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Abstract
The aim of this paper is to propose some novel algorithms and their strong convergence theorems for solving the split

feasibility problem, and we obtain the corresponding strong convergence results under mild conditions. The split feasibility
problem was proposed by [Y. Censor, Y. Elfving, Numer. Algorithms, 8 (1994), 221–239]. So far a lot of algorithms have been
given for solving this problem due to its applications in intensity-modulated radiation therapy, signal processing, and image
reconstruction. But most of these algorithms are of weak convergence. In this paper, we propose the new algorithms which can
provide useful guidelines for solving the relevant problem, such as the split common fixed point problem (SCFP), multi-set split
feasibility problem and so on. c©2017 All rights reserved.
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1. Introduction and preliminaries

The split feasibility problem (SFP) was first introduced by Censor and Elfving [5] in 1994. The SFP is
to find a point

x ∈ C such that Ax ∈ Q, (1.1)

where C is a nonempty closed convex subset of a Hilbert space H1, Q is a nonempty closed convex subset
of a Hilbert space H2, and A : H1 → H2 is a bounded linear operator.

As we know, the SFP has received so much attention due to its applications in intensity-modulated
radiation therapy, signal processing, and image reconstruction, see Byrne [1, 2], Censor [4–6], Ceng [3],
Fan et al. [7], Xu [20, 21], Kraikaew and Saejung [9], Moudafi [10], Qu et al. [12–14], Qin and Yao [11],
Yang et al. [16, 22, 27, 28], Yao et al. [23–26], and so on.

To solve the SFP (1.1), many algorithms have been constructed.
In 2002, the so-called CQ algorithm was proposed by Byrne [1, 2] in the following:

xn+1 = PC(xn − γA∗(I− PQ)Axn), n > 0,
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where 0 < γ < 2/ρ with ρ being the spectral radius of the operator A∗A and PC, PQ denotes the
orthogonal projection onto the sets C,Q, respectively. However, the stepsize of the CQ algorithm is fixed
and related to spectral radius of the operator A∗A, and the orthogonal projection onto the sets C and Q
is not easily calculated usually.

In 2004, Yang [22] constructed a relaxed CQ algorithm for solving a special case of the SFP, in which
he replaced them by projections onto halfspaces Ck and Qk. In 2005, Qu and Xiu [13] modified Yang’s
relaxed CQ algorithm and the CQ algorithm by adopting the Armijo-like searches to get the stepsize.

In 2008, Qu and Xiu [14] proposed a halfspace relaxation projection method for the SFP, based on a
reformulation of the SFP.

Recently, Xu [21] applied Mann’s algorithm to the SFP and proposed an averaged CQ algorithm
which was proved to be weakly converge to a solution of the SFP. Very recently, Qu et al. [12] studied the
computation of the step-size for the CQ-like algorithms for the split feasibility problem.

In this paper, based on such research results, we propose some novel algorithms for the nonexpansive
mapping and construct their strong convergence theorems, and we apply these convergence theorems for
solving the split feasibility problem.

We use→ to denote strong convergence and ⇀ for weak convergence, and we use Fix(T) to denote the
fixed point set of the operator T . Some concepts and lemmas will be useful in proving our main results
as follows:

Let H be a Hilbert space endowed with the inner product 〈·, ·〉 and norm ‖ · ‖. Then the following
inequality holds

‖x+ y‖2 6 ‖x‖2 + 2〈y, x+ y〉, ∀x,y ∈ H. (1.2)

Definition 1.1. An operator T : H→ H is said to be

(i) nonexpansive if
‖Tx− Ty‖ 6 ‖x− z‖, ∀x ∈ H.

(ii) ν-inverse strongly monotone (ν-ism), with ν > 0, if

〈x− y, Tx− Ty〉 > ν‖Tx− Ty‖2, ∀x,y ∈ H.

Definition 1.2. Let C be a nonempty closed convex subset of a Hilbert space H, the metric (nearest point)
projection PC from H to C is defined as follows: given x ∈ H, PCx is the only point in C with the property

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

Lemma 1.3 ([19]). Let H be a Hilbert space, C a closed convex subset of H, and T : C→ C a nonexpansive mapping
with Fix(T) 6= ∅. If {xn} is a sequence in C weakly converging to x and if {(I− T)xn} converges strongly to y, then
(I− T)x = y.

Lemma 1.4 ([15]). Let C be a nonempty closed convex subset of a Hilbert space H, PC is a nonexpansive mapping
from H onto C and is characterized as: given x ∈ H, there hold the inequality

〈x− PCx,y− PCx〉 6 0, ∀y ∈ C.

Lemma 1.5 ([17, 18]). Let {an}∞n=0 be a sequence of nonnegative real numbers satisfying the property

an+1 6 (1 − γn)an + γnσn, n > 0,

where {γn}∞n=0 ⊂ (0, 1) and {σn}
∞
n=0 are such that

(i) lim
n→∞γn = 0 and

∑∞
n=0 γn =∞,

(ii) either lim sup
n→∞ σn 6 0 or

∑∞
n=0 |γnσn| <∞.

Then {an}
∞
n=0 converges to zero.
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2. Main results

Theorem 2.1. Let C be a nonempty closed and convex subset of a real Hilbert space H1 and θ ∈ C, let T : C→ C

be a nonexpansive mapping such that Fix(T) 6= ∅. Given {αn}
∞
n=1, {βn}∞n=1, and {λn}

∞
n=1 in (0, 1), the following

conditions are satisfied:

(i) lim
n→∞αn = 1, lim

n→∞βn = 1, lim
n→∞ λn = 1;

(ii) |λn −βn−1λn−1|+βn 6 1,
∑∞
n=0(1 −βn)(1 − λn) =∞;

(iii)
∑∞
n=0 |αn+1 −αn| <∞,

∑∞
n=0 |βn+1 −βn| <∞,

∑∞
n=0 |λn+1 − λn| <∞.

Let {xn} be generated by x1 ∈ C and {
xn+1 = (1 −βn)(λnxn) +βnyn,
yn = (1 −αn)xn +αnTxn.

(2.1)

Then the sequence {xn} converges strongly to a fixed point x̂ of T , where x̂ is the minimum-norm element of Fix(T).

Proof. First, we show the sequence {xn} is bounded. Indeed, taking a fixed point x∗ of T , we have

‖yn − x∗‖ 6 (1 −αn)‖xn − x∗‖+αn‖Txn − x∗‖ 6 ‖xn − x∗‖,

so

‖xn+1 − x
∗‖ = ‖(1 −βn)(λnxn) +βnyn − x∗‖

= ‖(1 −βn)(λnxn − x∗) +βn(yn − x∗)‖
= ‖(1 −βn)λn(xn − x∗) +βn(yn − x∗) − (1 −βn)(1 − λn)x

∗‖
6 (1 −βn)λn‖xn − x∗‖+βn‖yn − x∗‖+ (1 −βn)(1 − λn)‖x∗‖
6 [1 − (1 −βn)(1 − λn)]‖xn − x∗‖+ (1 −βn)(1 − λn)‖x∗‖
6 max{‖xn − x∗‖, ‖x∗‖}
...
6 max{‖x1 − x

∗‖, ‖x∗‖}.

Therefore, {xn} is bounded, so are {yn} and {Txn}.
Second, we show ‖xn − Txn‖ → 0, as n→∞.
By condition (i) and the boundedness of {xn} and {yn}, we have

‖xn+1 − yn‖ = (1 −βn)‖λnxn − yn‖ → 0, (2.2)

and
‖yn − Txn‖ = (1 −αn)‖xn − Txn‖ → 0. (2.3)

So, it suffices to show that
‖xn+1 − xn‖ → 0.

Calculating yn − yn−1, after some manipulations we obtain

yn − yn−1 = (1 −αn)xn +αnTxn − (1 −αn−1)xn−1 −αn−1Txn−1

= xn − xn−1 −αnxn +αn−1xn−1 +αnTxn −αn−1Txn−1

= xn − xn−1 −αnxn +αnxn−1 −αnxn−1 +αn−1xn−1 +αnTxn −αn−1Txn−1

= xn − xn−1 −αn(xn − xn−1) − (αn −αn−1)xn−1 +αnTxn −αn−1Txn−1

= (1 −αn)(xn − xn−1) − (αn −αn−1)xn−1 +αnTxn −αnTxn−1 +αnTxn−1 −αn−1Txn−1

= (1 −αn)(xn − xn−1) − (αn −αn−1)xn−1 +αn(Txn − Txn−1) + (αn −αn−1)Txn−1

= (1 −αn)(xn − xn−1) − (αn −αn−1)(xn−1 − Txn−1) +αn(Txn − Txn−1).
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It follows that

‖yn − yn−1‖ 6 (1 −αn)‖xn − xn−1‖+ |αn −αn−1|‖xn−1 − Txn−1‖+αn‖Txn − Txn−1‖
6 ‖xn − xn−1‖+ |αn −αn−1|‖xn−1 − Txn−1‖.

(2.4)

Calculating xn+1 − xn, after some manipulations we obtain

xn+1 − xn = (1 −βn)(λnxn) +βnyn − (1 −βn−1)(λn−1xn−1) −βn−1yn−1

= λnxn −βnλnxn +βnyn − λn−1xn−1 +βn−1λn−1xn−1 −βn−1yn−1

= λnxn − λnxn−1 + λnxn−1 − λn−1xn−1 −βnλnxn

+βn−1λn−1xn −βn−1λn−1xn +βn−1λn−1xn−1

+βnyn −βnyn−1 +βnyn−1 −βn−1yn−1

= λn(xn − xn−1) + (λn − λn−1)xn−1 − (βnλn −βn−1λn−1)xn

−βn−1λn−1(xn − xn−1) +βn(yn − yn−1) + (βn −βn−1)yn−1

= (λn −βn−1λn−1)(xn − xn−1) + (λn − λn−1)xn−1

− (βnλn −βn−1λn−1)xn +βn(yn − yn−1) + (βn −βn−1)yn−1,

(2.5)

Then it follows from (2.5) and (2.4) that

‖xn+1 − xn‖ 6 |λn −βn−1λn−1|‖xn − xn−1‖+ |λn − λn−1|‖xn−1‖
+ |βnλn −βn−1λn−1|‖xn‖+βn‖yn − yn−1‖+ |βn −βn−1|‖yn−1‖

6 |λn −βn−1λn−1|‖xn − xn−1‖+ |λn − λn−1|‖xn−1‖+ |βnλn −βn−1λn−1|‖xn‖
+βn(‖xn − xn−1‖+ |αn −αn−1|‖xn−1 − Txn−1‖) + |βn −βn−1|‖yn−1‖

6 (βn + |λn −βn−1λn−1|)‖xn − xn−1‖
+M(|λn − λn−1|+ |βnλn −βn−1λn−1|+ |αn −αn−1|+ |βn −βn−1|)

6 [1 − (1 −βn − |λn −βn−1λn−1|)]‖xn − xn−1‖
+M(|λn − λn−1|+ |βnλn −βn−1λn−1|+ |αn −αn−1|+ |βn −βn−1|)

6 (1 − σn)‖xn − xn−1‖+M(|λn − λn−1|+ |βnλn −βn−1λn−1|

+ |αn −αn−1|+ |βn −βn−1|)

6 (1 − σn)‖xn − xn−1‖+M(2|λn − λn−1|+ |αn −αn−1|+ 2|βn −βn−1|),

(2.6)

where σn = 1 − βn − |λn − βn−1λn−1| and M > 0 is a constant such that M > max{‖xn−1‖, ‖xn−1 −
Txn−1‖, ‖yn−1‖} for all n. By the assumption (i)-(iii), we have lim

n→∞σn = 0,
∑∞
n=1 σn = ∞, and∑∞

n=1 2|λn − λn−1|+ |αn −αn−1|+ 2|βn −βn−1| <∞. Hence, applying Lemma 1.5 to (2.6), we obtain

‖xn+1 − xn‖ → 0. (2.7)

By (2.2), (2.3), and (2.7), we get

‖xn − Txn‖ 6 ‖xn − xn+1‖+ ‖xn+1 − yn‖+ ‖yn − Txn‖ → 0, (2.8)

as n→∞.
Since {xn} is bounded, there exists a subsequence xnj of {xn} such that xnj ⇀ x̂ ∈ H1. By (2.8) and the

demiclosedness principle of T − I at zero in Lemma 1.3, we have that z ∈ F(T).
At last, we prove {xn} converges strongly to x̂. Setting wn = (1 − βn)xn + βnyn, n > 1, then from

(2.1) we have
xn+1 = wn − (1 −βn)(1 − λn)xn.

By the boundedness of {xn}, we have,

‖xn+1 −wn‖ = (1 −βn)(1 − λn)‖xn‖ → 0. (2.9)
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Using the fact xnj ⇀ z and (2.9), we conclude that wnj ⇀ z. It follows that

xn+1 = [1 − (1 −βn)(1 − λn)]wn − (1 −βn)(1 − λn)(xn −wn)

= [1 − (1 −βn)(1 − λn)]wn − (1 −βn)(1 − λn)βn(xn − yn).
(2.10)

Also we have

‖wn − x̂‖2 = ‖xn − x̂−βn(xn − yn)‖2 6 ‖xn − x̂‖2 − 2βn〈xn − yn,wn − x̂〉. (2.11)

By (2.10), (2.11), and (1.2), we obtain

‖xn+1 − x̂‖2 = ‖[1 − (1 −βn)(1 − λn)](wn − x̂)

− (1 −βn)(1 − λn)βn(xn − yn) − (1 −βn)(1 − λn)x̂‖2

6 [1 − (1 −βn)(1 − λn)]
2‖wn − x̂‖2 − 2(1 −βn)(1 − λn)〈βn(xn − yn) + x̂, xn+1 − x̂〉

= [1 − (1 −βn)(1 − λn)]
2‖wn − x̂‖2 − 2(1 −βn)(1 − λn)βn〈(xn − yn), xn+1 − x̂〉

− 2(1 −βn)(1 − λn)〈x̂, xn+1 − x̂〉
6 [1 − (1 −βn)(1 − λn)](‖xn − x̂‖2 − 2βn〈xn − yn,wn − x̂〉)

− 2(1 −βn)(1 − λn)βn〈(xn − yn), xn+1 − x̂〉− 2(1 −βn)(1 − λn)〈x̂, xn+1 − x̂〉
= [1 − (1 −βn)(1 − λn)]‖xn − x̂‖2 − 2(1 −βn)(1 − λn)βn〈xn − yn,wn − x̂〉

− 2(1 −βn)(1 − λn)βn〈(xn − yn), xn+1 − x̂〉− 2(1 −βn)(1 − λn)〈x̂, xn+1 − x̂〉
= (1 − γn)‖xn − x̂‖2 + γn(−2βn〈xn − yn,wn − x̂〉

− 2βn〈(xn − yn), xn+1 − x̂〉− 2〈x̂, xn+1 − x̂〉),

(2.12)

where γn = (1 −βn)(1 − λn).
By conditions (i) and (ii), we have that lim

n→∞γn = 0,
∑∞
n=1 γn =∞. Clearly,

lim sup
n→∞ −2βn〈xn − yn,wn − x̂〉 = 0,

lim sup
n→∞ −2βn〈(xn − yn), xn+1 − x̂〉 = 0,

and

lim sup
n→∞ −2〈x̂, xn+1 − x̂〉 = lim

j→∞−2〈x̂, xnj − x̂〉 = −2〈x̂, z− x̂〉 6 0.

Hence, applying Lemma 1.5 to (2.12), we obtain that ‖xn − x̂‖ → 0.
The proof is completed.

3. Applications

Lemma 3.1 ([21]). Given x∗ ∈ H, then x∗ solves the SFP (1.1) if and only if x∗ is the solution of the fixed point
equation x = PC(I− γA∗(I− PQ)A)x.

Proposition 3.2. Let C be a nonempty closed convex subset of a Hilbert space H1, Q be a nonempty closed convex
subset of a Hilbert space H2, and A : H1 → H2 is a bounded linear operator. Let PC, PQ denote the orthogonal
projections onto the sets C, Q, respectively. Let 0 < γ < 2

ρ , ρ is the spectral radius of A∗A, and A∗ is the adjoint
of A. Then the operator T , PC(I− γA∗(I− PQ)A) is nonexpansive on C.

Proof. This proof is divided into 4 steps in the following.
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Step 1. We show that PQ is 1-ism.

〈x− y,PQx− PQy〉− ‖PQx− PQy‖2 = 〈x− PQx,PQx− PQy〉+ 〈y− PQy,PQy− PQx〉 > 0.

Step 2. We show that I− PQ is 1-ism.

〈x− y, (I− PQ)x− (I− PQ)y〉− ‖(I− PQ)x− (I− PQ)y‖2

= ‖x− y‖2 − 〈x− y,PQx− PQy〉− ‖x− y‖2 − ‖PQx− PQy‖2 + 2〈x− Y,PQx− PQy〉
= 〈x− Y,PQx− PQy〉− ‖PQx− PQy‖2 > 0.

Step 3. We show U , A∗(I− PQ)A is 1
ρ -ism.

Since I− PQ is 1-ism and from the property of adjoint operator, we get

〈x− y,Ux−Uy〉 = 〈x− y,A∗(I− PQ)Ax−A∗(I− PQ)Ay〉
= 〈Ax−Ay, (I− PQ)Ax− (I− PQ)Ay〉
> ‖(I− PQ)Ax− (I− PQ)Ay‖2

=
‖A∗‖2

‖A‖2 ‖(I− PQ)Ax− (I− PQ)Ay‖2

>
1
ρ
‖A∗(I− PQ)Ax−A∗(I− PQ)Ay‖2 =

1
ρ
‖Ux−Uy‖2.

It follows from the above inequality that γU is 1
γρ -ism.

Step 4. We show V , I− γU is nonexpansive. By 0 < γ < 2
ρ , we obtain

‖Vx− Vy‖2 = 〈(I− γU)x− (I− γU)y, (I− γU)x− (I− γU)y〉
= ‖x− y‖2 + γ[γ‖Ux−Uy‖2 − 2〈x− y,Ux−Uy〉]
6 ‖x− y‖2.

Hence, ‖Vx− Vy‖ 6 ‖x− y‖. Then T , PC(I− γA∗(I− PQ)A) is nonexpansive on C.

Theorem 3.3. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded linear operator, and A∗ :
H2 → H1 be a adjoint operator of A. Assume the SFP (1.1) is consistent, 0 < γ < 2

ρ , ρ is the spectral radius of
A∗A, S 6= ∅, and {αn}

∞
n=1, {βn}∞n=1, and {λn}

∞
n=1 in (0, 1), the following conditions are satisfied:

(i) lim
n→∞αn = 1, lim

n→∞βn = 1, lim
n→∞ λn = 1;

(ii) |λn −βn−1λn−1|+βn 6 1,
∑∞
n=0(1 −βn)(1 − λn) =∞;

(iii)
∑∞
n=0 |αn+1 −αn| <∞,

∑∞
n=0 |βn+1 −βn| <∞,

∑∞
n=0 |λn+1 − λn| <∞.

Let {xn} be generated by x1 ∈ H1 and{
xn+1 = (1 −βn)(λnxn) +βnyn,
yn = (1 −αn)xn +αnPC(xn − γA∗(I− PQ)Axn).

Then the sequence {xn} converges strongly to a point x̂ ∈ S, where x̂ is the minimum-norm solution of (1.1).

Proof. From Lemma 3.1, we know x ∈ S if and only if x = PC(I− γA∗(I− PQ)A)x.
From Proposition 3.2, we know the operator T , PC(I− γUA∗(I− PQ)A) is nonexpansive.
Based on Theorem 2.1, we can obtain the sequence {xn} converges strongly to a point x̂ ∈ S, where x̂

is the minimum-norm solution of (1.1).
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Theorem 3.4. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded linear operator, and A∗ :
H2 → H1 be a adjoint operator of A. Assume the SFP (1.1) is consistent, 0 < γ < 2

ρ , ρ is the spectral radius of
A∗A, S 6= ∅, and {αn}

∞
n=1 and {βn}

∞
n=1 in (0, 1), the following conditions are satisfied:

(i) lim
n→∞αn = 1, lim

n→∞βn = 1;

(ii)
∑∞
n=0(1 −αn) =∞,

∑∞
n=0(1 −βn) =∞;

(iii)
∑∞
n=0 |αn+1 −αn| <∞,

∑∞
n=0 |βn+1 −βn| <∞;

Let {xn} be generated by x1 ∈ H1 and{
xn+1 = (1 −βn)u+βnyn,
yn = (1 −αn)xn +αnPC(xn − γA∗(I− PQ)Axn).

Then the sequence {xn} converges strongly to a point x̂ ∈ S, and the solution x̂ is the nearest point to u.

Proof. From Lemma 3.1, we know x ∈ S if and only if x = PC(I− γA∗(I− PQ)A)x.
From Proposition 3.2, we know the operator T , PC(I− γUA∗(I− PQ)A) is nonexpansive.
Based on Theorem 1 of [8], we can obtain the sequence {xn} converges strongly to a point x̂ ∈ S, and

the solution x̂ is the nearest point to u.

4. Conclusions

In this paper, we propose two strong convergence algorithms for solving the split feasibility problem
and obtain corresponding strong convergence theorems. This method can be applied in solving the
relevant problem, such as the split common fixed point problem (SCFP), multi-set split feasibility problem,
and so on.
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