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Abstract
In this paper, we show the difference between an approximate solution and an accurate solution for a stochastic differential

delay equation, where the approximate solution, which is called by Carathéodory, is constructed by successive approximation.
Furthermore, we study the p-th moment continuity of the approximate solution for this delay equation. c©2017 All rights
reserved.
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1. Introduction

An approximate solution is one of the fundamental concepts in stochastic differential systems. In the
study of the stochastic differential delay equations, if there dose not exist an explicit solution, then “how
can we obtain the approximate solution ?” is a very important problem.

In 2015, Kim [4] considered the following stochastic differential delay equation:

dx(t) = F(x(t), x(t− τ), t)dt+G(x(t), x(t− τ), t)dB(t), t0 6 t 6 T , (1.1)

and defined the Carathéodory approximation for a solution of the delay equation (1.1) as follows:
For each n > 1, define a function xn(t) on [−τ, T ] by

xn(t0 + θ) = ξ(θ), −τ 6 θ 6 0,

and

xn(t) = ξ(0) +
∫t
t0

IDcn(s)F(xn(s−
1
n
), xn(s− τ), s)ds+

∫t
t0

IDn(s)F(xn(s− 1/n), xn(s− τ−
1
n
), s)ds
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+

∫t
t0

IDcn(s)G(xn(s− 1/n), xn(s− τ), s)dB(s)

+

∫t
t0

IDn(s)G(xn(s− 1/n), xn(s− τ−
1
n
), s)dB(s)

for t0 6 t 6 T , where

Dn = {t ∈ [t0, T ] : τ <
1
n
}

for Dcn = [t0, T ] −Dn.
In [4], by employing the non-Lipschitz condition and the nonlinear growth condition, Kim established

the following results for the second moment to stochastic differential delay equation:

Theorem 1.1. Assume that there exists a constant K and a concave function κ : R+ → R+ such that

(1) (The non-Lipschitz condition): for all t ∈ [t0, T ] and x,y, x,y ∈ R,

|F(x,y, t) − F(x,y, t)|2 ∨ |G(x,y, t) −G(x,y, t)|2 6 κ(|x− x|2 + |y− y|2),

where the concave function κ is a nondecreasing function such that κ(0) = 0, κ(u) > 0 for any u > 0 and∫
0+

1
κ(u)du =∞;

(2) (The non-linear growth condition): there exists K > 0 such that, for all (x,y, t) ∈ R ×R × [t0, T ],

|F(0, 0, t)|2 ∨ |G(0, 0, t)|2 6 K.

Then we have

E
(

sup
t06t6T

|x(t) − xn(t)|
2
)
6
(
αγ(T − t0) + K̂1 + K̂2

)
e5αγ(T−t0),

where γ = 4(T − t0 + 4),

K̂1 = 8αγ[C+ 2T(α(1 + 2C) +K)]
1
n

K̂2 = 8αγ
(
[C+ 4T(α(1 + 2C) +K)]

1
n
+Cµ

)
,

C =

(
1
2
+ 4E‖ξ‖2 + 6K(T − t0 + 4)(T − t0)

)
e12α(T−t0+4)(t−t0),

and µ = {t ∈ [t0, t0 + 1 + 1
n ] : 0 < τ < 1

n } stands for the Lebesgue measure on R.

For some more details on stochastic differential equations, refer to [1–3, 5–11] and references therein.
By using the nonlinear growth condition and nonlinear growth condition, in 2015, Kim [4] studied the
difference between the approximate solution and the accurate solution to the stochastic differential delay
equation (shortly, SDEs).

In this paper, motivated by the results mentioned above, we establish some exponential estimates for
the p-th moment and show the difference between the approximate solution and the unique solution to
the stochastic differential delay equation, which can be obtained from non-Lipschitz condition and special
linear growth condition. For our main results in this paper, we use the Carathéodory approximation
procedure.

2. Preliminary

Throughout this paper, unless otherwise specified, let (Ω,F,P) be a complete probability space with
a filtration {Ft}t>t0 satisfying the usual conditions (i.e., it is right continuous and Ft0 contains all P-null
sets). Let | · | denote the Euclidean norm in Rn if A is a vector or a matrix, its transpose is denoted by AT ;
ifA is a matrix, its trace norm is represented by |A| =

√
trace(ATA). Assume that B(t) is anm-dimensional
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Brownian motion defined on complete probability space, that is,

B(t) = (B1(t),B2(t), · · · ,Bm(t))T .

Let BC((−∞, 0]; Rd) denote the family of bounded continuous Rd-valued functions ϕ defined on
(−∞, 0] with norm ‖ϕ‖ = sup−∞<θ60 |ϕ|. Let M2((−∞, 0]; Rd) denote the family of Ft0-measurable and
Rd-valued process ϕ(t) = ϕ(t,ω) for all t ∈ (−∞, 0] such that

E

∫ 0

−∞ |ϕ(t)|2dt <∞.

In [7], Ren et al. considered the following d-dimensional stochastic functional differential equations:

dx(t) = f(xt, t)dt+ g(xt, t)dB(t), t0 6 t 6 T , (2.1)

where xt = {x(t + θ) : −∞ < θ 6 0} can be regarded as a BC((−∞, 0]; Rd)-valued stochastic process,
where

f : BC((−∞, 0]; Rd)× [t0, T ]→ Rd, g : BC((−∞, 0]; Rd)× [t0, T ]→ Rd×m

are Borel measurable functions. Moreover, the initial value is as follows:{
xt0 = ξ = {ξ(θ) : −∞ 6 θ 6 0} is an Ft0-measurable;
BC((−∞, 0]; Rd)-valued random variable such that ξ ∈M2((−∞, 0]; Rd).

A special, but important class of stochastic functional differential equations is the stochastic differential
delay equation.

Now, we consider the following stochastic differential delay equation:

dx(t) = F(x(t), x(t− τ), t)dt+G(x(t), x(t− τ), t)dB(t), t0 6 t 6 T , (2.2)

where F : Rd ×Rd × [t0, T ] → Rd and G : Rd × Rd × [t0, T ] → Rd×m are Borel measurable. Moreover, the
initial value is as follows:{

xt0 = ξ = {ξ(θ) : −τ 6 θ 6 0} is an Ft0-measurable;
BC([−τ, 0]; Rd)-valued random variable such that ξ ∈M2([−τ, 0]; Rd).

(2.3)

If we define

f(ϕ, t) = F(ϕ(0),ϕ(−τ), t), g(ϕ, t) = G(ϕ(0),ϕ(−τ), t)

for all (ϕ, t) ∈M2([−τ, 0]; Rd)× [t0, T ], then equation (2.2) can be written as the equation (2.1) and so one
can apply the existence and uniqueness theorem established in [7] to the delay equation (2.2).

Now, we need the following lemmas in order to show the main results:

Lemma 2.1 (Moment inequality, [5]). If p > 2 and g ∈M2([0, T ]; Rd×m) such that

E

∫T
0
|g(s)|p ds <∞,

then

E

∣∣∣∣∫T
0
g(s)dB(s)

∣∣∣∣p 6

(
p(p− 1)

2

)p
2

T
p−2

2 E

∫T
0
|g(s)|p ds.

In particular, E|
∫T

0 g(s)dB(s)|2 = E
∫T

0 |g(s)|2 ds when p = 2.

Lemma 2.2 (Moment inequality [5]). Under the same assumptions as Lemma 2.1, we have

E

(
sup

06t6T

∣∣∣∣∫t
0
g(s)dB(s)

∣∣∣∣p) 6

(
p3

2(p− 1)

)p
2

T
p−2

2 E

∫T
0
|g(s)|p ds.
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3. Approximate solutions

First, we discuss the Carathéodory approximation procedure. Consider the stochastic differential
delay equation (2.2) with initial data (2.3).

Now, define the Carathéodory approximation as follows: for each integer n > 1, define xn(t) on
[t0 − τ, T ] by

xn(t0 + θ) = ξ(θ), −τ < θ 6 0,

and

xn(t) = ξ(0) +
∫t
t0

F(xn(s−
1
n
), xn(s− τ−

1
n
), s)ds+

∫t
t0

G(xn(s−
1
n
), xn(s− τ−

1
n
), s)dB(s) (3.1)

for t0 6 t 6 T . Note that, for t0 6 t 6 t0 +
1
n , xn(t) can be computed by

xn(t) = ξ(0) +
∫t
t0

F(ξ(0), ξ(0), s)ds+
∫t
t0

G(ξ(0), ξ(0), s)dB(s);

then, for t0 +
1
n 6 t 6 t0 +

2
n ,

xn(t) = xn(t0 +
1
n
) +

∫t
t0+

1
n

F(xn(s−
1
n
), xn(s− τ−

1
n
), s)ds+

∫t
t0+

1
n

G(xn(s−
1
n
), xn(s− τ−

1
n
), s)dB(s)

and so on. In other words, xn(t) can be computed step-by-step on the intervals [t0, t0 +
1
n ], (t0 +

1
n , t0 +

2
n ],

· · · . Since our goal is to study exponential estimates on the difference between the approximate solutions
and the uniqueness solution, we assume that there exists a unique solution x(t) to the equation (2.2) under
the non-Lipschitz condition and the special linear growth condition.

On the other hand, for our results, we impose the non-Lipschitz condition and the special linear
growth condition, that is, for all t ∈ [t0, T ], and x,y, x,y ∈ Rd

|F(x,y, t) − F(x,y, t)|2 ∨ |G(x,y, t) −G(x,y, t)|2 6 κ(|x− x|2 + |y− y|2), (3.2)

where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) = 0, κ(u) > 0 for all u > 0
and
∫

0+
1

κ(u)du =∞, and there exists K > 0 such that, for all (x,y, t) ∈ Rd ×Rd × [t0, T ],

|F(0, 0, t)|2 ∨ |G(0, 0, t)|2 6 K. (3.3)

Now, we give an exponential estimate for p-th moment as follows:

Lemma 3.1. Assume that the conditions (3.2) and (3.3) hold. Then we have

E
(

sup
t0−τ<s6t

|xn(s)|
p
)
6 Ck := C2 exp

(
12p−1αp/2C1(t− t0)

)
(3.4)

for all t > t0, where

C1 = [(T − t0)
p−1 + (p3/2(p− 1))p/2(T − t0)

(p−2)/2]

and
C2 = (1 + 3p−1)E‖ξ‖p + 6p−1[Kp/2 + 2(p−2)/2αp/2](T − t0)C1.

Proof. Fix n > 1 arbitrarily. From the definition of xn(t) and the conditions (3.2) and (3.3), it is easy to see
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that {xn(t)}t06t6T ∈M2((t0 − τ, T ];Rd). From (3.1), note that, for t0 6 t 6 T ,

|xn(s)|
p 6 3p−1|ξ(0)|p + 3p−1

∣∣∣ ∫t
t0

F(xn(s−
1
n
), xn(s− τ−

1
n
), s)ds

∣∣∣p
+ 3p−1

∣∣∣ ∫t
t0

G(xn(s−
1
n
), xn(s− τ−

1
n
), s)dB(s)

∣∣∣p.
(3.5)

Using the Hölder inequality and Lemma 2.2, we can derive from (3.5) that, for t0 6 t 6 T ,

E
(

sup
t06s6t

|xn(s)|
p
)
6 3p−1E|ξ(0)|p + 3p−1(t− t0)

p−1E

∫t
t0

|F(xn(s−
1
n
), xn(s− τ−

1
n
), s)|pds

+ 3p−1
( p3

2(p− 1)

)p/2
(t− t0)

p−2
2 E

∫t
t0

|G(xn(s−
1
n
), xn(s− τ−

1
n
), s)|pds.

By the conditions (3.2) and (3.3), we obtain

E
(

sup
t06s6t

|xn(s)|
p
)
6 3p−1E|ξ(0)|p + 6p−1(t− t0)C1K

p/2

+ 6p−1C1E

∫t
t0

[κ(|xn(s−
1
n
)|2 + |xn(s− τ−

1
n
)|2)]p/2ds,

where C1 = [(T − t0)
p−1 + (p3/2(p− 1))p/2(T − t0)

(p−2)/2]. Since κ(·) is concave and κ(0) = 0, we can find
a positive constant α such that κ(u) 6 α(1 + u) for all u > 0. Therefore, we have

E
(

sup
t06s6t

|xn(s)|
p
)
6 3p−1E|ξ(0)|p + 6p−1(t− t0)C1K

p/2 + 6p−12(p−2)/2αp/2(t− t0)C1

+ 6p−12p−1αp/2C1

∫t
t0

E
(

sup
t0−τ<r6s

|xn(r)|
p
)
ds.

Note that

E
(

sup
t0−τ6s6t

|xn(s)|
p
)
6 C2 + 12p−1αp/2C1

∫t
t0

E
(

sup
t0−τ<r6s

|xn(r)|
p
)
ds,

where C2 = (1 + 3p−1)E‖ξ‖p + 6p−1[Kp/2 + 2(p−2)/2αp/2](T − t0)C1. An application of the Gronwall in-
equality implies that

E
(

sup
t0−τ6s6t

|xn(s)|
p
)
6 C2 exp(12p−1αp/2C1(t− t0))

and so the desired inequality follows immediately. This completes the proof.

In other words, the estimate for E|xn(t)|p can be done via the estimate for the p-th moment. In view
of Lemma 3.1, we know that the p-th moment of the solution satisfies

E
(

sup
t0−τ<s6t

|x(s)|p
)
6 Cj. (3.6)

This means that the p-th moment grows at most exponentially with some exponent. Making use of the
approximation (3.1) we can show the following theorem in the same way as Lemma 3.1.
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Theorem 3.2. Suppose that (3.2) and (3.3) hold. Then, for any t0 6 s < t 6 T with t− s < 1,

E
(
|xn(t) − xn(s)|

p
)
6
[
4p−1C3K

p/2 + 4p−12(p−2)/2αp/2C3 + 8p−1αp/2C3Ck
]
(t− s),

where C1 and Ck are defined in Lemma 3.1 and

C3 = [(T − t0)
p−1 + (p(p− 1)/2)p/2(T − t0)

(p−2)/2].

Proof. Using the Hölder’s inequality and Lemma 2.1, it follows from (3.1) that, for t0 6 t 6 T ,

E
(
|xn(t) − xn(s)|

p
)
6 2p−1(t− s)p−1E

∫t
s

|F(xn(r−
1
n
), xn(r− τ−

1
n
), r)|pdr

+ 2p−1
(p(p− 1)

2

)p/2
(t− s)(p−2)/2E

∫t
s

|G(xn(r−
1
n
), xn(r− τ−

1
n
), r)|pdr.

By the conditions (3.2) and (3.3), we obtain

E
(
|xn(t) − xn(s)|

p
)
64p−1C3K

p/2(t− s) + 4p−1C3E

∫t
s

[κ(|xn(r−
1
n
)|2 + |xn(r− τ−

1
n
)|2)]p/2dr,

where C3 = [(T − t0)
p−1 + (p(p− 1)/2)p/2(T − t0)

(p−2)/2]. Since κ(·) is concave and κ(0) = 0, we can find
a positive constant α such that κ(u) 6 α(1 + u) for all u > 0. Therefore, we have

E
(
|xn(t) − xn(s)|

p
)
6 4p−1[Kp/2 + 2(p−2)/2αp/2]C3(t− s) + 8p−1αp/2C3

∫t
s

E
(

sup
t0−τ<r6s

|xn(r)|
p
)
ds.

Hence, by Lemma 3.1, it follows that

E
(
|xn(t) − xn(s)|

p
)
6 4p−1[Kp/2 + 2(p−2)/2αp/2]C3(t− s) + 8p−1αp/2C3Ck(t− s)

and so the desired inequality follows immediately. This completes the proof.

As another application of Lemma 3.1, we showed the continuity of the p-th moment of the sequence
given in Theorem 3.2. In view of Theorem 3.2, we know that the p-th moment of the solution satisfies

E
(
|x(t) − x(s)|p

)
6 Cl(t− s). (3.7)

This means that the p-th moment of the solution is continuous.
The following theorem shows that the Carathéodory sequence converges to the unique solution of the

equation (2.2) and gives an estimate for the difference between the approximate solution xn(t) and the
accurate solution x(t).

Theorem 3.3. Suppose that (3.2) and (3.3) hold. Then we have

E
(

sup
t06s6T

|x(s) − xn(s)|
p
)
6 2p−13(p/2)−1αp/2C1

[
(T − t0) +C4

]
exp

(
22p−13(p/2)−1αp/2C1(t− t0)

)
, (3.8)

where C1 is defined in Lemma 3.1 and

C4 = 2p−1[2pCj + (T − (t0 +
1
n
))Cl + 2pCj + (T − (t0 + τ+

1
n
))Cl][1/n].
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Proof. From (2.2) and (3.1), it follows that, for t0 6 t 6 T ,

|x(s) − xn(s)|
p 6 2p−1

∣∣∣ ∫t
t0

[F(x(s), x(s− τ), s) − F(xn(s−
1
n
), xn(s− τ−

1
n
), s)]ds

∣∣∣p
+ 2p−1

∣∣∣ ∫t
t0

[G(x(s), x(s− τ), s) −G(xn(s−
1
n
), xn(s− τ−

1
n
), s)]dB(s)

∣∣∣p.

By the Hölder inequality, Lemma 2.2, and the condition (3.4), it follows that

E
(

sup
t06s6t

|x(s) − xn(s)|
p
)
62p−1C1E

∫t
t0

[κ(|x(s) − xn(s−
1
n
)|2 + |x(s− τ) − xn(s− τ−

1
n
)|2)]p/2ds.

By the conditions (3.2), (3.3), and the definition of κ(·), we obtain

E
(

sup
t06s6t

|x(s) − xn(s)|
p
)

6 2p−13(p/2)−1αp/2C1

[
(t− t0) +

∫t
t0

(
E|x(s) − xn(s−

1
n
)|p + E|x(s− τ) − xn(s− τ−

1
n
)|p
)
ds
]
.

Therefore, we have

E
(

sup
t06s6t

|x(s) − xn(s)|
p
)

6 2p−13(p/2)−1αp/2C1

[
(t− t0) + 2p−1

∫t
t0

(
E|x(s) − x(s− 1/n)|p + E|x(s− τ) − x(s− τ− 1/n)|p

)
ds

+ 2p
∫t
t0

(
E sup
t06r6s

|x(r) − xn(r)|
p
)
ds
]
.

But, using the inequalities (3.6) and (3.7), we can estimate∫t
t0

E|x(s) − x(s−
1
n
)|pds =

[
2pCj + (T − (t0 +

1
n
))Cl

] 1
n

and ∫t
t0

E|x(s− τ) − x(s− τ−
1
n
)|pds =

[
2pCj + (T − (t0 + τ+

1
n
))Cl

] 1
n

.

Hence an application of the Gronwall inequality implies that

E
(

sup
t06s6t

|x(s) − xn(s)|
p
)
6 2p−13(p/2)−1αp/2C1

[
(T − t0) +C4

]
exp

(
22p−13(p/2)−1αp/2C1(t− t0)

)
,

where

C4 = 2p−1[2pCj + (T − (t0 +
1
n
))Cl + 2pCj + (T − (t0 + τ+

1
n
))Cl][1/n]

and the required result (3.8) follows. This completes the proof.

Let us continue with the discussion of the following stochastic differential delay equation:

dx(t) = F(x(t), x(t− δ(t)), t)dt+G(x(t), x(t− δ(t)), t)dB(t) (3.9)

on t ∈ [t0, T ] with initial data (2.3), where δ : [t0, T ] → [0, τ], F : Rd × Rd × [t0, T ] → Rd and G :
Rd ×Rd × [t0, T ]→ Rd×m are Borel measurable functions.
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If we define

f(ϕ, t) = F(ϕ(0),ϕ(−δ(t)), t), g(ϕ, t) = G(ϕ(0),ϕ(−δ(t)), t)

for all (ϕ, t) ∈M2([−τ, 0]; Rd)× [t0, T ], then the equation (3.9) can be written as the equation (2.1) and so
one can apply the existence and uniqueness theorem established in [7] to the delay equation (3.9).

Now, we define the Carathéodory approximation as follows: for each integer n > 1, define xn(t) on
[t0 − τ, T ] by

xn(t0 + θ) = ξ(θ), −τ < θ 6 0,

and

xn(t) = ξ(0) +
∫t
t0

IDcn(s)F(xn(s−
1
n
), xn(s− δ(s)), s)ds

+

∫t
t0

IDn(s)F(xn(s−
1
n
), xn(s− δ(s) −

1
n
), s)ds

+

∫t
t0

IDcn(s)G(xn(s−
1
n
), xn(s− δ(s)), s)dB(s)

+

∫t
t0

IDn(s)G(xn(s−
1
n
), xn(s− δ(s) −

1
n
), s)dB(s)

(3.10)

for t0 6 t 6 T , where

Dn = {t ∈ [t0, T ] : δ(t) <
1
n
}

for Dcn = [t0, T ] −Dn.
In the sequel of this section, xn(t) always means the Carathéodory approximation (3.10) rather than

the Carathéodory one (3.1).
The following lemma shows that the Carathéodory approximation sequence is bounded in p-th mo-

ment.

Lemma 3.4. Suppose that (3.2) and (3.3) hold. Then, for all n > 1, we have

E
(

sup
t0−τ<s6t

|xn(s)|
p
)
6 Cm := C5 exp

(
20p−1(2α)p/2C1(t− t0)

)
for all t > t0, where C1 is defined in Lemma 3.1 and

C5 = (1 + 5p−1)E‖ξ‖p + 5p−1[2pKp/2 + 4p−1αp/2]C1(T − t0).

Proof. By the Hölder inequality and Lemma 2.2, we can derive, from (3.10), that, for t0 6 t 6 T ,

E
(

sup
t06s6t

|xn(s)|
p
)
6 5p−1E|ξ(0)|p + 5p−1(t− t0)

p−1E
( ∫t
t0

IDcn(s)|F(xn(s−
1
n
), xn(s− δ(s)), s)|pds

+ E

∫t
t0

IDn(s)|F(xn(s−
1
n
), xn(s− δ(s) −

1
n
), s)|pds

)
+ 5p−1

( p3

2(p− 1)

)p/2
(t− t0)

p−2
2 E
( ∫t
t0

IDcn(s)|G(xn(s−
1
n
), xn(s− δ(s)), s)|pds

+

∫t
t0

IDn(s)|G(xn(s−
1
n
), xn(s− δ(s) −

1
n
), s)|pds

)
.
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By the conditions (3.2) and (3.3), we obtain

E
(

sup
t06s6t

|xn(s)|
p
)
6 5p−1E|ξ(0)|p + 2p5p−1C1K

p/2(t− t0)

+ 10p−1(t− t0)
p−1E

( ∫t
t0

[κ(|xn(s−
1
n
)|2 + |xn(s− δ(s))|

2)]p/2ds

+

∫t
t0

[κ(|xn(s−
1
n
)|2 + |xn(s− δ(s) −

1
n
)|2)]p/2ds

)
+ 10p−1

( p3

2(p− 1)

)p/2
(t− t0)

p−2
2 E
( ∫t
t0

[κ(|xn(s−
1
n
)|2 + |xn(s− δ(s))|

2)]p/2ds

+

∫t
t0

[κ(|xn(s−
1
n
)|2 + |xn(s− δ(s) −

1
n
)|2)]p/2ds

)
,

where C1 = [(T − t0)
p−1 + (p3/2(p− 1))p/2(T − t0)

(p−2)/2]. Since κ(·) is concave and κ(0) = 0, we can find
a positive constant α such that κ(u) 6 α(1 + u) for all u > 0. Therefore, we have

E
(

sup
t06s6t

|xn(s)|
p
)
6 5p−1E|ξ(0)|p + 2p5p−1Kp/2C1(t− t0)

+ 20p−1αp/2C1(t− t0) + 20p−1(2α)p/2C1

∫t
t0

E
(

sup
t0−τ<r6s

|xn(r)|
p
)
ds.

Note that

E
(

sup
t0−τ6s6t

|xn(s)|
p
)
6 C5 + 20p−1(2α)p/2C1

∫t
t0

E
(

sup
t0−τ<r6s

|xn(r)|
p
)
ds,

where C5 = (1 + 5p−1)E‖ξ‖p + 5p−1[2pKp/2 + 4p−1αp/2]C1(T − t0). An application of the Gronwall in-
equality implies that

E
(

sup
t0−τ6s6t

|xn(s)|
p
)
6 C5 exp(20p−1(2α)p/2C1(t− t0))

and so the desired inequality follows immediately. This completes the proof.

In other words, the estimate for E|xn(t)|p can be done via the estimate for the p-th moment. This
means that the p-th moment grows at most exponentially with some exponents.

By using the approximation (3.10), we can show the following theorem in the same way as Lemma
3.4.

Theorem 3.5. Suppose that (3.2) and (3.3) hold. Then, for any t0 6 s < t 6 T with t− s < 1, we have

E
(
|xn(t) − xn(s)|

p
)
6
[
2p4p−1Kp/2C3 + 2p4p−1αp/2C3(t− s) + 2p4p−1(2α)p/2C3Cm

]
(t− s),

where C3 and Cm are defined in Theorem 3.2 and Lemma 3.4.

Proof. Using the Hölder inequality and Lemma 2.1, we can derive from (3.10) that, for t0 6 t 6 T ,

E
(
|xn(t) − xn(s)|

p
)
6 4p−1(t− s)p−1E

∫t
s

|F(xn(r−
1
n
), xn(r− δ(r)), r)|pdr

+ 4p−1(t− s)p−1E

∫t
s

|F(xn(r−
1
n
), xn(r− δ(r) −

1
n
), r)|pdr



Y. J. Cho, Y.-H. Kim, J. Nonlinear Sci. Appl., 10 (2017), 1365–1376 1374

+ 4p−1
(p(p− 1)

2

)p/2
(t− s)(p−2)/2E

∫t
s

|G(xn(r−
1
n
), xn(r− δ(r)), r)|pdr

+ 4p−1
(p(p− 1)

2

)p/2
(t− s)(p−2)/2E

∫t
s

|G(xn(r−
1
n
), xn(r− δ(r) −

1
n
), r)|pdr.

By the conditions (3.2) and (3.3), we obtain

E
(
|xn(t) − xn(s)|

p
)
6 2p4p−1Kp/2C3(t− s) + 8p−1C3E

∫t
s

[κ(|xn(r−
1
n
)|2 + |xn(r− δ(r))|

2)]p/2dr

+ 8p−1C3E

∫t
s

[κ(|xn(r−
1
n
)|2 + |xn(r− δ(r) −

1
n
)|2)]p/2dr,

where C3 is defined in Theorem 3.2. Since κ(·) is concave, we can find a positive constant α such that
κ(u) 6 α(1 + u) for all u > 0. Therefore, we have

E
(
|xn(t) − xn(s)|

p
)
6 2p4p−1Kp/2C3(t− s) + 2p4p−1αp/2C3(t− s)

+ 2p4p−1(2α)p/2C3

∫t
s

E
(

sup
t0−τ<r6s

|xn(r)|
p
)
ds.

Hence, by Lemma 3.4, it follows that

E
(
|xn(t) − xn(s)|

p
)
6
[
2p4p−1Kp/2C3 + 2p4p−1αp/2C3(t− s) + 2p4p−1(2α)p/2C3Cm

]
(t− s).

and so the desired inequality follows immediately. This completes the proof.

As another application of Lemma 3.4, we showed the continuity of the p-th moment of the sequence
given in Theorem 3.5. In view of Theorem 3.5, we know that the p-th moment of the solution is continuous.

The following theorem shows that the Carathéodory sequence (3.10) converges to the unique solution
of the equation (3.9) and gives an estimate for difference between the approximate solution xn(t) and the
accurate solution x(t).

Theorem 3.6. Suppose that (3.2) and (3.3) hold. Then we have

E
(

sup
t06s6T

|x(s) − xn(s)|
p
)
6 4p−13(p/2)−1αp/2C1C8 exp

(
4p−13(p/2)−1αp/2(1 + 2p)C1(t− t0)

)
, (3.11)

where C1 is defined in Lemma 3.1,

C6 = [2pCj + (T − (t0 +
1
n
))Cl][1/n],C7 = 2pCj(

2
n
) +Cl(T − (t0 +

2
n
))(1/n),

and

C8 = (T − t0) + 2p−1(2C6 +C7).

Proof. By the Hölder inequality, Lemma 2.2, the equation (2.2), and the sequence (3.10), we can derive that

E
(

sup
t06s6t

|x(s) − xn(s)|
p
)
6 4p−1(t− t0)

p−1
∫t
t0

(
IDcn(s)|F1(x, xn)|p + IDn(s)|F2(x, xn)|p

)
ds

+ 4p−1
( p3

2(p− 1)

)p/2
(t− t0)

p−1
∫t
t0

(
IDcn(s)|G1(x, xn)|p + IDn(s)|G2(x, xn)|p

)
ds,

where

F1(x, xn) = F(x(s), x(s− δ(s)), s) − F(xn(s−
1
n
), xn(s− δ(s)), s),
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F2(x, xn) = F(x(s), x(s− δ(s)), s) − F(xn(s−
1
n
), xn(s− δ(s) −

1
n
), s),

G1(x, xn) = G(x(s), x(s− δ(s)), s) −G(xn(s−
1
n
), xn(s− δ(s)), s),

G2(x, xn) = G(x(s), x(s− δ(s)), s) −G(xn(s−
1
n
), xn(s− δ(s) −

1
n
), s).

By the conditions (3.2) and (3.3), we obtain

E
(

sup
t06s6t

|x(s) − xn(s)|
p
)
6 4p−1C1E

∫t
t0

IDcn(s)
[
κ(|f1(x, xn)|2 + |f2(x, xn)|2)

]p/2
ds

+ 4p−1C1E

∫t
t0

IDn(s)
[
κ(|f1(x, xn)|2 + |f3(x, xn)|2)

]p/2
ds,

where

f1(x, xn) = x(s) − xn(s−
1
n
), f2(x, xn) = x(s− δ(s)) − xn(s− δ(s)),

f3(x, xn) = x(s− δ(s)) − xn(s− δ(s) −
1
n
).

By the definition of κ(·), we obtain

E
(

sup
t06s6t

|x(s) − xn(s)|
p
)
6 4p−13(p/2)−1αp/2C1(t− t0) + 8p−13(p/2)−1αp/2C1E

∫t
t0

|x(s) − x(s−
1
n
)|pds

+ 8p−13(p/2)−1αp/2C1E

∫t
t0

IDn(s)|x(s− δ(s)) − x(s− δ(s) −
1
n
)|pds

+ 4p−13(p/2)−1αp/2(1 + 2p)C1

∫t
t0

E
(

sup
t06r6s

|x(r) − xn(r)|
p
)
ds.

But, using the inequalities (3.6) and (3.7), we can estimate∫t
t0

E|x(s) − x(s−
1
n
)|pds =

[
2pCj + (T − (t0 +

1
n
))Cl

] 1
n

.

Also, setting D0 = {t ∈ [t0, T ] : δ(t) = 0}, we have∫t
t0

E|x(s− δ(s)) − x(s− δ(s) −
1
n
)|pds 6

[
2pCj + (T − (t0 +

1
n
))Cl

] 1
n
+ 2pCj

2
n
+Cl(T − (t0 +

2
n
))

1
n

.

Therefore, we have

E
(

sup
t06s6t

|x(s) − xn(s)|
p
)
6 4p−13(p/2)−1αp/2C1(t− t0)

+ 8p−13(p/2)−1αp/2C1C6 + 8p−13(p/2)−1αp/2C1(C6 +C7)

+ 4p−13(p/2)−1αp/2(1 + 2p)C1

∫t
t0

E
(

sup
t06r6s

|x(r) − xn(r)|
p
)
ds,

where

C6 = [2pCj + (T − (t0 + 1/n))Cl][1/n], C7 = 2pCj(2/n) +Cl(T − (t0 + 2/n))(1/n).

Hence an application of the Gronwall inequality implies that

E
(

sup
t06s6t

|x(s) − xn(s)|
p
)
6 4p−13(p/2)−1αp/2C1C8 exp

(
4p−13(p/2)−1αp/2(1 + 2p)C1(t− t0)

)
,

where C8 = (T − t0) + 2p−1(2C6 + C7) and so the required result (3.11) follows. This completes the
proof.
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[6] M. Milošević, On the approximations of solutions to stochastic differential delay equations with Poisson random measure

via Taylor series, Filomat, 27 (2013), 201–214.
[7] Y. Ren, S.-P. Lu, N.-M. Xia, Remarks on the existence and uniqueness of the solutions to stochastic functional differential

equations with infinite delay, J. Comput. Appl. Math., 220 (2008), 364–372. 2, 2, 3
[8] Y. Ren, N.-M. Xia, Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations

with infinite delay, Appl. Math. Comput., 210 (2009), 72–79.
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