Application of fixed point theory for approximating of a positive-additive functional equation in intuitionistic random C^{*}-algebras

Javad Vahidi
Department of Mathematics, Iran University of Science and Technology, Tehran, Iran.

Communicated by C. Park

Abstract

We apply a fixed point theorem for approximating of a positive-additive functional equation in intuitionistic random C^{*} algebras. ©2017 All rights reserved.

Keywords: Approximation, fixed point theory, intuitionistic, random normed spaces, C^{*}-algebra. 2010 MSC: 47H10.

1. Introduction and preliminaries

The concept of distribution function and survival functions was introduced by Abdu et al. [1] and Saadati et al. [18]. Using these functions the authors defined intuitionistic random C^{*}-algebras and gave some properties and example of these spaces also for more results on stability please see $[4,5,9,10,12-$ 15, 17, 19, 20].

A metric d on non empty set Ω with rage $[0, \infty]$ is called a generalized metric.
Theorem 1.1 ([6]). Assume that $\mathrm{J}: \Omega \rightarrow \Omega$ be a contractive mapping with Lipschitz constant $\mathrm{L}<1$ on generalized metric space (Ω, d). Then for $\mathrm{x} \in \Omega$, either $\mathrm{d}\left(\mathrm{J}^{\mathrm{n}} \mathrm{x}, \mathrm{J}^{\mathrm{n}+1} \mathrm{x}\right)=\infty$ for all nonnegative integers n or there exists a positive integer n_{0} such that
(1) $\mathrm{d}\left(\mathrm{J}^{\mathrm{n}} \mathrm{x}, \mathrm{J}^{\mathrm{n}+1} \mathrm{x}\right)<\infty, \quad \forall \mathrm{n} \geqslant \mathrm{n}_{0}$;
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in the set $\Gamma=\left\{\mathrm{y} \in \Omega \mid \mathrm{d}\left(\mathrm{J}^{\mathrm{n}_{0}} \mathrm{x}, \mathrm{y}\right)<\infty\right\}$;
(4) $\mathrm{d}\left(\mathrm{y}, \mathrm{y}^{*}\right) \leqslant \frac{1}{1-\mathrm{L}} \mathrm{d}(\mathrm{y}, \mathrm{Jy})$ for all $\mathrm{y} \in \Gamma$.

Definition 1.2 ([7]). Let $\left(A, \mathcal{P}_{\mu, v}, \mathcal{T}, \mathcal{T}^{\prime}\right)$ be an intuitionistic random Banach algebra C^{*}-algebra and $x \in A$ a self-adjoint element, i.e., $x^{*}=x$. Then x is said to be positive if it is of the form $y y^{*}$ for some $y \in A$.

The set of positive elements of A is denoted by A^{+}.

[^0]Note that A^{+}is a closed convex cone (see [7]).
It is well-known that for a positive element x and a positive integer n there exists a unique positive element $y \in A^{+}$such that $x=y^{n}$. We denote y by $x^{\frac{1}{n}}$ (see [8]).

In this paper, we introduce the following functional equation

$$
\begin{equation*}
T\left(\left(x^{\frac{1}{m}}+y^{\frac{1}{m}}\right)^{m}\right)=\left(T(x)^{\frac{1}{m}}+T(y)^{\frac{1}{m}}\right)^{m} \tag{1.1}
\end{equation*}
$$

for all $x, y \in A^{+}$and a fixed integer m greater than 1 , which is called a positive-additive functional equation. Each solution of the positive-additive functional equation is called a positive-additive mapping, in which the function $f(x)=c x, \quad c \geqslant 0$, in the set of non-negative real numbers is a solution of the functional equation (1.1).

Throughout this paper, let A^{+}and B^{+}be the sets of positive elements in intuitionistic random $C^{*}-$ algebras (A, N) and (B, N), respectively. Assume that m is a fixed integer greater than 1.

2. Stability of the positive-additive functional equation (1.1): fixed point approach

Lemma 2.1 ([16]). Let $\mathrm{T}: \mathrm{A}^{+} \rightarrow \mathrm{B}^{+}$be a positive-additive mapping satisfying (1.1). Then T satisfies

$$
T\left(2^{m n} x\right)=2^{m n} T(x),
$$

for all $x \in A^{+}$and all $n \in \mathbb{Z}$.
Using the fixed point method, we prove the Hyers-Ulam stability of the positive-additive functional equation (1.1) in intuitionistic random C^{*}-algebras.

Note that the fundamental ideas in the proofs of the main results in this section are contained in $[2,3]$.
Theorem 2.2. Let $\varphi: A^{+} \times A^{+} \times(0, \infty) \rightarrow L^{*}$ be a function such that there exists an $E<1$ with

$$
\begin{equation*}
\varphi(x, y, t) \geqslant_{L} \varphi\left(2^{m} x, 2^{m} y, \frac{2^{m} t}{E}\right) \tag{2.1}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}^{+}$and $\mathrm{t}>0$. Let $\mathrm{f}: \mathrm{A}^{+} \rightarrow \mathrm{B}^{+}$be a mapping satisfying

$$
\begin{equation*}
\mathcal{P}_{\mu, \nu}\left(f\left(\left(x^{\frac{1}{m}}+y^{\frac{1}{m}}\right)^{m}\right)-\left(f(x)^{\frac{1}{m}}+f(y)^{\frac{1}{m}}\right)^{m}, t\right) \geqslant_{L} \varphi(x, y, t) \tag{2.2}
\end{equation*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}^{+}$and $\mathrm{t}>0$. Then there exists a unique positive-additive mapping $\mathrm{T}: \mathrm{A}^{+} \rightarrow \mathrm{A}^{+}$satisfying (1.1) and

$$
\begin{equation*}
\mathcal{P}_{\mu, v}(f(x)-T(x), t) \geqslant_{L} \varphi\left(x, x, \frac{\left(2^{m}-2^{m} L\right) t}{E}\right) \tag{2.3}
\end{equation*}
$$

for all $x \in A^{+}$and $\mathrm{t}>0$.
Proof. Letting $\mathrm{y}=\mathrm{x}$ in (2.2), we get

$$
\begin{equation*}
\mathcal{P}_{\mu, v}\left(f\left(2^{m} x\right)-2^{m} f(x), t\right) \geqslant_{L} \varphi(x, x, t) \tag{2.4}
\end{equation*}
$$

for all $x \in A^{+}$and $t>0$.
Consider the set

$$
X:=\left\{g: A^{+} \rightarrow B^{+}\right\}
$$

and introduce the generalized metric on X :

$$
\mathrm{d}(\mathrm{~g}, \mathrm{~h})=\inf \left\{\mu \in \mathbb{R}_{+}: \mathcal{P}_{\mu, v}(\mathrm{~g}(\mathrm{x})-\mathrm{h}(\mathrm{x}), \mathrm{t}) \geqslant_{\mathrm{L}} \varphi\left(\mathrm{x}, \mathrm{x}, \frac{\mathrm{t}}{\mu}\right), \quad \forall x \in A^{+}, \quad \mathrm{t}>0\right\}
$$

where, as usual, $\inf \phi=+\infty$. It is easy to show that (X, d) is complete (see [11]).
Now, we consider the linear mapping $J: X \rightarrow X$ such that

$$
\mathrm{Jg}(\mathrm{x}):=2^{\mathrm{m}} \mathrm{~g}\left(\frac{\mathrm{x}}{2^{\mathrm{m}}}\right)
$$

for all $x \in A^{+}$.
Let $g, h \in X$ be given such that $d(g, h)=\varepsilon$. Then

$$
\mathcal{P}_{\mu, v}(g(x)-h(x), t) \geqslant_{L} \varphi(x, x, t),
$$

for all $x \in A^{+}$and $t>0$. Hence

$$
\mathcal{P}_{\mu, v}(\operatorname{Jg}(x)-\operatorname{Jh}(x), t)=\mathcal{P}_{\mu, v}\left(2^{m} g\left(\frac{x}{2^{m}}\right)-2^{m} h\left(\frac{x}{2^{m}}\right), t\right) \geqslant_{L} \varphi\left(x, x, \frac{t}{E}\right),
$$

for all $x \in A^{+}$and $t>0$. So $d(g, h)=\varepsilon$ implies that $d(J g, J h) \leqslant E \varepsilon$. This means that

$$
d(J g, J h) \leqslant E d(g, h),
$$

for all $\mathrm{g}, \mathrm{h} \in \mathrm{X}$.
It follows from (2.4) that

$$
\mathcal{P}_{\mu, v}\left(f(x)-2^{m} f\left(\frac{x}{2^{m}}\right), t\right) \geqslant_{L} \varphi\left(x, x, \frac{2^{m} t}{E}\right),
$$

for all $x \in A^{+}$and $t>0$. So $d(f, J f) \leqslant \frac{L}{2^{m}}$.
By Theorem 1.1, there exists a mapping $\mathrm{T}: \mathrm{A}^{+} \rightarrow \mathrm{B}^{+}$satisfying the following:
(1) T is a fixed point of J, i.e.,

$$
\begin{equation*}
\mathrm{T}\left(\frac{\mathrm{x}}{2^{\mathrm{m}}}\right)=\frac{1}{2^{\mathrm{m}}} \mathrm{~T}(\mathrm{x}), \tag{2.5}
\end{equation*}
$$

for all $x \in A^{+}$. The mapping T is a unique fixed point of J in the set

$$
M=\{g \in X: d(f, g)<\infty\}
$$

This implies that T is a unique mapping satisfying (2.5) such that there exists a $\mu \in(0, \infty)$ satisfying

$$
\mathcal{P}_{\mu, \nu}(f(x)-T(x), t) \geqslant_{L} \varphi\left(x, x, \frac{t}{\mu}\right),
$$

for all $x \in A^{+}$and $t>0$;
(2) $d\left(J^{n} f, T\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\lim _{n \rightarrow \infty} 2^{m n} f\left(\frac{x}{2^{m n}}\right)=T(x),
$$

for all $x \in A^{+}$;
(3) $d(f, T) \leqslant \frac{1}{1-E} d(f, J f)$, which implies the inequality

$$
d(f, T) \leqslant \frac{E}{2^{m}-2^{m} E}
$$

This implies that the inequality (2.3) holds.

By (2.1) and (2.2),

$$
\begin{aligned}
& \mathcal{P}_{\mu, v}\left(f\left(\frac{\left(x^{\frac{1}{m}}+y^{\frac{1}{m}}\right)^{m}}{2^{m n}}\right)-\left(\left(2^{m n} f\left(\frac{x}{2^{m n}}\right)\right)^{\frac{1}{m}}+\left(2^{m n} f\left(\frac{y}{2^{m n}}\right)\right)^{\frac{1}{m}}\right)^{m}, \frac{t}{2^{m n}}\right) \\
& \quad \geqslant_{L} \varphi\left(\frac{x}{2^{m n}}, \frac{y}{2^{m n}}, \frac{t}{2^{m n}}\right) \\
& \quad \geqslant_{L} \varphi\left(x, y, \frac{t}{L^{m n}}\right)
\end{aligned}
$$

for all $x, y \in A^{+}$, all $n \in \mathbb{N}$ and $t>0$. So

$$
\mathcal{P}_{\mu, v}\left(\mathrm{~T}\left(\left(x^{\frac{1}{m}}+y^{\frac{1}{m}}\right)^{m}\right)-\left(T(x)^{\frac{1}{m}}+T(y)^{\frac{1}{m}}\right)^{m}, t\right)=1_{\mathcal{L}}
$$

for all $x, y \in A^{+}$and $t>0$. Thus the mapping $T: A^{+} \rightarrow B^{+}$is positive-additive, as desired.
Corollary 2.3. Let $\mathrm{p}>1$ and θ_{1}, θ_{2} be non-negative real numbers, and let $\mathrm{f}: \mathrm{A}^{+} \rightarrow \mathrm{B}^{+}$be a mapping such that

$$
\begin{align*}
& \mathcal{P}_{\mu, v}\left(f\left(\left(x^{\frac{1}{m}}+y^{\frac{1}{m}}\right)^{m}\right)-\left(f(x)^{\frac{1}{m}}+f(y)^{\frac{1}{m}}\right)^{m}, t\right) \\
& \quad \geqslant_{L}\left(\frac{t}{t+\theta_{1}\left(\|x\|^{p}+\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}} \frac{\theta_{1}\left(\|x\|^{p}+\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}}{t+\theta_{1}\left(\|x\|^{p}+\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}}\right), \tag{2.6}
\end{align*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}^{+}$and $\mathrm{t}>0$. Then there exists a unique positive-additive mapping $\mathrm{T}: \mathrm{A}^{+} \rightarrow \mathrm{B}^{+}$satisfying (1.1) and

$$
\mathcal{P}_{\mu, \nu}(f(x)-T(x), t) \geqslant_{L}\left(\frac{t}{t+\frac{2 \theta_{1}+\theta_{2}}{2^{m p}-2^{m}}}\|x\|^{p}, \frac{\frac{2 \theta_{1}+\theta_{2}}{2^{2 p}-2^{m}}}{t+\frac{2 \theta_{1}+\theta_{2}}{2^{m p}-2^{m}}}\|x\|^{p}\right)
$$

for all $x \in A^{+}$and $\mathrm{t}>0$.
Proof. The proof follows from Theorem 2.2 by taking

$$
\varphi(x, y, t)=\left(\frac{t}{t+\theta_{1}\left(\|x\|^{p}+\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}}, \frac{\theta_{1}\left(\|x\|^{p}+\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}}{t+\theta_{1}\left(\|x\|^{p}+\|y\|^{p}\right)+\theta_{2} \cdot\|x\|^{\frac{p}{2}} \cdot\|y\|^{\frac{p}{2}}}\right),
$$

for all $x, y \in A^{+}$and $t>0$. Then we can choose $E=2^{\mathfrak{m}-m p}$ and we get the desired result.
Theorem 2.4. Let $\left.\varphi: A^{+} \times A^{+} \times(0, \infty)\right] \rightarrow L^{*}$ be a function such that there exists an $E<1$ with

$$
\varphi(x, y, t) \geqslant_{L} \varphi\left(\frac{x}{2^{m}}, \frac{y}{2^{m}}, \frac{t}{2^{m} E}\right),
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}^{+}$and $\mathrm{t}>0$. Let $\mathrm{f}: \mathrm{A}^{+} \rightarrow \mathrm{B}^{+}$be a mapping satisfying (2.2). Then there exists a unique positive-additive mapping $\mathrm{T}: \mathrm{A}^{+} \rightarrow \mathrm{A}^{+}$satisfying (1.1) and

$$
\mathcal{P}_{\mu, v}(f(x)-T(x), t) \geqslant_{L} \varphi\left(x, x,\left(2^{m}-2^{m} E\right) t\right),
$$

for all $x \in A^{+}$and $\mathrm{t}>0$.
Proof. Let (X, d) be the generalized metric space defined in the proof of Theorem 2.2.
Consider the linear mapping $\mathrm{J}: \mathrm{X} \rightarrow \mathrm{X}$ such that

$$
\mathrm{Jg}(\mathrm{x}):=\frac{1}{2^{\mathrm{m}}} \mathrm{~g}\left(2^{\mathrm{m}} x\right),
$$

for all $x \in A^{+}$.
It follows from (2.4) that

$$
\mathcal{P}_{\mu, \nu}\left(f(x)-\frac{1}{2^{m}} f\left(2^{m} x\right), t\right) \geqslant_{L} \varphi\left(x, x, 2^{m} t\right),
$$

for all $x \in A^{+}$and $t>0$. So $d(f, J f) \leqslant \frac{1}{2^{m}}$.
The rest of the proof is similar to the proof of Theorem 2.2.
Corollary 2.5. Let $0<p<1$ and θ_{1}, θ_{2} be non-negative real numbers, and let $\mathrm{f}: \mathrm{A}^{+} \rightarrow \mathrm{B}^{+}$be a mapping satisfying (2.6). Then there exists a unique positive-additive mapping $\mathrm{T}: \mathrm{A}^{+} \rightarrow \mathrm{B}^{+}$satisfying (1.1) and

$$
\mathcal{P}_{\mu, \nu}(f(x)-T(x), t) \geqslant_{L}\left(\frac{t}{t+\frac{2 \theta_{1}+\theta_{2}}{2^{m}-2^{m p}}}\|x\|^{p}, \frac{\frac{2 \theta_{1}+\theta_{2}}{2^{m}-2^{m p}}}{t+\frac{2 \theta_{1}+\theta_{2}}{2^{m}-2 m^{m p}}}\|x\|^{p}\right),
$$

for all $x \in A^{+}$and $\mathrm{t}>0$.
Proof. The proof follows from Theorem 2.4 by taking

$$
\varphi(x, y, t)=\left(\frac{t}{t+\frac{2 \theta_{1}+\theta_{2}}{2^{m}-2^{m p}}}\|x\|^{p}, \frac{\frac{2 \theta_{1}+\theta_{2}}{2^{m}-2^{m p}}}{t+\frac{2 \theta_{1}+\theta_{2}}{2^{m}-2^{m p}}}\|x\|^{p}\right),
$$

for all $x, y \in A^{+}$and $t>0$. Then we can choose $E=2^{m p-m}$ and we get the desired result.

References

[1] A. A. N. Abdou, Y. J. Cho, R. Saadati, Distribution and survival functions with applications in intuitionistic random Lie C*-algebras, J. Comput. Anal. Appl., 21 (2016), 345-354.1
[2] L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004), 43-52. 2
[3] L. Cădariu, V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Appl., 2008 (2008), 15 pages. 2
[4] Y. J. Cho, Th. M. Rassias, R. Saadati, Stability of functional equations in random normed spaces, Springer Optimization and Its Applications, Springer, New York, (2013). 1
[5] Y. J. Cho, R. Saadati, Lattictic non-Archimedean random stability of ACQ functional equation, Adv. Difference Equ., 2011 (2011), 12 pages. 1
[6] J. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309. 1.1
[7] J. Dixmier, C*-Algebras, North-Holland Publ. Com., Amsterdam, New York and Oxford, (1977). 1.2, 1
[8] K. R. Goodearl, Notes on Real and Complex C*-Algebras, Shiva Math. Series IV, Shiva Publ. Limited, England, (1982). 1
[9] J. I. Kang, R. Saadati, Approximation of homomorphisms and derivations on non-Archimedean random Lie C*-algebras via fixed point method, J. Inequal. Appl., 2012 (2012), 10 pages. 1
[10] S. J. Lee, R. Saadati, On stability of functional inequalities at random lattice ϕ-normed spaces, J. Comput. Anal. Appl., 15 (2013), 1403-1412. 1
[11] D. Miheț, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572. 2
[12] D. Miheț, R. Saadati, On the stability of the additive Cauchy functional equation in random normed spaces, Appl. Math. Lett., 24 (2011), 2005-2009.1
[13] D. Miheţ, R. Saadati, S. M. Vaezpour, The stability of the quartic functional equation in random normed spaces, Acta Appl. Math., 110 (2010), 797-803.
[14] M. Mohamadi, Y. J. Cho, C. Park, P. Vetro, R. Saadati, Random stability on an additive-quadratic-quartic functional equation, J. Inequal. Appl., 2010 (2010), 18 pages.
[15] C. Park, M. Eshaghi Gordji, R. Saadati, Random homomorphisms and random derivations in random normed algebras via fixed point method, J. Inequal. Appl., 2012 (2012), 13 pages. 1
[16] C. Park, H. A. Kenary, S. Og Kim, Positive-additive functional equations in C*-algebras, Fixed Point Theory, 13 (2012), 613-622.2.1
[17] J. M. Rassias, R. Saadati, Gh. Sadeghi, J. Vahidi, On nonlinear stability in various random normed spaces, J. Inequal. Appl., 2011 (2011), 17 pages. 1
[18] R. Saadati, Th. M. Rassias, Y. J. Cho, Z. H. Wang, Distribution and survival functions and application in intuitionistic random approximation, Appl. Math. Inf. Sci., 9 (2015), 2535-2540. 1
[19] R. Saadati, S. M. Vaezpour, Y. J. Cho, A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces" , J. Inequal. Appl., 2009 (2009), 6 pages. 1
[20] J. Vahidi, C. Park, R. Saadati, A functional equation related to inner product spaces in non-Archimedean \mathcal{L}-random normed spaces, J. Inequal. Appl., 2012 (2012), 16 pages. 1

[^0]: Email address: jvahidi@iust.ac.ir (Javad Vahidi)
 doi:10.22436/jnsa.010.05.11
 Received 2016-05-18

