Some explicit identities for the modified higher-order degenerate q-Euler polynomials and their zeroes

Lee-Chae Janga, Byung Moon Kimb,*, Sang-Ki Choic, C. S. Ryood, D. V. Dolgy$^e, f$

aGraduate School of Education, Konkuk University, Seoul 143-701, Republic of Korea.
bDepartment of Mechanical System Engineering, Dongguk University, Gyeongju, 780-714, Korea.
cDepartment of Mathematics Education, Konkuk University, Seoul 143-701, Republic of Korea.
dDepartment of Mathematics, Hannam University, Daejeon 306-791, Republic of Korea.
eHanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea.
fInstitute of Natural Sciences, Far eastern Federal University, Vladivostok 690950, Russia.

Communicated by Y. H. Yao

Abstract

Furthermore, we demonstrate the shapes and zeroes of the modified higher-order q-Euler polynomials and the modified higher-order degenerate q-Euler polynomials by using a computer. ©2017 All rights reserved.

Keywords: Identities of symmetry, modified q-Euler polynomials, modified higher-order degenerate q-Euler polynomials.

2010 MSC: 11B68, 11S80, 05A19, 05A30.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p, and \mathbb{C}_p denote the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of \mathbb{Q}_p, respectively. We normalized the p-adic norm as $|p|_p = \frac{1}{p}$. Let q be an indeterminate in \mathbb{C}_p such that $|1 - q|_p < p^{-\frac{1}{p-1}}$ and the q-analogue of the number x is defined as $[x]_q = \frac{1 - q^x}{1 - q}$. Note that $\lim_{q \to 1}[x]_q = x$.

Let $f(x)$ be a continuous function on \mathbb{Z}_p. Then, the p-adic q-integral on \mathbb{Z}_p is defined by Kim et al.
(see [11–13, 18, 20]) to be

\[I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_q} \sum_{x=0}^{p^N-1} f(x)(-q)^x = \frac{2}{2} \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x)q^x(-1)^x, \quad (1.1) \]

where \([x]_{-q} = \frac{1-(-q)^x}{1+q}\). Note that

\[\lim_{q \to 1} \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x)(-1)^x = \int_{\mathbb{Z}_p} f(x) d\mu_{-1}(x) \quad (1.2) \]

is the ordinary fermionic \(p\)-adic integral on \(\mathbb{Z}_p\) (see [2, 4, 5, 9, 14, 17, 19, 22, 25, 26]). From (1.1), we have

\[qI_{-q}(f_1) + I_{-q}(f) = [2]_q f(0), \quad \text{where } f_1(x) = f(x+1). \quad (1.3) \]

From (1.2), we have

\[I_{-1}(f_1) + I_{-1}(f) = 2f(0), \quad \text{where } f_1(x) = f(x+1). \quad (1.4) \]

Recall that the Carlitz’s \(q\)-Euler numbers are defined by the \(p\)-adic \(q\)-integral on \(\mathbb{Z}_p\) as follows:

\[\int_{\mathbb{Z}_p} [x]^m_q d\mu_{-q}(x) = \mathcal{E}_{m,q} \quad (\text{see [10, 12]}). \]

From (1.3) with \(f(x) = [x]^m_q\), we can derive

\[q \int_{\mathbb{Z}_p} [x+1]^m_q d\mu_{-q}(x) + \int_{\mathbb{Z}_p} [x]^m_q d\mu_{-q}(x) = \begin{cases} [2]_q, & \text{if } m = 0, \\ 0, & \text{if } m > 0. \end{cases} \]

We note that

\[[x+1]_q^m = \left(\frac{1 - q^{x+1}}{1 - q} \right)^m = (1 + qx)_q^m = \sum_{l=0}^{m} \binom{m}{l}_q q^l [x]_q^l \quad (1.5) \]

and hence

\[\int_{\mathbb{Z}_p} [x+1]^m_q d\mu_{-q}(x) = \sum_{l=0}^{m} \binom{m}{l}_q q^l \int_{\mathbb{Z}_p} [x]^l_q d\mu_{-q}(x) = \sum_{l=0}^{m} \binom{m}{l}_q q^l \mathcal{E}_l.q = (q \mathcal{E}_q + 1)^m. \quad (1.6) \]

Combining (1.6) and (1.3), the Carlitz’s \(q\)-Euler numbers \(\mathcal{E}_{m,q}\) satisfy as follows:

\[q(q\mathcal{E}_q + 1)^m + \mathcal{E}_{m,q} = \begin{cases} [2]_q, & \text{if } m = 0, \\ 0, & \text{if } m > 0, \end{cases} \]

with the usual convention about replacing \(\mathcal{E}_q^m\) by \(\mathcal{E}_{m,q}\) (see [1, 3–5, 8]).

Then, the modified \(q\)-Euler numbers \(E_{m,q}\) are defined by Kim et al. (see [8, 12, 23]) as follows:

\[\int_{\mathbb{Z}_p} [x]^m_q d\mu_{-1}(x) = E_{m,q}. \]

From (1.5), we have

\[\int_{\mathbb{Z}_p} [x+1]^m_q d\mu_{-1}(x) = \sum_{l=0}^{m} \binom{m}{l}_q q^l \int_{\mathbb{Z}_p} [x]^l_q d\mu_{-1}(x) = \sum_{l=0}^{m} \binom{m}{l}_q q^l E_{l,q} = (qE_q + 1)^m. \quad (1.7) \]
Combining (1.7) and (1.4), the modified q-Euler numbers $E_{m,q}$ satisfy the followings:

$$(qE_q + 1)^m + E_{m,q} = \begin{cases} 2, & \text{if } m = 0, \\ 0, & \text{if } m > 0. \end{cases} \quad (1.8)$$

It is well-known that the Euler numbers are defined by the generating function

$$\frac{2}{e^t + 1} = e^{Et} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}, \quad (1.9)$$

with the usual convention about replacing E^n by E_n. From (1.9), we have

$$2 = e^{Et}(e^t + 1) = e^{(E+1)t} + e^{Et} = \sum_{n=0}^{\infty} ((E + 1)^n + E_n) \frac{t^n}{n!}.$$

Thus, we have

$$(E + 1)^n + E_n = \begin{cases} 2, & \text{if } n = 0, \\ 0, & \text{if } n > 0. \end{cases} \quad (1.10)$$

We note that $\lim_{q \to 1} E_{n,q} = E_n$ and that if q approaches to 1, then the equation (1.8) is equal to the equation (1.10).

The purpose of this paper is to define the modified higher-order degenerate q-Euler polynomials which are defined from fermionic p-adic integral on Z_p, and to give some explicit identities for those polynomials. Furthermore, we demonstrate the shapes of the modified higher-order q-Euler polynomials $E_{n,q}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_{n,\lambda, q}(x)$ (see Figure 1) and investigated the zeroes of $E_{n,q}(x)$ and $E_{n,\lambda, q}(x)$ by using a computer.

2. The modified higher-order degenerate q-Euler polynomials

Let $r \in \mathbb{N}$ and $\lambda, t \in \mathbb{C}$ be such that $|\lambda t| < p^{-\frac{1}{r+1}}$. We note that if we take $f(x) = e^{xt}$, then, by (1.4), we have

$$\int_{Z_p} e^{xt}d\mu_{-1}(x) = \frac{2}{e^t + 1}, \quad (2.1)$$

By (2.1), we have

$$\int_{Z_p} \cdots \int_{Z_p} e^{(x_1 + x_2 + \cdots + x_r)t}d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r) = \int_{Z_p} e^{x_1t}d\mu_{-1}(x_1) \cdots \int_{Z_p} e^{x_r t}d\mu_{-1}(x_r)$$

$$= \left(\frac{2}{e^t + 1}\right)^r = \sum_{n=0}^{\infty} E_n^{(r)} \frac{t^n}{n!}, \quad (2.2)$$

where $E_n^{(r)}$ are called the higher-order Euler numbers (see [15, 19, 26]). We also note that

$$\int_{Z_p} \cdots \int_{Z_p} e^{(x_1 + x_2 + \cdots + x_r)t}d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)$$

$$= \sum_{n=0}^{\infty} \int_{Z_p} \cdots \int_{Z_p} (x_1 + \cdots + x_r)^n d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r) \frac{t^n}{n!}. \quad (2.3)$$

From (2.2) and (2.3), we obtain the following theorem.
\textbf{Theorem 2.1.} Let \(n \in \mathbb{N} \cup \{0\} \). Then we have

\[
E_{n}^{(r)} = \int_{Z_{p}} \cdots \int_{Z_{p}} (x_{1} + \cdots + x_{r})^{n} d\mu_{-1} \cdots d\mu_{-1}(x_{r}).
\]

In [11], the modified higher-order q-Euler numbers are defined by Kim to be

\[
E_{n,q}^{(r)} = \int_{Z_{p}} \cdots \int_{Z_{p}} [x_{1} + x_{2} + \cdots + x_{r}]^{n} d\mu_{-1} \cdots d\mu_{-1}(x_{r}).
\]

The next diagram illustrates the variations of several types of degenerate q-Euler polynomials and numbers. Those polynomials in the first row and the third row of the diagram are introduced by Carliz et al. [1, 3–5, 8] and Kim et al. [12, 18, 20], respectively. A research of these has yielded fruitful results in number theory and combinatorics (see [6, 7, 21, 24]). The motivation of this paper is to investigate some explicit identities for those polynomials in the second row of the diagram.

\[
\begin{align*}
\int_{Z_{p}} (1 + \lambda t)^{[x+y]+d} d\mu_{-1}(y) &= \sum_{n=0}^{\infty} E_{n,\lambda,q}(x)^{\frac{t_{n}}{n!}} (\text{degenerate q-Euler polynomials}) \\
\int_{Z_{p}} (1 + \lambda)^{[x+y]+d} d\mu_{-1}(y) &= \sum_{n=0}^{\infty} E_{n,\lambda,q}(x)^{\frac{t_{n}}{n!}} (\text{modified degenerate q-Euler polynomials}) \\
\int_{Z_{p}} e^{[x+y]+d} d\mu_{-1}(y) &= \sum_{n=0}^{\infty} E_{n,q}(x)^{\frac{t_{n}}{n!}} (\text{modified q-Euler polynomials}) \tag{2.4}
\end{align*}
\]

Recently, Kim defined the higher-order degenerate q-Euler polynomials given by the generating function (see [18, 20]) as follows:

\[
\int_{Z_{p}} \cdots \int_{Z_{p}} (1 + \lambda t)^{[x+y]+d} d\mu_{-1} \cdots d\mu_{-1}(x_{r}) = \sum_{n=0}^{\infty} E_{n,\lambda,q}(x) \frac{t_{n}}{n!}.
\]

Accordingly, we define the modified higher-order degenerate q-Euler polynomials given by the generating function as follows:

\[
\int_{Z_{p}} \cdots \int_{Z_{p}} (1 + \lambda t)^{[x+y]+d} d\mu_{-1} \cdots d\mu_{-1}(x_{r}) = \sum_{n=0}^{\infty} E_{n,\lambda,q}(x) \frac{t_{n}}{n!} \tag{2.4}
\]

Note that \(\lim_{\lambda \to 0} E_{n,\lambda,q}(x) = E_{n,q}(x) \), where \(E_{n,q}(x) \) are the higher-order q-Euler polynomials.
We observe that
\[
(1 + \lambda t)^\frac{1}{n} \left[x_1 + \cdots + x_r + x \right]_q = \sum_{n=0}^{\infty} \left(\frac{1}{n} [x_1 + \cdots + x_r + x]_q \right) \lambda^n t^n n!
\]
\[
= \sum_{n=0}^{\infty} \left(\frac{1}{n} [x_1 + \cdots + x_r + x]_q \right) \frac{\lambda^n t^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \left(\frac{1}{n} [x_1 + \cdots + x_r + x]_q \right) \left(\frac{1}{n} [x_1 + \cdots + x_r + x]_q - 1 \right) \frac{\lambda^n t^n}{n!}
\]
\[
\cdots \left(\frac{1}{n} [x_1 + \cdots + x_r + x]_q - n + 1 \right) \frac{\lambda^n t^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \left([x_1 + x_2 + \cdots + x_r + x]_q \right) \left([x_1 + x_2 + \cdots + x_r + x]_q - \lambda \right) \frac{\lambda^n t^n}{n!}
\]
\[
\cdots \left([x_1 + x_2 + \cdots + x_r + x]_q - (n-1)\lambda \right) \frac{\lambda^n t^n}{n!}
\]
\[
= \sum_{n=0}^{\infty} \left([x_1 + x_2 + \cdots + x_r + x]_q \right) \frac{\lambda^n t^n}{n!},
\]
where \([x]_q = [x]_q [x]_q - \lambda ([x]_q - 2\lambda) \cdots ([x]_q - (n-1)\lambda]). By (2.4), we have
\[
\int_{Z_p} \cdots \int_{Z_p} (1 + \lambda t)^\frac{1}{n} [x_1 + \cdots + x_r + x]_q d\mu_1 \cdots d\mu_r
\]
\[
= \sum_{n=0}^{\infty} \int_{Z_p} \cdots \int_{Z_p} \left([x_1 + x_2 + \cdots + x_r + x]_q \right)_{n,\lambda} d\mu_1 \cdots d\mu_r \frac{t^n}{n!}.
\]
Using (2.4) and (2.6), we obtain the following Witt’s formula.

Theorem 2.2 (Witt’s formula). For \(n \in \mathbb{N} \cup \{0\} \), we have
\[
\int_{Z_p} \cdots \int_{Z_p} \left([x_1 + x_2 + \cdots + x_r + x]_q \right)_{n,\lambda} d\mu_1 \cdots d\mu_r = E^{(r)}_{n,\lambda,q}(x).
\]

We observe that
\[
\left([x_1 + x_2 + \cdots + x_r + x]_q \right)_{n,\lambda} = \sum_{l=0}^{n} S_1(n,1) \lambda^{n-l} [x_1 + x_2 + \cdots + x_r + x]_q^l,
\]
where \(S_1(n,1) \) is the Stirling numbers of the first kind. By (2.7) and (2.8), we have
\[
E^{(r)}_{n,\lambda,q}(x) = \sum_{l=0}^{n} S_1(n,1) \lambda^{n-l} E_{n,\lambda,q}(x).
\]

Thus, we obtain the following theorem.
Theorem 2.3. For $n \in \mathbb{N} \cup \{0\}$, we have

$$E_{n,\lambda,q}^{(r)}(x) = \sum_{l=0}^{n} S_{1}(n, l)\lambda^{n-l}E_{l,q}^{(r)}(x).$$

Remark that $\lim_{\lambda \to 0} E_{n,\lambda,q}^{(r)}(x) = E_{n,q}^{(r)}(x)$ are the modified higher-order q-Euler polynomials and that $\lim_{q \to 1} E_{n,q}^{(r)}(x) = E_{n}^{(r)}(x)$ are the higher-order Euler polynomials. We note that

$$E_{n,q} = \int_{Z_p} [x]_{q}^{n} d\mu_{-1}(x)$$

$$= \frac{1}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \int_{Z_p} q^{lx} d\mu_{-1}(x)$$

$$= \frac{1}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \lim_{N \to \infty} \sum_{x=0}^{p^{N-1}} (-1)^{x} q^{lx}$$

$$= \frac{1}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \lim_{N \to \infty} \frac{1 + q^{lp^{N}}}{1 + q^{l}}$$

$$= \frac{2}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \sum_{m=0}^{\infty} (-1)^{m} q^{ml}$$

$$= 2 \sum_{m=0}^{\infty} (-1)^{m} \binom{[m]}{q}^{n}.$$

Summarizing this, we have the following equation.

Theorem 2.4. For $n \in \mathbb{N} \cup \{0\}$, we have

$$E_{n,q} = \int_{Z_p} [x]_{q}^{n} d\mu_{-1}(x) = 2 \sum_{m=0}^{\infty} (-1)^{m} [m]_{q}^{n}.$$

For $r \in \mathbb{N}$, we derive

$$E_{n,q}^{(r)}(x) = \int_{Z_p} \cdots \int_{Z_p} [x_1 + x_2 + \cdots + x_r + x]_{q}^{n} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)$$

$$= \left(\frac{1}{1-q} \right)^{n} \int_{Z_p} \cdots \int_{Z_p} (1 - q^{x_1 + \cdots + x_r + x})^{n} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)$$

$$= \left(\frac{1}{1-q} \right)^{n} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \int_{Z_p} \cdots \int_{Z_p} q^{x_1 + \cdots + x_r + x} d\mu_{-1}(x_1) \cdots d\mu_{-1}(x_r)$$

$$= \frac{1}{(1-q)^{n}} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} \left(\lim_{N \to \infty} \sum_{x_1, \ldots, x_r=0}^{p^{N-1}} (-1)^{x_1 + \cdots + x_r} q^{lx_1 + \cdots + lx_r} \right) q^{lx} \quad (2.9)
expressions

For Theorem 2.6.

\[\sigma \text{ generating function of the higher-order q}\]

\[q^3. \text{ The modified higher-order degenerate} \]

2530

By (2.9), we obtain the following theorem.

Theorem 2.5. For \(n \in \mathbb{N} \cup \{0\} \), we have

\[E_{n,q}^{(r)}(x) = 2^r \sum_{m_1, \ldots, m_r=0}^{\infty} (-1)^{m_1+\cdots+m_r}[m_1 + \cdots + m_r + x]_q^n, \quad \text{(see [8, 12, 23]).} \]

Theorem 2.6. For \(w_1, w_2, \ldots, w_n \in \mathbb{N} \) with \(w_i \equiv 1 \pmod{2} \), \((i = 1, 2, \ldots, n) \), and \(m \geq 0 \), the following expressions

\[\sum_{p=0}^{m} \sum_{i=1}^{\infty} \binom{p}{i} \lambda^{m-p} S_1(m, p) \left(\frac{[w_{\sigma(i)}]_q}{[\prod_{j=1}^{n-1} w_{\sigma(j)}]_q} \right)^{p-i} \]

\[\times E_{\lambda q^{w_{\sigma(1)}}w_{\sigma(2)}}^{w_{\sigma(n-1)}}(w_{\sigma(n)}x) \binom{p}{n} \lambda^{w_{\sigma(n)}}(w_{\sigma(1)}, \ldots, w_{\sigma(n-1)}|i + 1) \]

are the same for any permutation \(\sigma \) in the symmetry group of degree \(n \).

3. The modified higher-order degenerate q-Euler polynomials and the higher-order q-zeta functions

In [11, 12], Kim introduced the generating function of the higher-order q-Euler polynomials. From the generating function of the higher-order q-Euler polynomials, we have

\[F_{q}^{(r)}(x, t) = \sum_{n=0}^{\infty} E_{n,q}^{(r)}(x) \frac{t^n}{n!} \]

\[= 2^r \sum_{m_1, \ldots, m_r=0}^{\infty} (-1)^{m_1+\cdots+m_r} \sum_{n=0}^{\infty} [m_1 + \cdots + m_r + x]_q^n \frac{t^n}{n!}, \quad (3.1) \]

From (3.1), Kim [11] defined the higher-order q-zeta functions as follows:

\[\zeta_{E,q}^{(r)}(s, x) = \frac{1}{\Gamma(s)} \int_0^{\infty} F_{q}^{(r)}(x, -t)t^{s-1}dt, \quad (3.2) \]

where \(\Gamma(s) = \int_0^{\infty} y^{s-1}e^{-y}dy \). By (3.1) and (3.2) we derive

\[\zeta_{E,q}^{(r)}(s, x) = \frac{1}{\Gamma(s)} 2^r \sum_{m_1, \ldots, m_r=0}^{\infty} (-1)^{m_1+\cdots+m_r} \int_0^{\infty} e^{-[m_1+\cdots+m_r+x]_q t} t^{s-1}dt \]

\[= \frac{2^r}{\Gamma(s)} \sum_{m_1, \ldots, m_r=0}^{\infty} (-1)^{m_1+\cdots+m_r} \frac{1}{[m_1 + \cdots + m_r + x]_q^s} \int_0^{\infty} y^{s-1}e^{-y}dy \]

\[= 2^r \sum_{m_1, \ldots, m_r=0}^{\infty} (-1)^{m_1+\cdots+m_r} \frac{1}{[m_1 + \cdots + m_r + x]_q^s}. \]

(3.3)
By (3.3), we obtain the following theorem.

Theorem 3.1. For \(r \in \mathbb{N}, s \in \mathbb{C} \) with \(\text{Re}(s) > 0 \), we have

\[
\zeta_{E,q}^{(r)}(s,x) = 2^r \sum_{m_1, \ldots, m_r = 0}^{\infty} \frac{(-1)^{m_1 + \cdots + m_r}}{[m_1 + \cdots + m_r + x]^s_q}, \quad \text{(see [11, 12]).}
\]

For \(s, x \in \mathbb{C} \) with \(\text{Re}(x) > 0 \), \(a_1, \ldots, a_r \in \mathbb{C} \), the Barnes-type multiple \(q \)-zeta functions are defined by Kim [12] as follows:

\[
\zeta_{E,q}^{(r)}(s,x|w_1, \cdots, w_r; a_1, \cdots, a_r) = 2^r \sum_{m_1, \cdots, m_r = 0}^{\infty} \frac{(-1)^{m_1 + \cdots + m_r} q^{m_1 a_1 + \cdots + m_r a_r}}{[x + w_1 m_1 + \cdots + w_r m_r]^s_q},
\]

where the parameters \(w_1, \ldots, w_r \) are positive. Note that \(\zeta_{E,q}^{(r)}(s,x|1, \cdots, 1,0, \cdots, 0) = \zeta_{E,q}^{(r)}(s,x) \).

By (3.1), we have

\[
\zeta_{E,q}^{(r)}(s,x) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{r^{(r)}(x,t) t^{s-1} dt}{\Gamma(r)} = \frac{1}{\Gamma(s)} \sum_{m=0}^{\infty} E_{m,q}^{(r)}(x) \frac{(-1)^m}{m!} \int_0^\infty t^{s-1+m} dt.
\] \((3.4) \)

Let \(s = -n \) (\(n \in \mathbb{N} \)). Then, by (3.4), we have

\[
\zeta_{E,q}^{(r)}(-n,t) = \lim_{s \to -n} \frac{1}{\Gamma(s)} \sum_{m=0}^{\infty} E_{m,q}^{(r)}(x) \frac{(-1)^m}{m!} \int_0^\infty t^{-n-1+m} dt
\]

\[
= \left(\lim_{s \to -n} \frac{1}{\Gamma(s)} \right) \left(E_{n,q}^{(r)}(x) \frac{(-1)^n}{n!} \right) 2\pi i
\]

\[
= \frac{n!}{2\pi i} (-1)^n E_{n,q}^{(r)}(x) \frac{(-1)^n}{n!} 2\pi i = E_{n,q}^{(r)}(x).
\] \((3.5) \)

where

\[
\Gamma(-n) = \int_0^\infty e^{-t} t^{-n-1} dt = \lim_{t \to 0} 2\pi i \frac{1}{n!} \left(\frac{d}{dt} \right)^n \left(t^{n+1} e^{-t} t^{-n-1} \right) = 2\pi i \frac{1}{n!} (-1)^n \lim_{t \to 0} e^{-t} = 2\pi i \frac{1}{n!} (-1)^n.
\]

By (3.5), we obtain the following theorem.

Theorem 3.2. For \(n \in \mathbb{N} \), we have

\[
\zeta_{E,q}^{(r)}(-n,x) = E_{n,q}^{(r)}(x), \quad \text{(see [12]).}
\]

From Theorem 2.3 and Theorem 2.5, and (2.8), we have

\[
E_{n,\lambda,q}^{(r)}(x) = \sum_{l=0}^{n} S_1(n,1) \lambda^{n-l} E_{l,q}^{(r)}(x)
\]

\[
= 2^r \sum_{l=0}^{n} \sum_{m_1, \cdots, m_r = 0}^{\infty} (-1)^{m_1 + \cdots + m_r} [m_1 + \cdots + m_r + x]_q S_1(n,1) \lambda^{n-l}
\]

\[
= 2^r \sum_{m_1, \cdots, m_r = 0}^{\infty} (-1)^{m_1 + \cdots + m_r} \sum_{l=0}^{n} [m_1 + \cdots + m_r + x]_q S_1(n,1) \lambda^{n-l}
\]

\[
= 2^r \sum_{m_1, \cdots, m_r = 0}^{\infty} (-1)^{m_1 + \cdots + m_r} \left([m_1 + \cdots + m_r + x] \right)_{n,\lambda}.
\] \((3.6) \)

By (3.6), we obtain the following theorem.
By (3.8), we obtain the following theorem.

Theorem 3.5. For \(n \in \mathbb{N} \cup \{0\} \), we have

\[
E_{n,\lambda,q}^{(r)}(x) = 2^r \sum_{m_1, \ldots, m_r = 0}^{\infty} (-1)^{m_1 + \cdots + m_r} \left([m_1 + \cdots + m_r + x]_q \right) n, \lambda. \tag{3.7}
\]

Applying (3.7) and using (2.5), we have

\[
\sum_{n=0}^{\infty} E_{n,\lambda,q}^{(r)}(x) \frac{t^n}{n!} = 2^r \sum_{m_1, \ldots, m_r = 0}^{\infty} (-1)^{m_1 + \cdots + m_r} \sum_{n=0}^{\infty} \left([m_1 + \cdots + m_r + x]_q \right) n, \lambda \frac{t^n}{n!} \tag{3.8}
\]

By (3.8), we obtain the following theorem.

Theorem 3.4. For \(r \in \mathbb{N} \), we have

\[
\sum_{n=0}^{\infty} E_{n,\lambda,q}^{(r)}(x) \frac{t^n}{n!} = 2^r \sum_{m_1, \ldots, m_r = 0}^{\infty} (-1)^{m_1 + \cdots + m_r} (1 + \lambda t)^{[m_1 + \cdots + m_r + x]_q} \lambda t^n. \tag{3.9}
\]

Replacing \(r \) by \(\frac{1}{\lambda} (e^{\lambda t} - 1) \) in (3.9), and by using (3.1), we have

\[
\sum_{m=0}^{\infty} E_{m,\lambda,q}^{(r)}(x) \frac{t^n}{n!} = 2^r \sum_{m_1, \ldots, m_r = 0}^{\infty} (-1)^{m_1 + \cdots + m_r} e^{[m_1 + \cdots + m_r + x]_q} = \sum_{n=0}^{\infty} E_{n,\lambda,q}^{(r)}(x) \frac{t^n}{n!},
\]

and

\[
\sum_{m=0}^{\infty} E_{m,\lambda,q}^{(r)}(x) \frac{t^n}{n!} = \sum_{m=0}^{\infty} E_{m,\lambda,q}^{(r)}(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} S_2(n, m) \lambda^n \frac{t^n}{n!} \tag{3.10}
\]

By (3.10), we obtain the following theorem.

Theorem 3.5. For \(n \in \mathbb{N} \cup \{0\} \), we have

\[
E_{n,\lambda,q}^{(r)}(x) = \sum_{m=0}^{n} \lambda^{n-m} E_{m,\lambda,q}^{(r)}(x) S_2(n, m). \tag{3.11}
\]

By replacing \(r \) by \(\frac{1}{\lambda} \log(1 + \lambda t) \) by in (3.9), and using (3.8), we have

\[
\sum_{m=0}^{\infty} E_{m,\lambda,q}^{(r)}(x) \frac{t^n}{n!} = 2^r \sum_{m_1, \ldots, m_r = 0}^{\infty} (-1)^{m_1 + \cdots + m_r} e^{[m_1 + \cdots + m_r + x]_q} \frac{1}{\lambda} \log(1 + \lambda t) \tag{3.11}
\]

By replacing \(m_1, \ldots, m_r \) by \(\frac{1}{\lambda} r \) in (3.11), and using (3.8), we have

\[
\sum_{n=0}^{\infty} E_{n,\lambda,q}^{(r)}(x) \frac{t^n}{n!}.
\]
and
\[
\sum_{m=0}^{\infty} E_{m,q}^{(r)}(x) \lambda^{-m} \left(\log(1 + \lambda t) \right)^m = \sum_{m=0}^{\infty} E_{m,q}^{(r)}(x) \lambda^{-m} \sum_{n=m}^{\infty} S_1(n, m) \frac{\lambda^n t^n}{n!} = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \lambda^{n-m} E_{m,q}^{(r)}(x) S_1(n, m) \right) t^n. \tag{3.12}
\]

By comparing the coefficients of (3.11) and (3.12), we obtain the following theorem.

Theorem 3.6. For \(n \in \mathbb{N} \cup \{0\} \), we have
\[
E_{n,\lambda,q}^{(r)}(x) = \sum_{m=0}^{n} \lambda^{n-m} E_{m,q}^{(r)}(x) S_1(n, m).
\]

4. Zeroes of the modified higher-order q-Euler polynomials and the modified higher-order degenerate q-Euler polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical prediction and to discover new interesting patterns of the zeroes of the modified higher-order q-Euler polynomials \(E_{n,q}^{(r)}(x) \) and the modified higher-order degenerate q-Euler polynomials \(E_{n,\lambda,q}^{(r)}(x) \). We display the shapes of the modified higher-order q-Euler polynomials \(E_{n,q}^{(r)}(x) \) and the modified higher-order degenerate q-Euler polynomials \(E_{n,\lambda,q}^{(r)}(x) \). Next we investigate the zeroes of the modified higher-order q-Euler polynomials \(E_{n,q}^{(r)}(x) \) and the modified higher-order degenerate q-Euler polynomials \(E_{n,\lambda,q}^{(r)}(x) \). Let \(q \in \mathbb{C}, |q| < 1 \). For \(n = 1, \ldots, 10 \), we can draw a plot of the modified higher-order q-Euler polynomials \(E_{n,q}^{(r)}(x) \) and the modified higher-order degenerate q-Euler polynomials \(E_{n,\lambda,q}^{(r)}(x) \), respectively. This shows the ten plots combined into one. We display the shape of \(E_{n,\lambda,q}^{(r)}(x) \) and \(E_{n,q}^{(r)}(x) \), \(-5 \leq x \leq 5\) (Figure 1).

![Figure 1: Curve of the \(E_{n,\lambda,q}^{(r)}(x) \) and \(E_{n,q}^{(r)}(x) \).](image)

In Figure 1 (left), we choose \(r = 5, \lambda = 1/2 \) and \(q = 1/2 \). In Figure 1 (middle), we choose \(r = 5, \lambda = 1/10000 \) and \(q = 1/2 \). In Figure 1 (right), we choose \(r = 5 \) and \(q = 1/2 \). It is obvious that, by letting \(\lambda \) tend to 1 from the curve of \(E_{n,\lambda,q}^{(r)}(x) \) of left side, we lead to the curve of the \(E_{n,q}^{(r)}(x) \). By using computer, the modified higher-order q-Euler numbers \(E_{n,q}^{(r)} \) and the modified higher-order degenerate q-Euler numbers \(E_{n,\lambda,q}^{(r)} \) are listed in Table 1.

We investigate the beautiful zeroes of the modified higher-order q-Euler polynomials \(E_{n,q}^{(r)}(x) \) and the modified higher-order degenerate q-Euler polynomials \(E_{n,\lambda,q}^{(r)}(x) \) by using a computer. We plot the zeroes...
of the modified higher-order q-Euler polynomials $E_{n,q}^{(r)}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ for $n = 50$, $q = 1/2$ and $x \in \mathbb{C}$ (Figure 2).

Table 1: The first few $E_{n,q}^{(r)}$ and $E_{n,\lambda,q}^{(r)}$.

<table>
<thead>
<tr>
<th>degree n</th>
<th>$E_{n,q}^{(r)}$ $q = 1/2, r = 5$</th>
<th>$E_{n,\lambda,q}^{(r)}$ $q = 1/2, r = 5, \lambda = 1/10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>$-1562/243$</td>
<td>$-1562/243$</td>
</tr>
<tr>
<td>2</td>
<td>$9287996/759375$</td>
<td>$10264246/759375$</td>
</tr>
<tr>
<td>3</td>
<td>$3037448168/184528125$</td>
<td>$4674974089/922640625$</td>
</tr>
<tr>
<td>4</td>
<td>$-1425517528162096/262003549978125$</td>
<td>$-240516181113919276/6550088749453125$</td>
</tr>
</tbody>
</table>

Figure 2: Zeroes of $E_{n,\lambda,q}^{(r)}(x)$ and $E_{n,q}^{(r)}(x)$.

In Figure 2 (top-left), we choose $n = 50$, $q = 1/2$, and $\lambda = 1/100$. In Figure 2 (top-right), we choose $n = 50$, $q = 1/2$ and $\lambda = 1/1000$. In Figure 2 (bottom-left), we choose $n = 50$, $q = 1/2$ and $\lambda = 1/10000$. In Figure 2 (bottom-right), we choose $n = 50$, $q = 1/2$ and $\lambda \to 0$.

Stacks of zeroes of the modified higher-order q-Euler polynomials $E_{n,q}^{(r)}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ for $1 \leq n \leq 40$ from a 3-D structure are presented in Figure 3.
In Figure 3 (left), we choose $1 \leq n \leq 40, q = 1/2$ and $\lambda = 1/10$. In Figure 3 (right), we choose $1 \leq n \leq 40, q = 1/2$, and $\lambda \to 0$.

It was known that $E_n^{(r)}(x), x \in \mathbb{C}$, has $\text{Im}(x) = 0$ reflection symmetry analytic complex functions, (see [12]). However, we observe that $E_n^{(r)}(x), x \in \mathbb{C}$, has not $\text{Im}(x) = 0$ reflection symmetry analytic complex functions (Figures 2 and 3).

Our numerical results for approximate solutions of real zeroes of the modified higher-order q-Euler polynomials $E_n^{(r)}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_n^{(r)}_{n,\lambda}(x)$ are displayed in Tables 2, 3, and 4. We observe a remarkably regular structure of the complex roots of the modified higher-order q-Euler polynomials $E_n^{(r)}_{n,\lambda}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_n^{(r)}_{n,\lambda}(x)$ are displayed in Table 2. We hope to verify a remarkably regular structure of the complex roots of the modified higher-order q-Euler polynomials $E_n^{(r)}_{n,\lambda}(x)$ and the modified higher-order degenerate q-Euler polynomials $E_n^{(r)}_{n,\lambda}(x)$ (Table 2).

![Image of stacks of zeroes of $E_n^{(r)}_{n,\lambda}(x)$ and $E_n^{(r)}_{n,q}(x)$ for $1 \leq n \leq 40$.]

Table 2: Numbers of real and complex zeroes of $E_n^{(r)}_{n,\lambda}(x)$ and $E_n^{(r)}_{n,q}(x)$.

<table>
<thead>
<tr>
<th>degree n</th>
<th>$E_{n,1/10,1/2}^{(5)}(x)$</th>
<th>$E_{n,1/2}^{(5)}(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>real zeroes</td>
<td>complex zeroes</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Plot of real zeroes of $E_n^{(r)}_{n,\lambda}(x)$ and $E_n^{(r)}_{n,q}(x)$ for $1 \leq n \leq 40$ structure are presented in Figure 4.

In Figure 4 (left), we choose $r = 5, \lambda = 1/10$ and $q = 1/2$. In Figure 4 (middle), we choose $r = 5, \lambda = 1/1000$ and $q = 1/2$. In Figure 4 (right), we choose $r = 5$ and $q = 1/2$. It is obvious that, by letting λ tend to 1 from the real zeroes of $E_n^{(r)}_{n,\lambda}(x)$ of left side, we lead to the real zeroes of the $E_n^{(r)}_{n,q}(x)$.

Next, we calculated an approximate solution satisfying $E^{(r)}_{n,\lambda,q}(x) = 0$, $E^{(r)}_{n,q}(x) = 0$, and $x \in \mathbb{R}$. The results are given in Tables 3 and 4.

Table 3: Approximate solutions of $E^{(5)}_{n,\lambda,q}(x) = 0$, $q = 1/2$, $\lambda = 1/10$, $x \in \mathbb{R}$.

<table>
<thead>
<tr>
<th>degree n</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.07519</td>
</tr>
<tr>
<td>2</td>
<td>0.674416, 2.86795</td>
</tr>
<tr>
<td>3</td>
<td>-0.0853565, 1.46616, 3.59324</td>
</tr>
<tr>
<td>4</td>
<td>-0.507236, 0.0495496, 1.56211, 3.60538</td>
</tr>
<tr>
<td>5</td>
<td>0.064954, 1.2468, 2.5000, 3.7532, 4.9350</td>
</tr>
<tr>
<td>6</td>
<td>0.642491, 2.23658, 4.2821</td>
</tr>
<tr>
<td>7</td>
<td>-0.00924544, 1.3286, 3.12019, 8.46041</td>
</tr>
<tr>
<td>8</td>
<td>-0.422343, 0.65015, 2.17641, 4.17786</td>
</tr>
</tbody>
</table>

Table 4: Approximate solutions of $E^{(5)}_{n,\lambda,q}(x) = 0$, $q = 1/2$, $x \in \mathbb{R}$.

<table>
<thead>
<tr>
<th>degree n</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.07519</td>
</tr>
<tr>
<td>2</td>
<td>0.601538, 2.78882</td>
</tr>
<tr>
<td>3</td>
<td>-0.29846, 1.19492, 3.25392</td>
</tr>
<tr>
<td>4</td>
<td>-0.707974, 0.0540258, 1.61452, 3.60212</td>
</tr>
<tr>
<td>5</td>
<td>0.380137, 1.93959, 3.88122</td>
</tr>
<tr>
<td>6</td>
<td>-0.577628, 0.651902, 2.20503, 4.1144</td>
</tr>
<tr>
<td>7</td>
<td>-0.820786, -0.396232, 0.88272, 2.42936, 4.31478</td>
</tr>
<tr>
<td>8</td>
<td>-0.201325, 1.08272, 2.6236, 4.49051</td>
</tr>
</tbody>
</table>

Finally, we shall consider the more general problems. How many zeroes does $E^{(r)}_{n,q}(x)$ have? Prove or disprove: $E^{(r)}_{n,q}(x) = 0$ has n distinct solutions. Find the numbers of complex zeroes $C_{E^{(r)}_{n,q}(x)}$ of $E^{(r)}_{n,q}(x)$, $\text{Im}(x) \neq 0$. Since n is the degree of the polynomial $E^{(r)}_{n,q}(x)$, the number of real zeroes $R_{E^{(r)}_{n,q}(x)}$ lying on the real plane $\text{Im}(x) = 0$ is then $R_{E^{(r)}_{n,q}(x)} = n - C_{E^{(r)}_{n,q}(x)}$, where $C_{E^{(r)}_{n,q}(x)}$ denotes complex zeroes. See Table 2 for tabulated values of $R_{E^{(r)}_{n,q}(x)}$ and $C_{E^{(r)}_{n,q}(x)}$.
5. Conclusions

Kim et al., [17–20] studied some identities of symmetry on the higher-order degenerate q-Euler polynomials. The motivation of this paper is to investigate some explicit identities for the modified higher-order degenerate q-Euler polynomials in the second row of the diagram at page 4. So we defined the modified higher degenerate q-Euler polynomials in the equation (2.4) and obtained the formulas (see Theorems 2.2-2.5). We also obtained the explicit identities related with the modified higher-order degenerate q-Euler polynomials and the higher-order q-zeta functions (see Theorems 3.1-3.6).

Finally, we demonstrated the comparing three facts between modified higher-order q-Euler polynomials $E_{n,q}^{(r)}(x)$ and modified higher-order degenerate q-Euler polynomials $E_{n,\lambda,q}^{(r)}(x)$ as follows:

1. We displayed the shape of $E_{n,q}^{(r)}(x)$ and $E_{n,\lambda,q}^{(r)}(x)$ (see Figure 1) and investigated the zeroes of $E_{n,q}^{(r)}(x)$ and $E_{n,\lambda,q}^{(r)}(x)$ by using a computer (see Figure 2 and Table 1).

2. We presented stacks of zeroes of $E_{n,q}^{(r)}(x)$ and $E_{n,\lambda,q}^{(r)}(x)$ for $1 \leq n \leq 40$ from a 3-D structure (see Figure 3) and verified a regular structure of the complex roots of $E_{n,q}^{(r)}(x)$ and $E_{n,\lambda,q}^{(r)}(x)$ (see Figure 4 and Table 2).

3. We calculated an approximate solution satisfying $E_{n,q}^{(r)}(x) = 0$, $E_{n,\lambda,q}^{(r)}(x) = 0$, and $x \in \mathbb{R}$ (see Tables 3-4).

Acknowledgment

This paper was supported by Konkuk University in 2016.

This paper is dedicated to Professor Yeol Je Cho on the occasion of his 65th birthday.

References