6= 0.
For r > 2 , and m > 1, we set

∆r,m = b
(r)
m (1) − b(r)m = b

(r)
m − b

(r−1)
m ,

A
(r,m)
n =

∫ 1

0
b
(r)
m (x)e−2πinxdx

= −
1

2πin

[
b
(r)
m (x)e−2πinx

]1

0
+

1
2πin

∫ 1

0

(
d

dx
b
(r)
m (x)

)
e−2πinxdx

= −
1

2πin

(
b
(r)
m (1) − b(r)m

)
+

m

2πin

∫ 1

0
b
(r)
m−1(x)e

−2πinxdx

=
m

2πin
A

(r,m−1)
n −

1
2πin

∆r,m

=
m

2πin

(
m− 1
2πin

A
(r,m−2)
n −

1
2πin

∆r,m−1

)
−

1
2πin

∆r,m

=
(m)2

(2πin)2A
(r,m−2)
n −

2∑
j=1

(m)j−1

(2πin)j
∆r,m−j+1

=
(m)2

(2πin)2

(
m− 2
2πin

A
(r,m−3)
n −

1
2πin

∆r,m−2

)
−

2∑
j=1

(m)j−1

(2πin)j
∆r,m−j+1

=
(m)3

(2πin)3A
(r,m−3)
n −

3∑
j=1

(m)j−1

(2πin)j
∆r,m−j+1

...

=
m!

(2πin)m
A

(r,0)
n −

m∑
j=1

(m)j−1

(2πin)j
∆r,m−j+1

= −
1

m+ 1

m∑
j=1

(m+ 1)j
(2πin)j

∆r,m−j+1.

Case 2: n = 0.

A
(r,m)
0 =

∫ 1

0
b
(r)
m (x)dx =

1
m+ 1

∆r,m+1.

Assume first that ∆r,m = 0. Then b(r)m (1) = b
(r)
m (0). As b(r)m (< x >) is piecewise C∞ and continuous,

the Fourier series of b(r)m (< x >) converges uniformly to b(r)m (< x >), and
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b
(r)
m (< x >)

=
1

m+ 1
∆r,m+1 +

∞∑
n=−∞,n 6=0

−
1

m+ 1

m∑
j=1

(m+ 1)j
(2πin)j

∆r,m−j+1

 e2πinx

=
1

m+ 1
∆r,m+1 +

1
m+ 1

m∑
j=1

(
m+ 1
j

)
∆r,m−j+1 ×

−j!
∞∑

n=−∞,n 6=0

e2πinx

(2πin)j


=

1
m+ 1

∆r,m+1 +
1

m+ 1

m∑
j=2

(
m+ 1
j

)
∆r,m−j+1Bj(< x >) +∆r,m ×

{
B1(< x >), for x /∈ Z,
0, for x ∈ Z.

We are now ready to state our first theorem.

Theorem 2.1. For positive integers r, l with r > 2, we let

∆r,l = b
(r)
l − b

(r−1)
l .

Assume that ∆r,m = 0 for positive integers r,m with r > 2. Then we have the following:

(a) b(r)m (< x >) has the Fourier series expansion

b
(r)
m (< x >) =

1
m+ 1

∆r,m+1 +

∞∑
n=−∞,n 6=0

−
1

m+ 1

m∑
j=1

(m+ 1)j
(2πin)j

∆r,m−j+1

 e2πinx

for all x ∈ R, where the convergence is uniform;
(b)

b
(r)
m (< x >) =

1
m+ 1

∆r,m+1 +
1

m+ 1

m∑
j=2

(
m+ 1
j

)
∆r,m−j+1Bj(< x >)

for all x ∈ R, where Bj(< x >) is the Bernoulli function.

Assume next that ∆r,m 6= 0 for positive integers r,m with r > 2. Then b
(r)
m (1) 6= b

(r)
m (0). Thus

b
(r)
m (< x >) is piecewise C∞, and discontinuous with jump discontinuities at integers. The Fourier series

of b(r)m (< x >) converges pointwise to b(r)m (< x >) for x /∈ Z, and converges to

1
2

(
b
(r)
m (0) + b(r)m (1)

)
= b

(r)
m +

1
2
∆r,m

for x ∈ Z.
Now, we can state our second theorem.

Theorem 2.2. For positive integers r, l with r > 2, we let

∆r,l = b
(r)
l − b

(r−1)
l .

Assume that ∆r,m 6= 0 for positive integers r,m with r > 2. Then we have the following:

(a)

1
m+ 1

∆r,m+1 +

∞∑
n=−∞,n 6=0

−
1

m+ 1

m∑
j=1

(m+ 1)j
(2πin)j

∆r,m−j+1

 e2πinx =

{
b
(r)
m (< x >), for x /∈ Z,
b
(r)
m + 1

2∆r,m, for x ∈ Z;
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(b)
1

m+ 1

m∑
j=0

(
m+ 1
j

)
∆r,m−j+1Bj(< x >) = b

(r)
m (< x >), for x /∈ Z,

1
m+ 1

m∑
j=0
j6=1

(
m+ 1
j

)
∆r,m−j+1Bj(< x >) = b

(r)
m +

1
2
∆r,m, for x ∈ Z.
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