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1. Introduction

Let q ∈ (0, 1). In the theory of q-calculus, a q-number [x]q is defined by

[x]q =
1 − qx

1 − q
.

Similarly, for z ∈ C with |z| < 1, the q-exponential function eq(z) is defined by

eq(z) =

∞∑
n=0

zn

[n]q!
.

In this paper, we use the following notations:

[n]q! = [n]q[n− 1]q · · · [2]q[1]q, and
(
n

k

)
q

=
[n]q!

[k]q![n− k]q!
.
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The q-integral of a function f is defined by∫x
0
f(ξ)dqξ = x(1 − q)

∞∑
ξ=0

f(qξx)qξ.

For more on this and related issues, see, e.g., [4, 10–13, 15].
The q-derivative Dq is defined by

Dqf(x) =
dqf(x)

dqx
=
f(x) − f(qx)

(1 − q)x
, and lim

q→1
Dqf(x) =

df(x)

dx
.

For a systematic study of q-derivatives, we refer the reader to [4, 10, 12, 13, 15] and [11].
Recently, Kim [11] introduced q-Euler polynomials by means of the following generating function:

∞∑
n=0

En,q(x)
tn

[n]q!
=

[2]q
eq(t) + 1

eq(xt),

with En,q(0) = En,q (called the n-th q-Euler numbers).
Let us now consider λ extension of q-Euler polynomials (or can be called (λ,q)-Euler polynomials)

given by

∞∑
n=0

En,q(x | λ)
tn

[n]q!
=

[2]q
λeq(t) + 1

eq(xt), (1.1)

where λ ∈ R+.
Letting q → 1 in (1.1), one obtains the Apostol-Euler polynomial. Consequently, the polynomials

defined by (1.1) are a new q-generalization of Euler polynomial of Apostol type. For more information
on the Apostol-type polynomials, we refer the reader to recent works such as [6, 7, 16, 18] and [28].

Recent investigations on this topic include an elementary and real approach to values of the Riemann
zeta function [5], Apostol-Euler polynomials arising from the umbral calculus [16], a new generalization
of q-Bernoulli polynomial [17], a new q-generalization of Euler numbers and polynomials using the
method of Kupershmidt [11], additional theorems for the Appell polynomials and associated classes of
polynomial expansions [21], theorems on Apostol-Euler polynomials arising from Euler basis [27], a new
class of q-Euler and q-Bernoulli polynomials [19, 20], a modified q-Euler numbers of higher order with
weight [22], the zeta and the q-zeta functions and associated series and integrals [29].

Let F be the space of all formal power series in variable t over the complex number field C, namely

F =

{
f : f(t) =

∞∑
k=0

ak
tk

ck
, (ak ∈ C)

}
,

where ck is an admissible sequence, i.e., cn 6= 0 for all n > 0, and P = C[t] and let P∗ be the vector
space of all linear functionals on P. We also denote by 〈L|p(x)〉 the action of a linear functional L on the
polynomial p(x), which obviously satisfies the following properties:

〈L+M|p(x)〉 = 〈L|p(x)〉+ 〈M|p(x)〉,

and
〈βL|p(x)〉 = β〈L|p(x)〉,

where β is a complex constant (see, for details, [1, 9–16, 26] and [25]).
Roman [23, 26] defined linear functionals and operators as follows:

〈tk|xn〉 = cnδn,k, (n,k = 0), (1.2)
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〈f (t) |xn〉 = an, (n = 0), (1.3)

and

tkxn =

{ cn
cn−k

xn−k k 6 n,
0 n < k.

Roman also defined the following equivalent conditions in which sn (x) is known as Sheffer for
(g (t) , t), where g (t) is an invertible formal power series:

(S1)
〈
g (t) tk | sn (x)

〉
= cnδn,k;

(S2) tsn (x) = cn
cn−1

sn−1 (x) ;

(S3)
∑∞
k=0 sk (x)

tk

ck
= ξ(xt)

g(t) , where ξ (t) =
∑∞
k=0

tk

ck
.

Recently, Kim and Kim [12, 13] considered q-umbral calculus and derived some new interesting iden-
tities for q-Bernoulli and q-Euler polynomials. The following tools about q-umbral calculus are taken
from Kim and Kim’s works [12, 13].

Let

fL(t) =

∞∑
k=0

〈L|xk〉 t
k

[k]q!
.

Then, (1.2) gives us 〈fL(t)|xn〉 = 〈L|xn〉, that is, fL(t) = L. Moreover, the map L 7−→ fL(t) is an isomor-
phism from P∗ onto F. Henceforth F will denote both the algebra of formal power series in t and the
vector space of all linear functionals on P. Thus an element f(t) of F will be seen as a formal power
series and a linear functional. Kim and Kim [12, 13] called it q-umbral algebra which is the study of the
q-umbral calculus. From (1.3), we notice that

〈eq(yt)|xn〉 = yn,

and so
〈eq(yt)|p(x)〉 = p(y),

(
p(x) ∈ P

)
.

The order o(f(t)) of the power series f(t) 6= 0 is the smallest integer for which ak does not vanish. If
o(f(t)) = 0, then f(t) is called an invertible series. If o (f(t)) = 1, then f(t) is called a delta series (see
[1–4, 8–16, 23–26]). For f(t),g(t) ∈ F, we have

〈f(t)g(t)|p(x)〉 = 〈f(t)|g(t)p(x)〉 = 〈g(t)|f(t)p(x)〉.

Let f(t) ∈ F and p(x) ∈ P. Then we have (see, e.g., [10–15, 26] and [25]).

f(t) =

∞∑
k=0

〈f(t)|xk〉 t
k

[k]q!
, and p(x) =

∞∑
k=0

〈tk|p(x)〉 x
k

[k]q!
. (1.4)

Using (1.4), we obtain

p(k)(x) = Dkqp(x) =

∞∑
l=k

〈tl|p(x)〉
[l]q!

xl−k
k∏
s=1

[l− s+ 1]q,

which in turn yields

p(k)(0) = 〈tk|p(x)〉, and 〈1|p(k)(x)〉 = p(k)(0). (1.5)

Thus from (1.5), we note that
tkp(x) = p(k)(x) = Dkqp(x).
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Let f(t),g(t) ∈ F with o(f(t)) = 1 and o(g(t)) = 0. Then there exists a unique sequence sn(x) (deg
sn(x) = n) of polynomials such that

〈g(t)f(t)k|sn(x)〉 = [n]q!δn,k, (n,k = 0).

The sequence sn(x) is called the q-Sheffer sequence for
(
g(t), f(t)

)
, which is denoted by sn(x) ∼ (g(t), f(t)).

Let sn(x) ∼ (g(t), f(t)). For h(t) ∈ F and p(x) ∈ P, we have

h(t) =

∞∑
k=0

〈h(t)|sk(x)〉
[k]q!

g(t)f(t)k, and p(x) =

∞∑
k=0

〈g(t)f(t)k|p(x)〉
[k]q!

sk(x).

The sequence sn (x) is Appell for g(t) that

sn (x) =
1
g (t)

xn, if and only if, tsn (x) = [n]q sn−1 (x) , (see, e.g., [25]). (1.6)

Furthermore, for all y ∈ C, we get

1
g(f̄(t)

eq(yf(t)) =

∞∑
k=0

sk(y)

[k]q!
tk,

where f(t) is the compositional inverse of f(t). For further information about q-umbral calculus, we refer
the reader to see Kim and Kim’s works [12, 13].

Kim et al. (see [11–13, 15]) derived some interesting properties of the new family of q-Euler numbers
and polynomials from the viewpoint of the theory of the q-calculus. On the other hand, by using the
orthogonality type as defined in the umbral calculus, Kim et al. [16] derived explicit formulas for several
well-known polynomials as a linear combination of the Apostol-Euler polynomials.

The main objective of this paper consists of introducing (λ,q)-Euler polynomials that seem to be a new
q-generalization of Apostol-Euler polynomials. We derive several interesting properties and identities
arising from the q-umbral calculus. These numbers and polynomials have interesting properties in the
areas of both number theory and mathematical physics.

2. The (λ,q)-Euler Numbers and the (λ,q)-Euler Polynomials

Let us introduce the (λ,q)-extension of the Euler polynomials by means of the following generating
function:

[2]q
λeq(t) + 1

eq(xt) =

∞∑
n=0

En,q(x | λ)
tn

[n]q!
. (2.1)

Clearly, if x = 0, then En,q(0 | λ) = En,q (λ), which are known as the nth (λ,q)-Euler numbers. Using
(2.1), we obtain the following,

En,q(x | λ) =

n∑
l=0

(
n

l

)
q

El,q (λ) x
n−l. (2.2)

Using (2.2), the (λ,q)-Euler numbers can be found by means of the following identities:

E0,q (λ) =
2

λ+ 1
, and λEn,q(1 | λ) + En,q (λ) = [2]q δ0,n.

We immediately derive the following consequences based on (S1)-(S2) for q-polynomial with a param-
eter λ defined in (2.1),

En,q(x | λ) ∼

(
λeq(t) + 1

[2]q
, t

)
,
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tEn,q(x | λ) = [n]qEn−1,q(x | λ). (2.3)

It follows from (2.3) that En,q(x | λ) is Appell for λeq(t)+1
[2]q

. So, by the (1.6), we have

[2]q
λeq(t) + 1

xn = En,q(x | λ) (n = 0) .

Using (2.2), we obtain∫x+y
x

En,q(u | λ)dqu =

n∑
l=0

(
n

l

)
q

En−l,q (λ)
1

[l+ 1]q

{
(x+ y)l+1 − xl+1

}
=

1
[n+ 1]q

n∑
l=0

(
n+ 1
l+ 1

)
q

En−l,q (λ)
{
(x+ y)l+1 − xl+1

}
=

1
[n+ 1]q

(
En+1,q (x+ y | λ) − En+1,q (x | λ)

)
.

(2.4)

Thus, by applying (2.4), we get〈
eq (t) − 1

t
| En,q(x | λ)

〉
=

1
[n+ 1]q

〈
eq (t) − 1

t
| tEn+1,q(x | λ)

〉
=

1
[n+ 1]q

{
En+1,q (1 | λ) − En+1,q (λ)

}
=

∫ 1

0
En,q (u | λ)dqu.

(2.5)

Therefore, by (2.5), we obtain the following result.

Theorem 2.1. Let n = 0. Then 〈
eq(t) − 1

t
|En,q(x | λ)

〉
=

∫ 1

0
En,q(u | λ)dqu.

Now also, by using (1.2), we have〈
λeq (t) + 1

[2]q
tk | En,q (x | λ)

〉
=

[k]q!
[2]q

(
n

k

)
q

〈
λeq (t) + 1 | En−k,q (x | λ)

〉
= [n]q!δk,n.

From the last identity, we have

〈

(
λeq(t) + 1

[2]q

)
tk|En,q(x | λ)〉 = [n]q!δn,k. (2.6)

Let
Pn = {q(x) ∈ C[x]|degq(x) 6 n}.

Also, for q(x) ∈ Pn, we assume that

q(x) =

n∑
k=0

bk,qEk,q(x | λ). (2.7)
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It follows from (2.6) and (2.7) that

〈
λeq(t) + 1

[2]q
tk|q (x)〉 =

n∑
l=0

bl,q

〈
λeq (t) + 1

[2]q
tk | El,q (x | λ)

〉

=

n∑
l=0

bl,q [l]q!δl,k = [k]q!bk,q.

Furthermore

bk,q =
1

[k]q!
〈
λeq(t) + 1

[2]q
tk|q (x)〉 = 1

[2]q [k]q!

{
λq(k) (1) + q(k) (0)

}
, (2.8)

where
q(k)(x) = Dkqq(x).

Therefore, by (2.7) and (2.8), we obtain the following theorem.

Theorem 2.2. For q(x) ∈ Pn, let

q(x) =

n∑
k=0

bk,qEk,q(x | λ).

Then
bk,q =

1
[2]q [k]q!

{
λq(k) (1) + q(k) (0)

}
.

The q-Bernoulli polynomials Bn,q(x) are defined by

t

eq(t) − 1
eq (xt) =

∞∑
n=0

Bn,q(x)
tn

[n]q!
.

From this, we have for n = 0,

Bn,q(x) ∼

(
eq(t) − 1

t
, t
)

tBn,q(x) = [n]q Bn−1,q(x), (see [12] for details).

Let us take
q(x) = Bn,q(x) ∈ Pn.

Then Bn,q(x) can be generated as a linear combination of

{E0,q(x | λ),E1,q(x | λ), · · · ,En,q(x | λ)},

as follows:

Bn,q(x) =

n∑
k=0

bk,qEk,q(x | λ), (2.9)

where

bk,q =
1

[2]q [k]q!
〈
(λeq (t) + 1) tk | Bn,q (x)

〉
=

[n]q [n− 1]q · · · [n− k+ 1]q
[2]q [k]q!

〈
λeq (t) + 1 | Bn−k,q (x)

〉
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=
1

[2]q

(
n

k

)
q

〈
λeq (t) + 1 | Bn−k,q (x)

〉
=

1
[2]q

(
n

k

)
q

(
λBn−k,q (1) +Bn−k,q

)
,

where Bn,q := Bn,q (0) are called q-Bernoulli numbers, e.g., see [12]. Kim et al. [13] derived the following
identity:

B0,q = 1, and Bn,q(1) −Bn,q =

{
1 (n = 1) ,
0 (n > 1). (2.10)

Since B1,q = − 1
[2]q

, by (2.9) and (2.10), we have

Bn,q (x) = bn,qEn,q (x | λ) + bn−1En−1,q (x | λ) +

n−2∑
k=0

bk,qEk,q (x | λ)

=
λ+ 1
[2]q

En,q (x | λ) +
[n]q

[2]2q
(λq− 1)En−1,q (x | λ) +

λ+ 1
[2]q

n−2∑
k=0

(
n

k

)
q

Bn−k,qEk,q (x | λ) .

The previous facts can be formulated as follows:

Theorem 2.3. Let n = 2. Then

Bn,q(x) =
λ+ 1
[2]q

En,q(x | λ) +
[n]q

[2]2q
(λq− 1)En−1,q(x | λ)

+
λ+ 1
[2]q

n−2∑
k=0

(
n

k

)
q

Bn−k,qEk,q(x | λ).

For r ∈ Z=0, the higher-order (λ,q)-Euler polynomials E(r)n,q(x | λ) are defined by the following q-
Taylor expansion at t = 0: (

[2]q
λeq (t) + 1

)r
eq(xt) =

∞∑
n=0

E
(r)
n,q (x | λ)

tn

[n]q!
. (2.11)

In the case, x = 0, E(r)n,q(0 | λ) = E
(r)
n,q (λ) are called the rth higher-order (λ,q)-Euler numbers.

Let

gr(t | λ) =

(
λeq(t) + 1

[2]q

)r
.

It is clear that gr(t | λ) is an invertible series. It follows from (2.11) that En,q(x | λ) is Appell for(
λeq(t)+1

[2]q

)r
. So, by (1.6), we have

E
(r)
n,q(x | λ) =

1
gr(t | λ)

xn,

and

tE
(r)
n,q(x | λ) = [n]qE

(r)
n−1,q(x | λ).

Thus, we have

E
(r)
n,q(x | λ) ∼

((
λeq(t) + 1

[2]q

)r
, t

)
.
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By (1.2) and (2.11), we get〈
[2]rq

(λeq(t) + 1)r
eq(yt)|x

n

〉
= E

(r)
n,q(y | λ) =

n∑
l=0

(
n

l

)
q

E
(r)
n−l,q (λ)y

l. (2.12)

We thus find that〈(
[2]q

λeq (t) + 1

)r
| xn

〉
=

〈
[2]q

λeq (t) + 1
· · ·

[2]q
λeq (t) + 1

| xn
〉

=
∑

i1+···+ir=n

(
n

i1, · · · , ir

)
q

Ei1,q (λ) · · ·Eir,q (λ) , (2.13)

where (
n

i1, · · · , ir

)
q

=
[n]q!

[i1]q! · · · [ir]q!
.

By using (2.12), we have

〈
(

[2]q
λeq(t) + 1

)r
|xn〉 = E(r)n,q (λ) . (2.14)

Therefore, by (2.13) and (2.14), we obtain the following theorem.

Theorem 2.4. Let n = 0. Then

E
(r)
n,q (λ) =

∑
i1+···+ir=n

(
n

i1, · · · , ir

)
q

Ei1,q (λ) · · ·Eir,q (λ) .

Let us take
q(x) = E

(r)
n,q(x | λ) ∈ Pn.

Then, by Theorem 2.2, we write

E
(r)
n,q(x | λ) =

n∑
k=0

bk,qEk,q(x | λ), (2.15)

where the coefficient bk,q is given by

bk,q =
1

[2]q [k]q!
〈
(λeq (t) + 1) tk | q (x)

〉
=

1
[2]q [k]q!

〈
(λeq (t) + 1) tk | q (x)

〉
=

(
n
k

)
q

[2]q

〈
(λeq (t) + 1) | E(r)n−k,q(x | λ)

〉
=

(
n
k

)
q

[2]q

(
λE

(r)
n−k,q (1 | λ) + E

(r)
n−k,q (λ)

)
.

From (2.11), we have∞∑
k=0

(
λE

(r)
n,q (1 | λ) + E

(r)
n,q (λ)

) tn

[n]q!
=

(
[2]q

λeq (t) + 1

)r
(λeq (t) + 1)

= [2]q

(
[2]q

λeq (t) + 1

)r−1

=

∞∑
n=0

[2]q E
(r−1)
n,q (λ)

tn

[n]q!
.

By comparing the coefficients t
n

n! in the above equation, we get

λE
(r)
n,q(1 | λ) + E

(r)
n,q (λ) = [2]q E

(r−1)
n,q (λ) . (2.16)

Thus, clearly, the following theorem is derivable by applying (2.15) and (2.16).
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Theorem 2.5. Let n ∈ Z=0 and r ∈ Z>0. Then

E
(r)
n,q(x | λ) =

n∑
k=0

(
n

k

)
q

E
(r−1)
n−k,q (λ)Ek,q(x | λ).

Let us assume that

q(x) =

n∑
k=0

brk,qE
(r)
k,q(x | λ) ∈ Pn.

By a similar method, we find the coefficient brk,q as follows:

brk,q =
1

[2]rq [k]q!

r∑
l=0

(
r

l

)
λl
∑
m=0

∑
i1+···+il=m

(
m

i1, · · · , il

)
q

1
[m]q!

q(m+k)(0).

Therefore, we obtain the following theorem.

Theorem 2.6. For n = 0, let

q(x) =

n∑
k=0

brk,qE
(r)
k,q(x | λ) ∈ Pn.

Then

brk,q =
1

[2]rq [k]q!
〈
(λeq (t) + 1)r tk | q (x)

〉
=

1
[2]rq [k]q!

∑
m=0

r∑
l=0

(
r

l

)
λl

∑
i1+···+il=m

(
m

i1, · · · , il

)
q

1
[m]q!

q(m+k)(0),

where
q(k)(x) = Dkqq(x).

Let us consider q(x) = En,q(x | λ) ∈ Pn. Then, by Theorem 2.6, we write

En,q(x | λ) =

n∑
k=0

brk,qE
(r)
k,q(x | λ). (2.17)

By applying Theorem 2.6 and (2.17), we are led to the following result.

Theorem 2.7. For n, r = 0, the following assertion holds true:

En,q(x | λ) =
1

[2]rq

n∑
k=0

(

n−k∑
m=0

r∑
l=0

∑
i1+···+il=m

λl
(
r

l

)(
m

i1, · · · , il

)
q

(
m+ k

m

)
q

(
n

m+ k

)
q

· En−m−k,q (λ))E
(r)
k,q(x | λ).

3. Concluding remarks and observations

We have investigated various properties of a new q-generalization of the Apostol-Euler polynomials
which we introduced by using the usual q-exponential function eq(x). These properties and other related
identities are shown to arise from the q-umbral calculus. Two of the main results presented in our
investigation (Theorem 2.2 and Theorem 2.6) seem to be sufficiently deep and general for obtaining not
only new, but also interesting, identities related to some special polynomials in terms of other new q-
generalizations of the Euler polynomials of the Apostol type.
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