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Abstract
In this paper, we use the modified reproducing kernel Hilbert space method to approximate the solution of fuzzy differential

equations of fractional order. Using this method, we construct a new algorithm to approximate the solution of such differential
equations. The proposed algorithm produces solutions in terms of interval-valued fuzzy numbers. Two numerical examples
are tested and the results showed that the proposed algorithm is able to produce solutions that approach to the exact solutions.
It concludes that the proposed algorithm can be considered as a modern algorithm that complements to the existing ones.
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1. Introduction

For the last decade, fuzzy differential equations (FDEs) have been studied by many researchers in
different approaches [3, 12, 29, 31, 35]. All of these studies aimed to find the solutions of fuzzy differential
equations of fractional order. This involves the process of introducing new methods as well as improving
the classical methods to solve such differential equations. It is a fact that the improvement of problem
solving tools effects directly how we handle the world around us. For instance, in [9] the authors proposed
a new algorithm to find multiple solutions of the fractional differential equations. Thus, a further research
has to be made to construct new methods, or by improving the existing classical methods direct or
indirectly [33, 34].

This paper considers the general form of fuzzy differential equation of fractional order possessing
Caputo fractional derivative:

Dαc,a,zM(z) = g(z,M(z)),
M(z0) = zF = (A,B,C),

(1.1)
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where Dαc,a,zM(z) is the fractional derivative in the sense of Caputo, 0 < α 6 1, z > z0 and M(z0) =
(A,B,C) is a fuzzy initial value.

At instance, fuzzy differential equations of fractional order might be very complicated to be solved.
Unlike ordinary differential equations, there are a few methods that have been proposed for solving fuzzy
differential equations. Many of them are extension from the classical methods (see in [5, 17, 19, 24, 38]).
There are several methods proposed by the authors to solve Eq. (1.1) (see in [4, 6–8, 26]).

From the previous studies, it was shown that the reproducing kernel theory (RKT) is popular in
solving ordinary differential equations. The RKT was first developed in 1908 by Zaremba [14]. Since
then, many modifications have been made. For example, Higgins [22] provided the crucial modification
for this method. Furthermore, Mercer [30] improved this theory and demonstrated it on several real life
applications.

In the last decades, the RKT has been used by many researchers in solving problems in signal process-
ing, estimation theory, stochastic process, and hybrid wavelet (see in [10, 21, 23, 36]). Currently, some re-
searchers expanded the application of RKT for finding the solution of fractional problems [1, 2, 11, 28, 37].
From these studies, it is necessary to focus on the application of this method in solving fuzzy differen-
tial equation of fractional order. Therefore, in this study we propose a new procedure on solving fuzzy
differential equation of fractional order based on RKT.

The rest of this paper is organized as follows. In Section 2, we provide basic concepts of fractional
calculus, fuzzy set and the RKT. In Section 3, we propose a new algorithm for approximating the solution
of fuzzy differential equation of fractional order. While in Section 4, we present two numerical examples
to show the effectiveness of the proposed algorithm. Finally, conclusion will be drawn in the last section.

2. Basic concepts

This section briefly elaborates the basic concepts of fractional calculus, fuzzy differential equations of
fractional order, and reproducing kernel Hilbert space.

Definition 2.1 ([20]). The left fractional integral and the right fractional integral in the sense of Riemann-
Liouville for α ∈ (0, 1) are defined as

JαRL,a,zM(z) =
1
Γ(α)

∫z
a

(z− ζ)α−1M(ζ)dζ,

and

JαRL,z,bM(z) =
1
Γ(α)

∫b
z

(ζ− z)α−1M(ζ)dζ,

respectively.

Definition 2.2 ([32]). The left Caputo fractional derivative is defined as follows.

Dαc,a,zM(z) =
1

Γ(⌈α⌉−α)

∫z
α

(z− ζ)dαe−α−1Mdαe(ζ)dζ,

where Mdαe = dMdαe(ζ)
dζdαe

and ⌊α⌋ 6 α < ⌈α⌉, α ∈ Z+, where the symbol ⌈·⌉ denotes the nearest integer
number greater than α and ⌊·⌋ denotes the nearest integer number less than α. While the right Caputo
fractional derivative is defined as

Dαc,b,zM(z) =
(−1)dαe

Γ(⌈α⌉−α)

∫b
z

(ζ− z)dαe−α−1Mdαe(ζ)dζ.

The properties of the Caputo fractional derivative [27] is listed below.

(i) Dαc,a,zJ
α
RL,a,zM(z) =M(z);
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(ii) JαRL,a,zD
α
c,a,zM(z) =M(z) −

∑bαc
k=0

(
M(k)(0).Z

k

k!

)
, z > 0, ⌊α⌋ 6 α < ⌈α⌉ ∈ Z+.

We denote the set of all real numbers by R and the space of n-dimensional fuzzy numbers by RnF where
uF(z) : Rn → [0, 1] .

Definition 2.3. Let a fuzzy number uF(z) ∈ RF and r ∈ [0, 1]. The r-cut of uF(z) is the crisp set that
contains all elements with degree in uF(z) either greater than or equal to r such that

[uF(z)]
r = {z ∈ R : uF(z) > r} .

For fuzzy number uF(z), its r-cut are closed and bounded interval in R and we denoted them by

[uF(z)]
r = [u1,1r(z),u1,2r(z)] ,

where u1,1r(z) = min {z | z ∈ [uF(z)]
r
} and u1,2r(z) = max {z | z ∈ [uF(z)]

r
} for every r ∈ [0, 1] .

For more details on r-cut of fuzzy numbers, please see in [13, 15, 16, 25, 39]. Fuzzy numbers are
often classified into membership function. One of the most commonly used membership functions is the
triangular membership function, or often referred as triangular fuzzy number.

Definition 2.4 ([4]). A fuzzy number uF is called triangular fuzzy number if its membership function has
the following form:

uF(z) =


0, if z < A,
z−A
B−A , if A 6 z < B,
C−z
C−B , if B 6 z 6 C,
0, if z > C,

and its r-cut is computed as follows:

[u]r = [A+ r(B−A),C− r(C−B)] , r ∈ [0, 1] .

Lemma 2.5. Let M(z) be a fuzzy-valued function such that M(z) : [a,b] → RF where M(z) is a bounded and
continuous function in open interval (a,b). The fractional derivative of MF(z) in the sense of Caputo can be
expressed using r-cut representation as follows:[

Dαc,a,zM(z)
]r

=
[
Dαc,a,zM(z)

]r
=
[
Dαc,a,zM1,1r(z),Dαc,a,zM1,2r(z)

]
,

where Dαc is the operation that its effective representation is limited to MF(z).

By using Definition 2.3 and the properties of Caputo fractional derivative, we have[
JαRL,a,zD

α
c,a,zM(z)

]r
=
[
JαRL,a,zD

α
c,a,zM1,1r(z), JαRL,a,zD

α
c,a,zM1,2r(z)

]
=

[
M1,1r(z) −

m−1∑
k=0

Mk
1,1r(0

+)
zk

k!
,M1,2r(z) −

m−1∑
k=0

Mk
1,2r(0

+)
zk

k!

]
.

Definition 2.6 ([18]). Let HS be a Hilbert space. Suppose that Uy(z) ∈ HS and M(y) ∈ HS satisfy the
following condition:

⟨M(z),Uy(z)⟩ =M(y), ∀y ∈ Z,

then,

(i) Uy(z) is a reproducing kernel of HS;
(ii) HS is a reproducing kernel space.
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Definition 2.7 ([18]). The function space FSm2 [a,b] is defined as

FSm2 [a,b] =
{
u | u(i) is absolutely continuous, i = 1, . . . ,m− 1, u(m) ∈ L2[a,b]

}
.

The inner product in FSm2 [a,b], for any functions u(z), v(z) ∈ FSm2 [a,b] is defined as follows:

⟨u, v⟩FSm2 [a,b] =

m−1∑
i=0

ui(a)vi(a) +

∫b
a

u(m)v(m)dz.

While the norm in FSm2 [a,b] for any functions u(z), v(z) ∈ FSm2 [a,b] is defined as follows:

‖u‖FSm2 [a,b] =
√

⟨u,u⟩FSm2 [a,b].

Definition 2.8 ([18]). The inner product space of the function space FS1
2[a,b] is defined as

⟨u, v⟩FS1
2[a,b] = u(0)v(0) +

∫b
a

u(1)(z)v(1)(z)dz,∀u, v ∈ FS1
2[a,b],

and the norm of FS1
2[a,b] is defined as

‖u‖FS1
2[a,b] =

√
⟨u(z),u(z)⟩FS1

2[a,b].

Theorem 2.9 ([18]). The function space FS1
2[a,b] is a reproducing kernel Hilbert space with reproducing kernel

given by

Uz(y) =

{
1 + y, if y 6 z,
1 + z, if y > z.

Definition 2.10 ([18]). The inner product space of the function space FS2
2[a,b] is defined as follows:

⟨u, v⟩FS2
2[a,b] =

1∑
i=0

u(i)(a)v(i)(a) +

∫b
a

u(2)(z)v(2)(z)dz, ∀u, v ∈ FS2
2[a,b],

and the norm of FS1
2[a,b] is defined as:

‖u‖FS2
2[a,b] =

√
⟨u(z),u(z)⟩FS2

2[a,b].

Theorem 2.11 ([18]). The function space FS2
2[a,b] is a reproducing kernel Hilbert space with reproducing kernel

given by

Kz(y) =

{
1 + zy+ zy2

2 − y3

6 , if y 6 z,

1 + zy+ z2y
2 − z3

6 , if y > z.

3. New algorithm for fuzzy differential equations of fractional order

In order to use reproducing kernal theory (RKT) as the tool, we need to homogenize the initial condi-
tion in Eq. (1.1). For that, we consider

M∗(z) =M(z) − zF, M∗(z0) = 0,
M(z) =M∗(z) + zF.

(3.1)
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After the homogenization, Eq. (1.1) can be converted to the following form:{
(LM∗)(z) = g∗(z,M∗(z)),
M∗(z0) = 0.

(3.2)

By applying the fuzzy set theory, Eq. (3.1) is converted into the following form:

Dβc,a,zM
∗
1,1r(z) = g

∗
1,1r(z,M

∗
1,1r(z),M

∗
1,2r(z)),

Dβc,a,zM
∗
1,2r(z) = g

∗
1,2r(z,M

∗
1,1r(z),M

∗
1,2r(z)),

M∗1,1r(z) = 0,M∗1,2r(z) = 0,

(3.3)

and Eq. (3.2) is converted into the following form:{
(L1,jrM

∗
1,jr)(z) = g

∗
1,jr(z,M

∗
1,jr(z)),

M∗1,jr(z0) = 0, j = 1, 2.
(3.4)

From [18], the reproducing kernel method is employed for solving Eq. (3.4). This includes three main
steps that are also used to solve ordinary differential equations. From those steps, we propose the follow-
ing procedures.

i) First, we construct reproducing kernels FS2
2[a,b] and FS1

2[a,b] for Eq. (3.4), after that we introduce a
linear operator as follows:

Lm,jr = FS
2
2[a,b] → FS1

2[a,b], m = 1, j = 1, 2.

Therefore, Eq. (3.3) is converted into the following form.

M∗1,1r(z) = L
ad
1,1rg

∗
1,1r(z,M

∗
1,1r(z),M

∗
1,2r(z)),

M∗1,2r(z) = L
ad
1,2rg

∗
1,2r(z,M

∗
1,1r(z),M

∗
1,2r(z)),

where Lad1,1r and Lad1,2r are adjoint operator of Lm,jr, m = 1 and j = 1, 2.
ii) Then, we let {zk}

∞
k=1 to be a countable dense set in [a,b] and let ek,m,jr(z) = kzk(y). Kz(y) is the

reproducing kernel of FS1
2[a,b], ∀M∗m,jr(z) ∈ FS1

2[a,b], m = 1 and j = 1, 2. Hence,

⟨M∗m,jr(z), ek,m,jr(z)⟩FS1
2
= ⟨M∗m,jr(z),kz(y)⟩FS1

2
=M∗m,jr(z).

Additionally, by allowing
Ladm,jrek,m,jr(z) = Ψk,m,jr(z),

we have

⟨M∗m,jr(z),Ψk,m,jr(z)⟩FS2
2
= ⟨M∗m,jr(z),L

ad
1,1rek,m,jr(z)⟩FS2

2
= ⟨Lm,jrM

∗
m,jr(z), ek,m,jr(z)⟩FS1

2
.

Thus, Ψk,m,jr(z) can be expressed as follows:

Ψk,m,jr(z) = L
ad
m,jrek,m,jr(z) = ⟨Ladm,jrek,m,jr(z),Kz(y)⟩FS2

2[a,b]

= ⟨ek,m,jr(z),Lm,jrKz(y)⟩FS1
2[a,b] = LyKz(y)|y=zk .

From here, we obtain the following result.

Theorem 3.1. If {zk}
∞
k=1 is a dense set in [a,b], then the complete system of the function space FS2

2[a,b] under
fuzzy setting is as follows: {

Ψk,m,jr(z)
}(∞,1,2r)
(k,m,jr)=(1,1,1r) .
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Proof. For each fixed M∗m,jr(z) ∈ FS2
2[a,b], and let ⟨M∗m,jr(z),Ψk,m,jr(z)⟩ = 0, k = 1, . . ., then

⟨M∗m,jr(z),Ψk,m,jr(z)⟩FS2
2[a,b] = ⟨M∗m,jr(z),L

ad
1,1rek,m,jr(z)⟩FS2

2[a,b]

= ⟨Lm,jrM
∗
m,jr(z), ek,m,jr(z)⟩FS1

2[a,b]

= Lm,jrM
∗
m,jr(zk) = 0.

Since {zk}
∞
k=1 is dense in [a,b], therefore, Lm,jrM

∗
m,jr(zk) = 0, ∀m = 1 and j = 1, 2. It follows that

M∗m,jr(z) = 0 from the existence of the inverse operator of Lm,jr and the continuity of M∗m,jr(z).

iii) For the third step, we construct an orthonormal system
{
Ψk,m,jr

}(∞,1,2r)
(k,m,jr)=(1,1,1r) of FS2

2[a,b] by using
Gram-Schmidt orthogonalization process.

Ψk,m,jr(z) =

k∑
l=1

βkl,m,jr(z)Ψk,m,jr(z), ∀m = 1, j = 1, 2, l = 1, 2, ..., k,

where βkl,m,jr(z) is the orthogonalization coefficient.

From the third step we obtain the following results.

Theorem 3.2. Let {zk}
∞
k=1 be a dense set in [a,b], and the solution of (3.3) is unique on FS1

2[a,b]. Then, the
solution of (3.3) can be written as follows.

M∗m,jr(z) =

∞∑
k=1

k∑
l=1

βkl,m,jrg
∗
m,jr(zl,M

∗
m,jr(zl)Ψk,m,jr(z)), ∀m = 1, j = 1, 2.

Proof. By applying Theorem 3.1,
{
Ψk,m,jr

}(∞,1,2r)
(k,m,jr)=(1,1,1r) is a complete orthonormal basis for FS2

2[a,b]. So,

M∗m,jr(z) can be extended into Fourier series for orthonormal system
{
Ψk,m,jr

}(∞,1,2r)
(k,m,jr)=(1,1,1r) as follows:

M∗m,jr(z) =

∞∑
k=1

⟨M∗m,jr(z),Ψk,m,jr⟩Ψk,m,jr(z), ∀m = 1, j = 1, 2,

where FS2
2[a,b] is a reproducing kernel Hilbert space. Therefore,

M∗m,jr(z) =

∞∑
k=1

⟨M∗m,jr(z),Ψk,m,jr⟩Ψk,m,jr(z), ∀m = 1, j = 1, 2,

converges in the sense of the norm in Definition 2.10. By Definition 2.6, we have

M∗m,jr(z) =

∞∑
k=1

⟨M∗m,jr(z),Ψk,m,jr⟩Ψk,m,jr

=

∞∑
k=1

⟨M∗m,jr(z),
k∑
l=1

βkl,m,jrΨk,m,jr(z)⟩FS2
2[a,b]Ψk,m,jr

=

∞∑
k=1

k∑
l=1

βkl,m,jr(z)⟨M∗m,jr(z),Ψk,m,jr(z)⟩FS2
2[a,b]Ψk,m,jr

=

∞∑
k=1

k∑
l=1

βkl,m,jr(z)⟨M∗m,jr(z),L
ad
m,jrel,m,jr(z)⟩FS2

2[a,b]Ψk,m,jr



A. K. Albzeirat, et al., J. Nonlinear Sci. Appl., 10 (2017), 2423–2439 2429

=

∞∑
k=1

k∑
l=1

βkl,m,jr(z)⟨Lm,jrM
∗
m,jr(z), el,m,jr(z)⟩FS1

2[a,b]Ψk,m,jr

=

∞∑
k=1

k∑
l=1

βkl,m,jr(z)⟨g∗m,jr
(
z,M∗m,jr(z)

)
, el,m,jr(z)⟩FS1

2[a,b]Ψk,m,jr

=

∞∑
k=1

k∑
l=1

βkl,m,jr(z)g
∗
m,jr

(
zl,M∗m,jr(zl)

)
Ψk,m,jr, ∀m = 1, j = 1, 2.

Based on Theorem 3.2, the approximate solution of Mm,jr(z) for N-terms is

M∗Nm,jr(z) =

N∑
k=1

k∑
l=1

βkl,m,jr(z)g
∗
m,jr

(
zl,M∗m,jr(zl)

)
Ψk,m,jr, ∀m = 1, j = 1, 2.

Now, by using Eq. (3.1), the new form of MN
m,jr(z) is as

MN
m,jr(z) =

(
N∑
k=1

k∑
l=1

βkl,m,jr(z)gm,jr
(
zl,Mm,jr(zl)

)
Ψk,m,jr

)
+ zF, ∀m = 1, j = 1, 2.

The third procedure is simplified in the following algorithm.

Algorithm 3.3. Procedure for approximating the solution of Eq. (3.1).
Input: In this part, we consider the interval [a,b] = [0, 1], the integer N, the kernel kz(y) and the differen-
tial operator Ly,1,jr from the definition for left Caputo fractional derivative. We also consider the function
g∗1,jr(z,M

∗
1,1r(z)) = g1,jr(z,M∗1,1r(z) + zF,jrd), the integer m, with fuzzy initial condition zF = (a,b, c) and

the value of α.
First, we approximate the solution of M1,jr(z).

Step 1 : Let k ∈ [0, 1] and y ∈ [0, 1]. Then,

Kz(y) =

{
(1 + zy+ zy2

2 − y3

6 ), z 6 y,

(1 + zy+ yz2

2 − z3

6 ), otherwise.

Step 2 : For the values j = 1, 2, follow Steps 3-6.
Step 3 : For k = 1, 2, ...,N, j = 1, 2, d = 1, 2, ...,m, set the values of z, r and ψk,1,jrd(z) as follows:

1. Set z0 = 0.
2. Set zk = zk−1 +

1
N .

3. Set r0 = 0.
4. Set rd = rd−1 +

d
m ,

5. ∙ if j = 1, set zF,jrd = a+ rd(b− a),

∙ if j = 2, set zF,jrd = c− rd(c− b).
6. Set ψk,1,jrd(z) = Ly,1,jrKz(y) |y=zk .

So, we get the following output
{ψk,1,jrd(z)}

(N,1,2rd)
(k,1,jrd)

.

Step 4 : For k = 2, ...,N, s = 1, 2, ..., k, set the values of β, R and d as follows.

1. Set β11 = 1
‖ψ1,1,jrd‖

.
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2. Set βkk = 1
‖Rk,1,jrd‖

.

3. Set βkp,1,jrd = −1
‖Rk,1,jr‖(

∑k−1
s=p dks,1,jrβsp,1,jrd)), p < k.

4. Set Rk,1,jrd =
√
‖ ψ1,1,jr ‖2 −

∑k−1
s=p (dks,1,jrd)

2.

5. Then, dks,1,jr = ψk,1,jr,ψk,1,jrd .

Then, we get the following output
βks,1,jrd .

Step 5 : For k = 1, 2, ...,N, we have

ψk,1,jrd(z) =

k∑
s=1

βksψs,1,jrd(z).

Step 6 : For k = 1, 2, ...,N, we set the values for M as follows.

1. Set M∗1,jrd(z0) = 0.

2. Set M∗1,jr(z) =
∑N
k=1
∑k
s=1 βks,1,jr(z)g1,jr(z,M∗1,1r(zs) + zF,jrd)ψk,1,jr.

3. Set M1,jrd(z) =M
∗
1,jrd(z) + (zF,jrd).

Output: Then, we get the following output.

M1,jrd(z) = [M1,1rd(z) +M1,2rd(z)].

4. Numerical examples

In this section, we provide two numerical examples.

Example 4.1. Consider the following fuzzy differential equation of order α = 1.

Dαc,a,zM(z) = 2z2 + 3z−M(z),M(z0) = (1, 2, 3), 0 6 z 6 1.

By applying fuzzy set theory, we obtain

Dαc,a,zM1,1r(z) = 2z2 + 3z−M1,1r(z), M1,1r(z0) = 1 + r, r ∈ [0, 1],

Dαc,a,zM1,1r(z) = 2z2 + 3z−M1,2r(z), M1,2r(z0) = 3 − r, r ∈ [0, 1].

To solve the equation, we used the proposed algorithm in previous section and we let N = 127 and
we consider the interval [0, 1]. Then, the approximate results obtained are presented in Tables 1-5. The
graphical representation of the solutions can be seen in Figures 1-10. In those figures, the results obtained
using our method are also compared with the exact solutions within the same interval and having the
same fuzzy initial value.

For r = 0, the exact solutions are

M1,1r(z) = 1 − 2z+ z2,M1,2r(z) = e
−z(2 + ez − zez + 2ezz2).

For r = 0.5, the exact solutions are

M1,1r(z) = 2e−z
(
0.25 + 0.5ez − 0.5zez + z2ez

)
, M1,2r(z) = 2e−z

(
0.75 + 0.5ez − 0.5zez + z2ez

)
.

For r = 1, the exact solutions are

M1,1r(z) =M1,2r(z) = e
−z
(
1 + zez − 2z2ez

)
.
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Table 1: Numerical solution for Example 4.1.

z M1,1r(z) M̂1,1r(z) Errors
r = 0 r = 0

0.0 1.00 1.00 0.00
0.1 0.92000 0.920001122 1.122011299 ×10−6

0.2 0.88000 0.8800022993 2.299334099 ×10−6

0.3 0.88000 0.8800034787 3.478728604 ×10−6

0.4 0.92000 0.9200046429 4.642932368 ×10−6

0.5 1.00000 1.000005923 4.642932368 ×10−6

0.6 1.12000 1.120007268 7.26794065 ×10−6

0.7 1.28000 1.280008596 8.595896458 ×10−6

0.8 1.48000 1.480010076 1.007556054 ×10−5

0.9 1.72000 1.720011705 1.007556054 ×10−5

1.0 2.00000 2.000013357 1.335720074 ×10−5

Figure 1: The exact and approximate solutions of M1,1r(z), when r = 0 for Example 4.1.

Figure 2: The errors in solutions for M1,1r(z), when r = 0 for Example 4.1.
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Table 2: Numerical solutions of M1,2r(z) when r = 0 for Example 4.1.

z M1,2r(z) M̂1,2r(z) Errors
r = 0 r = 0

0.0 3.00 3.00 0.00
0.1 2.729674836071919 2.729674122 7.143396936 ×10−7

0.2 2.5174615061559633 2.517460432 1.073837352 ×10−6

0.3 2.361636441363436 2.361635354 1.087723213 ×10−6

0.4 2.2606400920712786 2.260639284 8.082239611 ×10−6

0.5 2.213061319425267 2.213061076 2.436512458 ×10−6

0.6 2.2176232721880527 2.217623855 5.824507046 ×10−6

0.7 2.273170607582819 2.273172208 1.600046236 ×10−6

0.8 2.378657928234443 2.378660805 2.876281287 ×10−6

0.9 2.5331393194811986 2.533143726 4.406986805 ×10−6

1.0 2.7357588823428842 2.735764967 6.084919464 ×10−6

Figure 3: The exact and approximate solutions for M1,2r(z) when r = 0 for Example 4.1.

Figure 4: The errors in solutions for M1,2r(z) when r = 0 for Example 4.1.
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Table 3: Numerical solutions of M1,2r(z) when r = 0 for Example 4.1.

z M1,1r(z) M̂1,1r(z) Errors
r = 0.5 r = 0.5

0.0 1.50 1.50 0.00
0.1 1.3724187090179798 1.372419372 6.629235505 ×10−7

0.2 1.2893653765389907 1.289366833 1.456041236 ×10−6

0.3 1.250409110340859 1.250411447 2.337115649 ×10−6

0.4 1.2551600230178197 1.255163303 3.280143285 ×10−6

0.5 1.3032653298563168 1.303269711 4.381550751 ×10−6

0.6 1.3944058180470131 1.394411415 5.596568163 ×10−6

0.7 1.7046644820586112 1.528299499 6.846933903 ×10−6

0.8 1.9232848298702998 1.704672758 8.275740723 ×10−6

0.9 1.9232848298702998 1.92329471 9.880615046 ×10−6

1.0 2.183939720585721 2.18395126 1.153913042 ×10−5

Figure 5: The exact and approximate of M1,1r(z) when r = 0.5 for Example 4.1.

Figure 6: The errors in solutions for M1,1r(z) when r = 0.5 for Example 4.1.
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Table 4: Numerical solutions of M1,2r(z) when r = 0 for Example 4.1.

z Exact solution M1,2r(z) M̂1,2r(z) Errors
r = 0.5 r = 0.5

0.0 2. 50 2. 50 0.00
0.1 2.2772561270539393 2.277255872 2.5525194585 ×10−7

0.2 2.1080961296169725 2.108095899 2.305444893 ×10−6

0.3 1.991227331022577 1.991227385 5.388974111 ×10−6

0.4 1.925480069053459 1.925480624 5.545651214 ×10−6

0.5 1.9097959895689502 1.909797288 1.298082753 ×10−6

0.6 1.9432174541410394 1.943219708 2.253823192 ×10−6

0.7 2.0248779556871144 2.024881305 3.349008792 ×10−6

0.8 2.1539934461758325 2.153998122 4.6761011 ×10−6

0.9 2.329854489610899 2.329860721 6.231529552 ×10−6

1.0 2.5518191617571633 2.551827065 7.902989782 ×10−5

Figure 7: The exact and approximate solutions of M1,2r(z) when r = 0.5 for Example 4.1.

Figure 8: The errors in solutions for M1,2r(z) when r = 0.5 for Example 4.1.
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Table 5: Numerical solutions of M1,1r(z) and M1,2r(z) for different values of r and α = 0.8.

z M1,1r(z) =M1,2r(z), r = 1.0 M̂1,1r(z) =M1,2r(z), r = 1.0 Errors
r = 1.0 r = 1.0

0.0 2.00 2.00 0.00
0.1 1.8248374180359594 1.824837622 2.038358025 ×10−7

0.2 1.6987307530779816 1.698731366 6.127483738 ×10−7

0.3 1.620818220681718 1.620819416 1.195502695 ×10−6

0.4 1.5903200460356395 1.590321963 1.917354203 ×10−6

0.5 1.6065306597126334 1.6065335 2.839816752 ×10−6

0.6 1.6688116360940264 1.668815561 3.925195678 ×10−6

0.7 1.7765853037914097 1.776590402 5.097971347 ×10−6

0.8 1.929328964117222 1.92933544 6.475920912 ×10−6

0.9 2.1265696597405994 2.126577716 8.05607230 ×10−6

1.0 2.3678794411714423 2.367889162 9.72106010 ×10−5

Figure 9: The exact and approximate solutions of M1,1r(z) =M1,2r(z) when r = 1.0 for Example 4.1.

Figure 10: The errors in solutions for M1,1r(z) =M1,2r(z) when r = 1.0 for Example 4.1.
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Example 4.2. Consider the following fuzzy differential equation of order α = 0.8.

Dαc,a,zM(z) = 2z2 + 3z−M(z), M(z0) = (2, 3, 4), 0 6 z 6 1.

By applying fuzzy set theory, we obtain

Dαc,aM1,1r(z) = 2z2 + 3z−M1,1r(z), M1,1r(z0) = 2 + r, r ∈ [0, 1],

Dαc,aM1,1r(z) = 2z2 + 3z−M1,2r(z), M1,2r(z0) = 4 − r, r ∈ [0, 1].

Table 6 shows the results for Example 4.2 at α = 0.8 with the values of r set to be r = 0, r = 0.5 and r = 1.
The illustration of the results can be referred in Figures 11, 12, and 13. It is clear that the solutions create
a form of interval which indicates that the solutions are fuzzy numbers.

Table 6: Numerical solutions of M1,1r(z) and M1,2r(z) for different values of r and α = 0.8.

z M1,1r(z) M1,2r(z) M1,1r(z) M1,2r(z) M1,r(z) =M1,2r(z)
r = 0 r = 0 r = .5 r = .5 r = 1

0.0 2.00 4.00 2.5 3.5 3.0
0.1 1.736841535 3.444681614 2.163801555 3.017721594 2.590761574
0.2 1.609843308 3.122571631 1.988025389 2.74438955 2.36620747
0.3 1.561542031 2.922538361 1.901791114 2.582289278 2.242040196
0.4 1.573674645 2.810071823 1.88277394 2.500972529 2.191873234
0.5 1.637606954 2.768810968 1.920407958 2.486009965 2.203208961
0.6 1.748321 2.789137328 2.008525082 2.528933246 2.268729164
0.7 1.902594453 2.864761074 2.143136108 2.624219419 2.383677764
0.8 2.09823305 2.991302225 2.321500344 2.768034932 2.544767638
0.9 2.33369741 3.165591107 2.541670834 2.957617683 2.749644258
1.0 2.608035252 3.385443423 2.802387295 3.19109138 2.996739338

Figure 11: Approximate solutions of M1,1r(z) and M1,2r(z) when r = 0 for Example 4.2.
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Figure 12: Approximate solutions of M1,1r(z) and M1,2r(z) when r = 0.5 for Example 4.2.

Figure 13: Approximate solutions of M1,1r(z) and M1,2r(z) when r = 1.0 for Example 4.2.

5. Conclusion

In this paper, we have studied the solutions of fuzzy initial value problem for differential equations
of integer and fractional order with Caputo derivatives. This has been done by modifying the repro-
ducing kernel Hilbert space. N-term approximation solution is obtained from the method, and it can be
further applied widely and more efficiently compared to traditional methods to solve fuzzy initial value
problems for differential equations of integer order. This improved method contributes in many ways,
such as solving fuzzy system effectively, reduce time for solving problems related to real phenomena and
engineering applications.

References

[1] O. Abu Arqub, An iterative method for solving fourth-order boundary value problems of mixed type integro-differential
equations, J. Comput. Anal. Appl., 8 (2015), 857–874. 1

[2] O. Abu Arqub, M. Al-Smadi, S. Momani, Application of reproducing kernel method for solving nonlinear Fredholm-
Volterra integrodifferential equations, Abstr. Appl. Anal., 2012 (2012), 16 pages. 1

[3] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with
uncertainty, Nonlinear Anal., 72 (2010), 2859–2862 1

[4] M. Z. Ahmad, M. K. Hasan, S. Abbasbandy, Solving fuzzy fractional differential equations using Zadeh’s extension
principle, Scientific World J., 2013 (2013), 11 pages. 1, 2.4



A. K. Albzeirat, et al., J. Nonlinear Sci. Appl., 10 (2017), 2423–2439 2438

[5] A. Ahmadian, S. Salahshour, C. S. Chan, A Runge–Kutta method with reduced number of function evaluations to solve
hybrid fuzzy differential equations, Soft Comput., 19 (2015), 1051–1062. 1

[6] A. Ahmadian, N. Senu, F. Larki, S. Salahshour, A legendre approximation for solving a fuzzy fractional drug trans-
duction model into the bloodstream, Recent Advances on Soft Computing and Data Mining, Springer International
Publishing, 2014 (2014), 25–34. 1

[7] A. Ahmadian, M. Suleiman, S. Salahshour, D. Baleanu, A Jacobi operational matrix for solving a fuzzy linear fractional
differential equation, Adv. Difference Equ., 2013 (2013), 29 pages.

[8] T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo
derivative, J. Intell. Fuzzy Systems, 26 (2014), 1481–1490. 1

[9] A. K. Alomari, F. Awawdeh, N. Tahat, F. Bani Ahmad, W. Shatanawi, Multiple solutions for fractional differential
equations: analytic approach, Appl. Math. Comput., 219 (2013), 8893–8903. 1
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