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Abstract
The aim of this paper is to extend the result of [M. Jleli, B. Samet, J. Inequal. Appl., 2014 (2014), 8 pages] by applying

a simple condition on the function Θ. With this condition, we also prove some fixed point theorems for Suzuki-Berinde type
Θ-contractions which generalize various results of literature. Finally, we give one example to illustrate the main results in this
paper. c©2017 All rights reserved.
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1. Introduction and preliminaries

Banach’s contraction principle [4] is one of the pivotal results of nonlinear analysis and its applications,
which establishes that, if F is a mapping from a complete metric space (X,d) into itself and there exists a
constant k ∈ [0, 1) such that

d(Fx, Fy) 6 kd(x,y),

for all x,y ∈ X, then F has a unique fixed point in X.
Due to its importance and simplicity, many authors have obtained a lot of interesting extensions and

generalizations of Banach’s contraction principle (see [1–3, 6, 10, 12] and references therein).
Especially, in 1962, Edelstein [7] established the following version of Banach’s contraction principle for

a compact metric space.

Theorem 1.1. Let (X,d) be a compact metric space and F : X→ X be a self-mapping. Assume that

d(Fx, Fy) < d(x,y)

holds for all x,y ∈ X with x 6= y. Then F has a unique fixed point in X.
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In 2008, Suzuki [11] proved generalized versions of Edelstein’s results in a compact metric space as
follows:

Theorem 1.2. Let (X,d) be a compact metric space and F : X→ X be a self-mapping. Assume that

1
2
d(x, Fx) < d(x,y) =⇒ d(Fx, Fy) < d(x,y)

holds for all x,y ∈ X with x 6= y. Then F has a unique fixed point in X.

On the other hand, Berinde [5] gave the following well-known result as a generalization of Banach’s
contraction principle:

Theorem 1.3. Let (X,d) be a complete metric space and F : X → X be a self-mapping. If there exist a constant
k ∈ [0, 1) and a constant L > 0 such that

d(Fx, Fy) 6 kd(x,y) + Lmin{d(x, Fx),d(y, Fy),d(x, Fy),d(y, Fx)},

for all x,y ∈ X, then F has a unique fixed point in X.

Recently, Jleli and Samet [9] introduced a new type of contraction which is called the Θ-contraction
and established some new fixed point theorems for such a contraction in the context of generalized metric
spaces.

Definition 1.4.

(1) Let Θ : (0,∞)→ (1,∞) be a function satisfying the following conditions:
(Θ1) Θ is nondecreasing;
(Θ2) for each sequence {αn} ⊆ R+,

lim
n→∞Θ(αn) = 1 ⇐⇒ lim

n→∞αn = 0;

(Θ3) there exist 0 < k < 1 and l ∈ (0,∞] such that limα→0+
Θ(α)−1
αk

= l.
(2) A mapping F : X→ X is called the Θ-contraction if there exists the function Θ satisfying (Θ1)-(Θ3) and

a constant k ∈ (0, 1) such that, for all x,y ∈ X,

d(Fx, Fy) 6= 0 =⇒ Θ(d(Fx, Fy)) 6 [Θ(d(x,y))]k.

Theorem 1.5 ([9]). Let (X,d) be a complete metric space and F : X → X be a Θ-contraction. Then F has a unique
fixed point.

Also, they showed that any Banach contraction is a particular case of Θ-contraction while there exist
Θ-contractions which are not Banach contractions.

To be consistent with Jleli and Samet [9], we denote by Ψ the set of all functions Θ : (0,∞) → (1,∞)
satisfying the above conditions (Θ1)-(Θ3).

In 2015, Hussain et al. [8] modified and extended the above result and proved the following fixed
point theorem for a generalized Θ-contractive condition in the setting of complete metric spaces:

Theorem 1.6. Let (X,d) be a complete metric space and F : X → X be a self-mapping. If there exists a function
Θ ∈ Ω and positive real numbers α,β,γ, δ with 0 6 α+β+ γ+ 2δ < 1 such that

Θ(d(Fx, Fy)) 6 [Θ(d(x,y))]α · [Θ(d(x, Fx))]β · [Θ(d(y, Fy))]γ · [Θ((d(x, Fy) + d(y, Fx))]δ,

for all x,y ∈ X, then F has a unique fixed point.

In this paper, we use the following condition instead of the condition (Θ3) in Definition 1.4.
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(Θ
′
3) Θ is continuous on (0,∞).

We denote by Ω the set of all functions satisfying the conditions (Θ1), (Θ2), and (Θ
′
3).

Example 1.7. Define some functions as follows: for all t > 0,

(1) Θ1(t) = e
√
t;

(2) Θ2(t) = e
√
tet ;

(3) Θ3(t) = e
t;

(4) Θ4(t) = cosh t;
(5) Θ5(t) = 1 + ln(1 + t);
(6) Θ6(t) = e

tet .

Then Θ1, Θ2, Θ3, Θ4, Θ5, Θ6 ∈ Ω.

Example 1.8. Note that the conditions Θ3 and Θ
′
3 are independent of each other. Indeed, for p > 1,

Θ(t) = et
p

satisfies the conditions (Θ1) and (Θ2), but it does not satisfy (Θ3), while it satisfies the condition
(Θ
′
3). Therefore, Ω 6⊆ Ψ. Again, for any p > 1 and m ∈ (0, 1

p), a function Θ(t) = 1 + tm(1 + [t]), where
[t] denotes the integer part of t, satisfies the conditions (Θ1) and (Θ2), but it does not satisfy (Θ

′
3), while

it satisfies the condition (Θ3) for any k ∈ ( 1
p , 1). Therefore, Ψ 6⊆ Ω. Also, if we define Θ(t) = e

√
t, then

Θ ∈ Ψ and Θ ∈ Ω. Therefore, Ψ∩Ω 6= ∅.

2. Main results

In this section, we define the Θ-contraction for a new family of functions Ω and establish some fixed
point theorems in the context of complete metric spaces.

Definition 2.1. Let (X,d) be a metric space and F be a self-mapping on X. We say that F is the Θ-contraction
if there exist Θ ∈ Ω and a constant k ∈ (0, 1) such that

Θ(d(Fx, Fy)) 6 [Θ(d(x,y))]k,

for all x,y ∈ X with Fx 6= Fy.

In view of Example 1.8, it is meaningful to consider the result of Jleli and Samet [9] with the function
Θ ∈ Ω instead of Θ ∈ Ψ.

Theorem 2.2. Let (X,d) be a complete metric space and F : X→ X be the Θ-contraction. Then F has a unique fixed
point z ∈ X and, for any x0 ∈ X, the sequence {Fnx0} converges to the point z.

Proof. Let x0 ∈ X, we define a sequence {xn} by xn+1 = Fnx0 = Fxn for each n ∈N. If there exists n0 ∈N

such that xn0 = xn0+1, then xn0 is a fixed point of F and we have nothing to prove. So, without loss of
generality, we assume that xn 6= xn+1, i.e., Fxn−1 6= Fxn for all n ∈ N. It follows from the assumption
that

1 < Θ(d(xn, xn+1)) = Θ(d(Fxn−1, Fxn)) 6 [Θ(d(xn−1, xn))]k = [Θ(d(Fxn−2, Fxn−1))]
k

6 [Θ(d(xn−2, xn−1))]
k2

...

6 [Θ(d(x0, x1))]
kn ,

(2.1)

for all n ∈N. Since Θ ∈ Ω, by taking the limit as n→∞ in (2.1), we have

lim
n→∞Θ(d(xn, xn+1)) = 1 ⇐⇒ lim

n→∞d(xn, xn+1) = 0. (2.2)
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Now, we claim that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy sequence. Then there
exists ε > 0 and the sequences {p(n)} and {q(n)} of natural numbers such that, for any p(n) > q(n) > n,

d(xp(n), xq(n)) > ε, d(xp(n)−1, xq(n)) < ε, (2.3)

for each n ∈N. So, by the triangle inequality and (2.3), we have

ε 6 d(xp(n), xq(n)) 6 d(xp(n), xp(n)−1) + d(xp(n)−1, xq(n)) < d(xp(n)−1, xp(n)) + ε. (2.4)

By taking the limit as n→∞ in (2.4), we have

lim
n→∞d(xp(n), xq(n)) = ε. (2.5)

From (2.2), we can choose a natural number n0 ∈N such that

d(xp(n), xp(n)+1) <
ε

4
, d(xq(n), xq(n)+1) <

ε

4
, (2.6)

for each n > n0.
Next, we claim that Fxp(n) 6= Fxq(n) for all n > n0, that is,

d(xp(n)+1, xq(n)+1) = d(Fxp(n), Fxq(n)) > 0. (2.7)

Suppose that there exists n > n0 such that d(xp(n)+1, xq(n)+1) = 0. It follows from (2.2), (2.5), and (2.6)
that

ε 6 d(xp(n), xq(n)) 6 d(xp(n), xp(n)+1) + d(xp(n)+1, xq(n)+1) + d(xq(n)+1, xq(n))

<
ε

4
+ 0 +

ε

4
=
ε

2
,

which is a contradiction. Thus the relation (2.7) holds. Then, by the assumption, we have

Θ(d(Fxp(n), Fxq(n))) 6 [Θ(d(xp(n), xq(n)))]
k.

By taking the limit as n→∞ and using (Θ
′
3) and (2.5), it follows that

Θ(ε) 6 [Θ(ε)]k,

which is a contradiction. Thus {xn} is a Cauchy sequence. The completeness of X ensures that there exists
z ∈ X such that xn → z as n→∞.

Finally, the continuity of F yields

d(z, Fz) = lim
n→∞d(xn, Fxn) = lim

n→∞d(xn, xn+1) = d(z, z) = 0.

Hence z is a fixed point of F.
Now, we show the uniqueness of the fixed point z. Suppose that there exists another fixed point u of

F distinct from z, that is,
Fz = z 6= u = Fu.

Then it follows from the assumption that

Θ(d(z,u)) = Θ(d(Fz, Fu)) 6 [Θ(d(z,u))]k,

which is a contradiction since k ∈ (0, 1). Thus z is the unique fixed point of F. This completes the proof.

Note that the family Ω consists of a large class of functions. For example, if we take

Θ(t) = 2 −
2
π

arctan
( 1
ta

)
,

where 0 < a < 1 and t > 0, then Θ ∈ Ω and we can obtain the following result from Theorem 2.2.
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Theorem 2.3. Let (X,d) be a complete metric space and F be a self-mapping on X. If there exist constants a,k ∈
[0, 1) such that

2 −
2
π

arctan
( 1
d(Fx, Fy)a

)
6
[
2 −

2
π

arctan
( 1
d(x,y)a

)]k
,

for all x,y ∈ X with Fx 6= Fy, then F has a unique fixed point z ∈ X and, for all x0 ∈ X, the sequence {Fnx0}

converges to the point z.

3. Fixed point results for the Suzuki-Berinde type Θ-contraction

In the present section, we define the Suzuki-Berinde type Θ-contraction to prove some fixed point
theorems in the context of complete metric spaces.

Definition 3.1. Let (X,d) be a metric space and F be a self-mapping on X. We say that F is the Suzuki-
Berinde type Θ-contraction if there exist Θ ∈ Ω, k ∈ (0, 1) and L > 0 such that, for all x,y ∈ X with
Fx 6= Fy,

1
2
d(x, Fx) < d(x,y) =⇒ Θ(d(Fx, Fy)) 6 [Θ(d(x,y))]k + Lmin{d(x, Fx),d(x, Fy),d(y, Fx)}.

Theorem 3.2. Let (X,d) be a complete metric space and F : X→ X be a self-mapping satisfying the Suzuki-Berinde
type Θ-contraction. Then F has a unique fixed point z ∈ X and, for any x0 ∈ X, the sequence {Fnx0} converges to
the point z.

Proof. For any x0 ∈ X, we define the sequence {xn} by xn+1 = Fnx0 = Fxn for each n ∈ N. If there exists
n0 ∈N such that xn0 = xn0+1, then xn0 is a fixed point of F and we have nothing to prove. So we assume
that xn−1 6= xn or

0 < d(xn−1, Fxn−1),

for each n ∈N. Therefore, we have

1
2
d(xn−1, Fxn−1) < d(xn−1, Fxn−1) = d(xn−1, xn), (3.1)

for each n ∈N. It follows from the assumption that

Θ(d(Fxn−1, Fxn)) 6 [Θ(d(xn−1, xn))]k + Lmin{d(xn−1, Fxn−1),d(xn−1, Fxn),d(xn, Fxn−1)},

which implies that

Θ(d(Fxn−1, Fxn)) 6 [Θ(d(xn−1, xn))]k + Lmin{d(xn−1, xn),d(xn−1, xn+1),d(xn, xn)} = [Θ(d(xn−1, xn))]k.

Therefore, we have

1 < Θ(d(xn, xn+1)) = Θ(d(Fxn−1, Fxn)) 6 [Θ(d(xn−1, xn))]k 6 · · · 6 [Θ(d(x0, x1))]
kn , (3.2)

for each n ∈N. Since Θ ∈ Ω, by taking the limit as n→∞ in (3.2), we have

lim
n→∞Θ(d(xn, xn+1)) = 1⇐⇒ lim

n→∞d(xn, xn+1) = 0. (3.3)

Now, we claim that {xn} is a Cauchy sequence. Suppose that {xn} is not a Cauchy sequence. Then there
exists ε > 0 and the sequences {p(n)} and {q(n)} of natural numbers such that, for any p(n) > q(n) > n,

d(xp(n), xq(n)) > ε, d(xp(n)−1, xq(n)) < ε, (3.4)
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for each n ∈N. So, by the triangle inequality and (3.4), we have

ε 6 d(xp(n), xq(n)) 6 d(xp(n), xp(n)−1) + d(xp(n)−1, xq(n)) < d(xp(n)−1, Fxp(n)−1) + ε. (3.5)

By taking the limit as n→∞ in (3.5) and using the inequality (3.3), we have

lim
n→∞d(xp(n), xq(n)) = ε. (3.6)

From (3.1) and (3.4), we can choose a natural number n0 ∈N such that

1
2
d(xp(n), Fxp(n)) <

ε

2
< d(xp(n), xq(n)),

for all n > n0. On the other hand, by the assumption, we have

Θ(d(Fxp(n), Fxq(n))) 6 [Θ(d(xp(n), xq(n)))]
k

+ Lmin{d(xp(n), Fxp(n)),d(xp(n), Fxq(n)),d(xq(n), Fxp(n))}

= [Θ(d(xp(n), xq(n)))]
k

+ Lmin{d(xp(n), xp(n)+1),d(xp(n), xq(n)+1),d(xq(n), xp(n)+1)}.

(3.7)

By taking the limit as n→∞ in (3.7) and using (Θ
′
3) and (3.6), we have

Θ(ε) 6 [Θ(ε)]k,

which is a contradiction since k ∈ (0, 1). Thus {xn} is a Cauchy sequence. Thus the completeness of X
ensures that there exists z ∈ X such that xn → z as n→∞, that is,

lim
n→∞d(xn, z) = 0.

Next, we claim that

1
2
d(xn, Fxn) < d(xn, z) or

1
2
d(Fxn, F2xn) < d(Fxn, z), (3.8)

for each n ∈N. Suppose that there exists m ∈N such that

1
2
d(xm, Fxm) > d(xm, z) and

1
2
d(Fxm, F2xm) > d(Fxm, z). (3.9)

Then we have

2d(xm, z) 6 d(xm, Fxm) 6 d(xm, z) + d(z, Fxm),

which implies that

d(xm, z) 6 d(z, Fxm). (3.10)

It follows from (3.9) and (3.10) that

d(xm, z) 6 d(z, Fxm) 6
1
2
d(Fxm, F2xm).

Since 1
2d(xm, Fxm) < d(xm, Fxm), by the assumption, we have

Θ(d(Fxm, F2xm)) 6[Θ(d(xm, Fxm))]k + Lmin{d(xm, Fxm),d(xm, F2xm),d(Fxm, Fxm)},
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which implies that
Θ(d(Fxm, F2xm)) 6 [Θ(d(xm, Fxm))]k.

Since Θ is strictly increasing, we have

d(Fxm, F2xm) < d(xm, Fxm). (3.11)

It follows from (3.9), (3.10), and (3.11) that

d(Fxm, F2xm) < d(xm, Fxm) 6 d(xm, z) + d(z, Fxm) 6
1
2
d(Fxm, F2xm) +

1
2
d(Fxm, F2xm) = d(Fxm, F2xm),

which is a contradiction. Hence (3.8) holds and so, for each n ∈N,

1 < Θ(d(Fxn, Fz)) 6 [Θ(d(xn, z))]k + Lmin{d(xn, Fxn),d(xn, Fz),d(z, Fxn)},

which implies that

1 < Θ(d(Fxn, Fz)) 6 [Θ(d(xn, z))]k + Lmin{d(xn, xn+1),d(xn, Fz),d(z, xn+1)}. (3.12)

Using (3.12) and (Θ2), we have
lim
n→∞Θ(d(Fxn, Fz)) = 1

and so, from (Θ2),

lim
n→∞d(Fxn, Fz) = 0.

Therefore, we have
d(z, Fz) = lim

n→∞d(xn+1, Fz) = lim
n→∞d(Fxn, Fz) = 0.

Hence z is a fixed point of F.
Now, we show the uniqueness of the fixed point z. Suppose that there exists another fixed point u of

F distinct from z, that is,
Fz = z 6= u = Fu.

Thus we have 1
2d(z, Fz) < d(z,u) and so, from the assumption,

Θ(d(z,u)) = Θ(d(Fz, Fu)) 6 [Θ(d(z,u))]k + Lmin{d(z, Fz),d(z, Fu),d(u, Fz)},

which implies that
Θ(d(z,u)) 6 [Θ(d(z,u))]k,

which is a contradiction since k ∈ (0, 1). Thus z is the unique fixed point of F. This completes the proof.

Theorem 3.3. Let (X,d) be a complete metric space and F : X → X be a self-mapping. If there exists Θ ∈ Ω such
that, for all x,y ∈ X with Fx 6= Fy,

1
2
d(x, Fx) < d(x,y) =⇒ Θ(d(Fx, Fy)) 6 [Θ(d(x,y))]k,

then F has a unique fixed point z ∈ X and, for any x0 ∈ X, the sequence {Fnx0} is convergent to the point z.

Theorem 3.4. Let (X,d) be a complete metric space and F be a self-mapping on X. If there exist constants a,k ∈
(0, 1) and L > 0 such that

1
2
d(x, Fx) < d(x,y) =⇒ 2 −

2
π

arctan
( 1
d(Fx, Fy)a

)
6
[
2 −

2
π

arctan
( 1
d(x,y)a

)]k
+ Lmin{d(x, Fx),d(x, Fy),d(y, Fx)},

for all x,y ∈ X with Fx 6= Fy, then F has a unique fixed point z ∈ X and, for any x0 ∈ X, the sequence {Fnx0}

converges to the point z.
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Proof. Taking Θ(t) = 2 − 2
π arctan( 1

ta ) in Theorem 3.2, we have the conclusion.

Corollary 3.5. Let (X,d) be a complete metric space and F be a self-mapping on X. If there exist constants a,k ∈
(0, 1) such that

1
2
d(x, Fx) < d(x,y) =⇒ 2 −

2
π

arctan
( 1
d(Fx, Fy)a

)
6
[
2 −

2
π

arctan
( 1
d(x,y)a

)]k
,

for all x,y ∈ X with Fx 6= Fy, then F has a unique fixed point z ∈ X and, for any x0 ∈ X, the sequence {Fnx0}

converges to the point z.

Proof. Taking Θ(t) = 2 − 2
π arctan( 1

ta ) in Theorem 3.3, we have the conclusion.

Example 3.6. Consider the sequence {Sn} defined as follows:

S1 = 1, S2 = 1 + 5, · · · ,

and
Sn = 1 + 5 + 9 + · · ·+ (4n− 3) = n(2n− 1), · · · .

Let X = {Sn : n ∈N} and d (x,y) = |x− y| be the usual metric. Then (X,d) is a complete metric space.
Define a mapping F : X→ X by

F(S1) = S1, F(Sn) = Sn−1,

for each n > 1. Clearly, F does not satisfy Banach’s contraction. In fact, we can easily check the following:

lim
n→∞d(F(Sn), F (S1))

d(Sn,S1)
= lim
n→∞Sn−1 − 1

Sn − 1
= lim
n→∞(n− 1)(2n− 3) − 1

n(2n− 1) − 1
= 1.

Also, F does not satisfy the Suzuki-Berinde contraction. On the other hand, by considering the mapping
Θ : (0,∞)→ (1,∞) defined by

Θ(t) = ete
t

,

we can easily show that Θ ∈ Ω and F is the Suzuki-Berinde type Θ-contraction, that is, there exist k ∈ (0, 1)
and L > 0 such that

1
2
d(Sn, F(Sn)) < d(Sn,Sm) =⇒ ed(F(Sn),F(Sm))ed(F(Sn),F(Sm))

6 ekd(Sn,Sm)ed(Sn ,Sm)
+ Lmin{d(Sn, F(Sn)),d(Sn, F (Sm)),d(Sm, F(Sn))}.

Now, we consider the following two cases:

Case 1. For 1 = n and m > 2, we have

e(2m2−5m+3)e2m2−5m+2
< ek(2m2−m−1)e2m2−m−1

,

for k = e−1 ∈ (0, 1) and so

ed(F(S1),F(Sm))ed(F(S1),F(Sm))

6 ekd(S1,Sm)ed(S1,Sm)

+ Lmin{d(S1, F(S1)),d(S1, F (Sm)),d(Sm, F(S1))},

for some L > 0.

Case 2. For m > n > 1, we have

e(2m2−5m−2n2+5n)e2m2−5m−2n2+5n
< ek(2m2−m−2n2+n)e2m2−m−2n2+n

,

for k = e−1 ∈ (0, 1) and so

ed(F(Sn),F(Sm))ed(F(Sn),F(Sm))
6ekd(Sn,Sm)ed(Sn ,Sm)

+ Lmin{d(Sn, F(Sn)),d(Sn, F (Sm)),d(Sm, F(Sn))},

for some L > 0. Hence all of the conditions of Theorem 3.2 are satisfied and S1 is a unique fixed point of
the mapping F. But F does not satisfy the condition (Θ3) and so the result [Theorem 5] of Jleli and Samet
[9] and the result of Hussain et al. [8] can not be applied to this example.



J. Ahmad, A. E. Al-Mazrooei, Y. J. Cho, Y.-O. Yang, J. Nonlinear Sci. Appl., 10 (2017), 2350–2358 2358

References

[1] A. Ahmad, A. S. Al-Rawashdeh, A. Azam, Fixed point results for {α, ξ}-expansive locally contractive mappings, J.
Inequal. Appl., 2014 (2014), 10 pages. 1

[2] J. Ahmad, A. Al-Rawashdeh, A. Azam, New fixed point theorems for generalized F-contractions in complete metric
spaces, Fixed Point Theory Appl., 2015 (2015), 18 pages.

[3] A. Al-Rawashdeh, J. Ahmad, Common fixed point theorems for JS-contractions, Bull. Math. Anal. Appl., 8 (2016),
12–22. 1

[4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3
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