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Abstract
In this paper, a fixed-point theorem is used to establish existence results for fractional Dirichlet boundary value problem

Dαx(t) = f(t, x(t),Dα−1x(t)), x(0) = A, x(1) = B,

where 1 < α 6 2,Dαx(t) is the conformable fractional derivative, and f : [0, 1]× R2 → R is a continuous function. The main
condition is sign condition. The method used is based upon the theory of fixed-point index. c©2017 All rights reserved.
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1. Introduction

Due to the extensive application of fractional calculus in non-Newtonian fluid mechanics, signal anal-
ysis, image processing, and other disciplines [2, 3, 35–39], the fractional differential equations have been
widely studied and many interesting results have been obtained. For example, in 2005, by using fixed
point theorem of cone extension and compression, the existence of positive solution of the following
problem are obtained [8] {

Dα0+u(t) + f(t,u(t)) = 0,
u(0) = u(1) = 0.

After that, the idea was developed to deal with various fractional boundary value problems such as
fractional boundary value problem at resonance [5, 6, 9, 10], Caputo fractional derivative problem [41],
impulsive problem [7, 31, 33], nonlocal problem [4], integral boundary value problem [27], variational
structure problem [21], fractional p-Laplace problem [15, 20, 25, 26, 34, 40], fractional lower and upper
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solution problem [11, 12, 42], fractional delay problems, [30, 32, 44], solitons [16], Biological mathematics
[17, 29, 43], etc. However, all above works were obtained with standard Riemann-Liouville or Caputo
fractional derivatives. The unusual properties of these fractional derivatives lead to some difficulties in
application of fractional derivatives in physics and mechanics. Recently, the new conformable fractional
derivative definition given by [1, 14, 24] has many good properties which inspired us study problems
with conformable fractional derivative.

In the research of integer order boundary value problem, Kelevedjiev got the existence of the solutions
by using the technique of barrier strips in [22, 23]. These ideas were developed by Ma and Luo [28] and
Gao [18] to other problems. Very recently, we obtained the existence of solutions for fractional differential
equation

Dαx(t) = f(t, x(t),Dα−1x(t)),

with one of the following boundary value conditions

x(0) = A, Dα−1x(1) = B, Dα−1x(0) = A, x(1) = B,

whereDαx(t) is the conformable fractional derivative. The main tool used is the topological transversality
theorem [19].

In this paper, by using the fixed-point index theory, the barrier strips technique and a priori estimation,
we consider the following problem

Dαx(t) = f(t, x(t),Dα−1x(t)), x(0) = A, x(1) = B, (1.1)

where 1 < α 6 2,Dαx(t) is the conformable fractional order derivative, and f : [0, 1] × R2 → R is a
continuous function. The existence results of solutions to the problem are obtained under f satisfying
some sign conditions.

The rest of the paper is organized as follows. In Section 2, the definitions and some preliminaries of
the conformable fractional derivative and integral are given. In Section 3, by the use of the fixed-point
theorem and the technique of barrier strips, the existence of the solution is obtained. An example is
presented to illustrate the main results.

2. Conformable fractional order calculus

For the convenience of the reader, we recall some definitions and lemmas which can be found in
[1, 13, 24].

Definition 2.1. Suppose α ∈ (n,n+ 1],u : [0,∞) → R, and u n-order differentiable for t > 0, the α-order
fractional derivative of u is defined as

Dαu(t) = lim
ε→0

u(n)(t+ εtn+1−α) − u(n)(t)

ε
,

provided the limits of the right side exists.
If u is α-order differentiable on (0,a), a > 0, and lim

t→0+
Dαu(t) exists, then define

Dαu(0) = lim
t→0+

Dαu(t).

Lemma 2.2 ([24]). Let α ∈ (n,n+ 1],u : [0,∞) → R. Function u(t) is α-order differentiable if and only if u is
(n+ 1)-order differentiable, moreover,

Dαu(t) = tn+1−αu(n+1)(t).
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Definition 2.3. Let α ∈ (n,n+ 1],u : [0,∞)→ R. The α-order fractional integral of u(t) is defined as

Jα0+u(t) = I
n+1[tα−n−1u(t)] =

1
n!

∫t
0
(t− s)nsα−n−1u(s)ds,

where In+1 is the (n+ 1)-order integral.

Remark 2.4. With Lemma 2.2 and Definition 2.3, for α ∈ (n,n+ 1], i = 0, 1, · · · ,n, there hold

Dα−i[Jα0+u(t)] = t
n+1−αDn+1−i[In+1(tα−n−1u(t))] = tn+1−αIi[tα−n−1u(t)].

Lemma 2.5 ([24]). Let a > 0, f : [0,b]→ R satisfy

(i) f is continuous on [0,b];
(ii) f is α-order differentiable on (0,b),

then, there exists c ∈ (a,b) such that Dαf(c) = (f(b) − f(a))/( 1
αb
α − 1

αa
α).

Now, we introduce a function space. Given α ∈ (n,n+ 1], let

Cα[0, 1] = {u | u(t) = Jα0+x(t) +Cnt
n + · · ·+C1t+C0,Ci ∈ R, i = 0, 1 · · · ,n, x(t) ∈ C[0, 1]},

‖u‖α = ‖Dαu‖0 + ‖Dα−1u‖0 + · · ·+ ‖Dα−nu‖0 + ‖u‖0,

where ‖u‖0 = max
t∈[0,1]

| u(t) |.

Lemma 2.6 ([19]). (Cα[0, 1], ‖ · ‖α) is a Banach space.

3. Main results

Theorem 3.1. Let f : [0, 1]× R2 → R be continuous. Suppose there are constants Li, i = 1, 2, · · · , 8 such that
L2 > L1 > E, L4 > L3 > E, L5 < L6 6 E, L7 < L8 6 E, where E = (α− 1)(B−A) and

f(t, x,p) > 0 for (t, x,p) ∈ [0, 1]× R× ([L1,L2]∪ [L5,L6]),
f(t, x,p) 6 0 for (t, x,p) ∈ [0, 1]× R× ([L3,L4]∪ [L7,L8]).

Then problem (1.1) has at least one solution in Cα[0, 1].

Proof. Consider the boundary value problem:

Dαx(t) = λf(t, x(t),Dα−1x(t)), t ∈ [0, 1], λ ∈ [0, 1], (3.1)
x(0) = A, x(1) = B. (3.2)

Define a compact homotopy operator Tλ : CαB[0, 1]→ CαB[0, 1] as

(Tλx)(t) = λ

∫ 1

0
G(t, s)f(s, x(s),Dα−1x(s))ds+ψ(t),

where

CαB[0, 1] = {x ∈ Cα[0, 1]|x(0) = A, x(1) = B}, G(t, s) =

{
(1 − t)sα−1, 0 6 s 6 t 6 1,
tsα−2(1 − s), 0 6 t 6 s 6 1,

is the Green function (see [13]) and ψ(t) = A+Bt is the solution of the problem{
Dαx(t) = 0,
x(0) = A, x(1) = B.
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Then Tλ : CαB[0, 1] → CαB[0, 1] is completely continuous (see [13]). The fixed point of Tλ is the solution of
problem (3.1)-(3.2). For some M > 0, let

U = {u ∈ CαB[0, 1] | ‖u‖α < M+ ‖ψ‖α + 1}.

We will find positive number M such that Tλ : U→ CαB[0, 1] has no fixed-point on ∂U for every λ ∈ [0, 1].
In fact, all the possible solutions of problem (3.1)-(3.2) have a priori bound that do not depend on

λ ∈ [0, 1]. Let x(t) ∈ Cα[0, 1] be a solution to problem (3.1)-(3.2). Firstly, we will estimate Dα−1x(t). By
Lemma 2.5, there is d ∈ (0, 1) such that Dα−1x(d) = (α− 1)(B−A) = E. Then

f(t, x,p) > 0 for (t, x,p) ∈ [0,d]× R× [L1,L2],
f(t, x,p) 6 0 for (t, x,p) ∈ [0,d]× R× [L7,L8].

Assume that the sets

S0 = {t ∈ [0,d]|L1 < D
α−1x(t) 6 L2}, S1 = {t ∈ [0,d]|L3 < D

α−1x(t) < L4},

are not empty. Let t0 ∈ S0, t1 ∈ S1 be fixed. Assume there are t ′0 ∈ (t0,d] and t ′1 ∈ (t1,d] such that

Dα−1x(t ′0) < D
α−1x(t0), Dα−1x(t ′1) > D

α−1x(t1). (3.3)

The continuity of Dα−1x(t) allows us to take t ′0 ∈ (t0,d] ∩ S0, t ′1 ∈ (t1,d] ∩ S1. But Dαx(t) = λf(t, x(t),
Dα−1x(t)) > 0, for t ∈ S0 and Dαx(t) 6 0, for t ∈ S1. Consequently,

Dα−1x(t ′0) > D
α−1x(t0), Dα−1x(t ′1) 6 D

α−1x(t1).

From the contradiction to (3.3), it follows that

Dα−1x(t) > Dα−1x(t0), for t ∈ (t0,d],

Dα−1x(t) 6 Dα−1x(t0), for t ∈ (t1,d],

and in particular,

E = Dα−1x(d) > Dα−1x(t0) > L1 > E, E = Dα−1x(d) 6 Dα−1x(t1) < L8 6 E.

The contradictions obtained show that S0,S1 are empty. Since Dα−1x(t) ∈ C[0, 1], L4 6 Dα−1x(t) 6 L1 for
t ∈ [0,d], so

|Dα−1x(t)| 6 max{|L1|, |L8|}, t ∈ [0,d].

Similarly, the facts

f(t, x,p) 6 0 for (t, x,p) ∈ [d, 1]× R× [L3,L4],
f(t, x,p) > 0 for (t, x,p) ∈ [d, 1]× R× [L5,L6],

yield that
|Dα−1x(t)| 6 max{|L3|, |L6|}, t ∈ [d, 1].

Consequently,
|Dα−1x(t)| 6 max{|L1|, |L3|, |L6|, |L8|} , G1, t ∈ [0, 1].

On the other hand, by Lemma 2.5, for each t ∈ (0, 1], there exists c ∈ (0, t) such that

x(t) − x(0) = Dα−1x(c) · 1
α− 1

tα−1.

From which we get |x(t)| 6 G2, G2 = max{|A|+G1/(α− 1)}. Finally the differential equation (3.1) together
with the continuity of f and a priori estimations of x(t) and Dα−1x(t) show that |Dαx(t)| 6 G2 for the
constant G2 independent of λ.
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From the above arguments, let M = G1 +G2 +G3, we know

‖x‖α = ‖Dαx‖0 + ‖Dα−1x‖0 + ‖x‖0 < M <∞.

The above results indicate that Tλ has no fixed point on ∂U and Tλ : [0, 1]×U→ Cα[0, 1] is completely
continuous. Denote by X = CαB[0, 1]. With the normality of the fixed-point index, the index of the constant
operator T0(x) ≡ ψ(t) on U with respect to CαB[0, 1], i(T0,U,X) = 1. It follows from the homotopy invariant
property of the fixed-point index that

i(T1,U,X) = i(Tλ,U,X) = i(T0,U,X) = 1.

With the solvability of fixed-point index, T1 has a fixed-point in U, and so problem (1.1) has a solution in
U.

The conditions imposed on f(t, x,p) above are local with respect to t and p. In the next theorem they
are also localized with respect to x.

Theorem 3.2. Let f : [0, 1]× R2 → R be continuous. Suppose there are constants Li, i = 1, 2, · · · , 8 such that
L2 > L1 > E, L4 > L3 > E, L5 < L6 6 E, L7 < L8 6 E, where E = (α− 1)(B−A) and

(1) there is M > max{|A|, |B|} such that xf(t, x, 0) > 0 for |x| > M;

(2) f(t, x,p) > 0 for (t, x,p) ∈ [0, 1]× [−M,M]× ([L1,L2] ∪ [L5,L6]), f(t, x,p) 6 0 for (t, x,p) ∈ [0, 1]×
[−M,M]× ([L3,L4]∪ [L7,L8]).

Then the problem (1.1) has at least one solution in Cα[0, 1].

Proof. If x ∈ Cα[0, 1] is a solution of problem (1.1), then |x(t)| 6M. In fact, if there is t0 ∈ (0, 1) such that
x(t0) = max{x(t)|t ∈ (0, 1)} > M, and then by Lemma 2.2, u is α-order differentiable if and only if u is
second-order differentiable and

Dαu(t) = t2−αu
′′
(t), Dα−1u(t) = t2−αu

′
(t).

Assuming that u(t) achieves its maximum at t0 ∈ (0, 1), then

u
′′
(t0) 6 0, u

′
(t0) = 0,

consequently
Dαx(t0) 6 0, Dα−1x(t0) = 0.

But according to the condition (1), there is

x(t0)D
αx(t0) = x(t0)λf(t0, x(t0), 0) > 0.

Thus Dαx(t0) > 0, a contradiction. So x(t) 6 M. Proving by the same methods we can get x(t) > −M.
In conclusion |x(t)| 6 M. Furthermore, the proof is not essentially different from the proof of Theorem
3.1.

Example 3.3. Consider the following boundary value problem:

D
3
2x(t) = x(t) −

5
2
D

1
2x(t) + [D

1
2x(t)]2 − 1, x(0) = 0, x(1) = 1. (3.4)

Choose E = 0.5,M = 1,L1 = 4,L2 = 5,L3 = 1,L4 = 2,L5 = −2,L6 = −1,L7 = 0,L8 = 0.5, then,

f(t, x,p) > 0 for (t, x,p) ∈ [0, 1]× [−1, 1]× ([4, 5]∪ [−2,−1]),
f(t, x,p) 6 0 for (t, x,p) ∈ [0, 1]× [−1, 1]× ([1, 2]∪ [0, 0.5]).

By Theorem 3.2, problem (3.4) has at least one solution in C
3
2 [0, 1].
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