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Abstract
In this paper, we consider a class of nonlinear fractional differential equations involving the Riemann-Liouville fractional

derivative with infinite-point integral boundary conditions. Our analysis relies on the fixed point index theory and u0-positive
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1. Introduction

Fractional calculus developed since 17th century through the pioneering works of Leibniz, Euler, La-
grange, Liouville and many other researchers and has been investigated in diverse. The recent develop-
ment covers the theoretical as well as potential applications of the subject in physical and technical science.
Recently, Atangana and Baleanu proposed a derivative with fractional order based upon the Mittag-Leffler
function which has a non-singular and nonlocal kernel, see [2, 3] and the references therein. Fractional
differential equations have been of great interest recently, see [6, 10, 11]. There are many results dealing
with the existence and multiplicity of solutions of nonlinear fractional differential equations by the means
of techniques of nonlinear analysis, see [1, 4, 8, 9, 12].

In [13], Zhang studied the existence of positive solutions of the following nonlinear fractional differ-
ential equations with infinite-point boundary value conditions:

Dα0+u(t) + q(t)f(t,u(t)) = 0, 0 < t < 1, n− 1 < α 6 n,

u(0) = u
′
(0) = · · · = u(n−2)(0) = 0, u(i)(1) =

∞∑
j=1

αju(ξj),
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where α > 2, i ∈ [1,n− 2] is a fixed integer, αj > 0, 0 < ξ1 < ξ2 < · · · < ξj−1 < ξj < · · · < 1 (j =
1, 2, . . .), ∆−

∑∞
j=1 αjξ

α−1
j > 0, ∆ = (α− 1)(α− 2) · · · (α− i), and Dα0+ is the standard Riemann-Liouville

derivative. By using the fixed point theorem, several local existence and multiplicity of positive solutions
were obtained.

Motivated by the work mentioned above, in this paper, we study the following nonlinear fractional
differential equations with infinite-point integral boundary value conditions:

Dα0+u(t) + q(t)f(t,u(t)) = 0, 0 < t < 1, n− 1 < α 6 n,

u(0) = u
′
(0) = · · · = u(n−2)(0) = 0, u(i)(1) =

∞∑
j=1

αjI
β
0+u(ξj),

(1.1)

where α > 2, β > 0, i ∈ [0,n− 2] is a fixed integer, αj > 0, 0 < ξ1 < ξ2 < · · · < ξj−1 < ξj < · · · < 1 (j =

1, 2, . . .), ∆−
∑∞
j=1

Γ(α)
Γ(α+β)αjξ

α+β−1
j > 0 (∆ will be defined in Lemma 2.3 below), and Dα0+ is the standard

Riemann-Liouville differential operator.
Here, we emphasize that the infinite-point integral boundary value condition of (1.1) can be under-

stood in the sense that the value of the unknown function u(i)(t) at the position t = 1 is proportional to
the infinite-point Riemann-Liouville integral of the unknown function

∑∞
j=1 αjI

β
0+u(ξj). Furthermore, for

β = 0, the integral boundary value condition of (1.1) reduces to the usual form of infinite-point boundary
value condition u(i)(1) =

∑∞
j=1 αju(ξj), which has been considered in [13].

The rest of the paper is organized as follows. In Section 2, we list some lemmas. The uniqueness
results are given in Section 3. In Section 4, an example is presented to illustrate the main results.

2. Preliminaries

We list the following assumptions adopted in this paper:

(A1) q : (0, 1)→ [0,+∞) is continuous and 0 <
∫1

0 p(s)ds < +∞;
(A2) f : [0, 1]×R→ R is continuous.

For the convenience of the reader, we present here some necessary definitions of the fractional calculus
which can be found in the recent literature [6, 10, 11].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function f : (0,∞) → R is
given by

Iα0+f(t) =
1
Γ(α)

∫t
0
(t− s)α−1f(s)ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 of a continuous function
f : (0,∞)→ R is given by

Dα0+f(t) =
1

Γ(n−α)

(
d

dt

)n ∫t
0
(t− s)n−α−1f(s)ds,

where n− 1 6 α < n, provided that the right-hand side is pointwise defined on (0,∞).

Lemma 2.3. Assume that y(t) ∈ C([0, 1]), then the problem
Dα0+u(t) + y(t) = 0, 0 < t < 1, n− 1 < α 6 n,

u(0) = u
′
(0) = · · · = u(n−2)(0) = 0, u(i)(1) =

∞∑
j=1

αjI
β
0+u(ξj),

(2.1)
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where ∆−
∑∞
j=1

Γ(α)
Γ(α+β)αjξ

α+β−1
j > 0, i ∈ [0,n− 2] is a fixed integer, is equivalent to

u(t) =

∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) =
1

p(0)Γ(α)

{
tα−1p(s)(1 − s)α−1−i − p(0)(t− s)α−1, 0 6 s 6 t 6 1,
tα−1p(s)(1 − s)α−1−i, 0 6 t 6 s 6 1,

(2.2)

with p(s) := ∆− Σs6ξj
Γ(α)
Γ(α+β)αj(ξj − s)

α+β−1(1 − s)i+1−α and

∆ =

{
1, i = 0,
(α− 1)(α− 2) · · · (α− i), i > 1.

G(t, s) is called Green’s function of FBVP (2.1). Obviously, G(t, s) is a continuous function on [0, 1]× [0, 1].

Proof. It is easy to see that problem (2.1) is equivalent to the following integral equation

u(t) = −Iα0+y(t) +C1t
α−1 +C2t

α−2 + · · ·+Cntα−n.

By u(0) = u
′
(0) = · · · = u(n−2)(0) = 0, we have

C2 = C3 = · · · = Cn = 0.

Then, we get

u(t) = −Iα0+y(t) +C1t
α−1.

By u(i)(1) =
∑∞
j=1 αjI

β
0+u(ξj), we have

−Iα−i0+ y(1) +C1∆ =

∞∑
j=1

αj

{
− Iα+β0+ y(ξj) +C1

Γ(α)

Γ(α+β)
ξ
α+β−1
j

}
.

When ∆−
∑∞
j=1

Γ(α)
Γ(α+β)αjξ

α+β−1
j 6= 0, we obtain that

C1 =
1

∆−
∑∞
j=1

Γ(α)
Γ(α+β)αjξ

α+β−1
j

{
Iα−i0+ y(1) −

∞∑
j=1

αjI
α+β
0+ y(ξj)

}
.

Let p(s) := ∆−Σs6ξj
Γ(α)
Γ(α+β)αj(ξj− s)

α+β−1(1− s)i+1−α, then p(0) = ∆−
∑∞
j=1

Γ(α)
Γ(α+β)αjξ

α+β−1
j . There-

fore, the solution to problem (2.1) is

u(t) =− Iα0+y(t) +
tα−1

p(0)

{
Iα−i0+ y(1) −

∞∑
j=1

αjI
α+β
0+ y(ξj)

}

=−
1
Γ(α)

∫t
0
(t− s)α−1y(s)ds

+
tα−1

p(0)

{
1

Γ(α− i)

∫ 1

0
(1 − s)α−i−1y(s)ds−

∞∑
j=1

αj

Γ(α+β)

∫ξj
0
(ξj − s)

α+β−1y(s)ds
}

=
1

p(0)Γ(α)

{
− p(0)

∫t
0
(t− s)α−1y(s)ds+∆tα−1

{∫t
0
+

∫ 1

t

}
(1 − s)α−i−1y(s)ds
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−

∞∑
j=1

αjΓ(α)

Γ(α+β)
tα−1

∫ξj
0
(ξj − s)

α+β−1y(s)ds

}

=

∫ 1

0
G(t, s)y(s)ds.

The proof is finished.

Lemma 2.4. Suppose that p(0) > 0, then p(s) > 0, s ∈ [0, 1], and p(s) is nondecreasing on [0, 1].

Proof. By simple computation, we know that p
′
(s) > 0 which implies that p(s) is nondecreasing on [0, 1].

We omit the details.

It is clear that p(s) − p(0) > 0, ∀s ∈ (0, 1], and p(s)−p(0)
s is continuous for all s ∈ (0, 1]. Then, there

exists M1 > m1 > 0, such that m1s+ p(0) 6 p(s) 6M1s+ p(0), where

m1 := inf
0<s61

p(s) − p(0)
s

, M1 := sup
0<s61

p(s) − p(0)
s

.

Lemma 2.5. The function G(t, s) defined by (2.2) satisfies the following conditions:

(i) p(0)Γ(α)G(t, s) > m1s(1 − s)α−1−itα−1, ∀t, s ∈ [0, 1];
(ii) p(0)Γ(α)G(t, s) 6 [M1 + p(0)](1 − s)α−1−itα−1, ∀t, s ∈ [0, 1];

(iii) G(t, s) > 0, ∀t, s ∈ (0, 1).

Proof. For 0 6 s 6 t 6 1, we have

p(0)Γ(α)G(t, s) = tα−1p(s)(1 − s)α−1−i − p(0)(t− s)α−1

= [p(s) − p(0)](1 − s)α−1−itα−1 + p(0)[(1 − s)α−1−itα−1 − (t− s)α−1]

> m1s(1 − s)α−1−itα−1 + p(0)[(1 − s)α−1tα−1 − (t− s)α−1]

> m1s(1 − s)α−1−itα−1,

and

p(0)Γ(α)G(t, s) = tα−1p(s)(1 − s)α−1−i − p(0)(t− s)α−1

= [p(s) − p(0)](1 − s)α−1−itα−1 + p(0)[(1 − s)α−1−itα−1 − (t− s)α−1]

6M1s(1 − s)α−1−itα−1 + p(0)(1 − s)α−1−itα−1

6 [M1 + p(0)](1 − s)α−1−itα−1.

For 0 6 t 6 s 6 1, we have

p(0)Γ(α)G(t, s) = tα−1p(s)(1 − s)α−1−i > [p(s) − p(0)](1 − s)α−1−itα−1 > m1s(1 − s)α−1−itα−1,

and

p(0)Γ(α)G(t, s) = tα−1p(s)(1 − s)α−1−i

= [p(s) − p(0)](1 − s)α−1−itα−1 + p(0)(1 − s)α−1−itα−1

6M1s(1 − s)α−1−itα−1 + p(0)(1 − s)α−1−itα−1

6 [M1 + p(0)](1 − s)α−1−itα−1.

The proof is finished.
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Let Banach space E = C([0, 1]) be endowed with the norm ‖u‖∞ = max
06t61

|u(t)|, and θ is the zero

function in E. Define a closed cone P ⊂ E by P = {u ∈ E | u(t) > 0, t ∈ [0, 1]}.

Lemma 2.6 (Krein-Rutmann theorem [5]). Suppose that T : E → E is a completely continuous linear operator
and T(P) ⊆ P. If there exist ψ ∈ C[0, 1]\(−P) and a constant c > 0 such that cTψ > ψ, then the spectral radius
r(T) 6= 0 and T has a positive eigenfunction ϕ1 corresponding to its first eigenvalue λ1 = (r(T))−1.

Definition 2.7 ([7]). We say that a bounded linear operator T : E→ E is u0-positive on the cone P if there
exists u0 ∈ P \ {θ} such that for every x ∈ P \ {θ} there exist a natural number n and positive functions
α(x) > 0, β(x) > 0 such that

α(x)u0 6 Tnx 6 β(x)u0,

where θ is the zero function in E. Furthermore, if u0 = ϕ1, the positive eigenfunction of T corresponding
to its first eigenvalue λ1, then T is a ϕ1-positive operator.

Define the operator A : E→ E by

(Au)(t) =

∫ 1

0
G(t, s)q(s)f(s,u(s))ds, t ∈ [0, 1].

It is not hard to see that the fixed points of operator A coincide with the solutions to the FBVP (1.1).
Define the operator T : E→ E by

(Tu)(t) =

∫ 1

0
G(t, s)q(s)u(s)ds, t ∈ [0, 1]. (2.3)

It is not difficult to verify that T : P → P is a completely continuous linear operator. By virtue of the
Krein-Rutmann theorem, we have the following lemma.

Lemma 2.8. Suppose T is defined by (2.3), then the spectral radius r(T) 6= 0 and T has a positive eigenfunction ϕ1
corresponding to its first eigenvalue λ1 = (r(T))−1.

Proof. By Lemma 2.5, G(t, s) > 0 for all t, s ∈ (0, 1). Take [t1, t2] ⊂ (0, 1), q(t) > 0, ∀t ∈ [t1, t2], choose
ψ ∈ E such that ψ(t) > 0 for all t ∈ [0, 1], ψ(t) > 0 for all t ∈ [t1, t2], ψ(t) = 0 for all t ∈ [0, t1) ∪ (t2, 1].
Thus, we have

(Tψ)(t) =

∫ 1

0
G(t, s)q(s)ψ(s)ds =

∫t2

t1

G(t, s)q(s)ψ(s)ds > 0.

So, there exists a constant c > 0 such that c(Tψ)(t) > ψ(t), ∀t ∈ [0, 1]. By Lemma 2.6, we complete the
proof.

Lemma 2.9. T is u0-positive operator with u0(t) = tα−1. In addition, T is ϕ1-positive operator, where ϕ1 is the
positive eigenfunction corresponding to its first eigenvalue.

Proof. For any x ∈ P\{θ}, by Lemma 2.5, we have

(Tx)(t) =

∫ 1

0
G(t, s)q(s)x(s)ds 6

1
p(0)Γ(α)

∫ 1

0
[M1 + p(0)](1 − s)α−1−iq(s)x(s)ds · tα−1.

On the other hand, we have

(Tx)(t) =

∫ 1

0
G(t, s)q(s)x(s)ds >

1
p(0)Γ(α)

∫ 1

0
m1s(1 − s)α−1−iq(s)x(s)ds · tα−1.

Therefore, T is u0-positive operator with u0(t) = t
α−1, i.e.,

α(x)u0 6 Tx 6 β(x)u0, ∀x ∈ P\{θ}.
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Let ϕ1 be the positive eigenfunction of T corresponding to λ1, i.e., ϕ1 = λ1Tϕ1. Then, there exist
α̃(ϕ1), β̃(ϕ1) > 0 such that

α̃(ϕ1)u0 6 Tϕ1 =
1
λ1
ϕ1 6 β̃(ϕ1)u0.

Hence, we obtain that T is ϕ1-positive operator. The proof is completed.

3. Main results

Theorem 3.1. Suppose that there exists K ∈ [0, λ1) such that

| f(t,u) − f(t, v) | 6 K | u− v |, ∀u, v ∈ E,

where λ1 is the first eigenvalue of T . Then the FBVP (1.1) has a unique solution u∗ in E, moreover, for any u0 ∈ E,
there exists iterative sequence {un}∞n=0 with

un+1 = Aun, lim
n→∞un = u∗, n = 0, 1, 2, . . . .

Proof. Firstly, it is not hard to see that the fixed points of operator A coincide with the solutions to the
problem (1.1).

Secondly, we will show that A has fixed points in E. For any given u0 ∈ E, let un+1 = Aun. By Lemma
2.9, there exists β = β(|u1 − u0|) > 0, such that

(T |u1 − u0|)(t) 6 βϕ1(t), t ∈ [0, 1].

Let K = kλ1, k ∈ [0, 1), for any m ∈N, we have

|um+1 − um| = |(Aum)(t) − (Aum−1)(t)|

=
∣∣ ∫ 1

0
G(t, s)q(s)[f(s,um(s)) − f(s,um−1(s))]ds

∣∣
6
∫ 1

0
G(t, s)q(s)

∣∣f(s,um(s)) − f(s,um−1(s))
∣∣ds

6 kλ1

∫ 1

0
G(t, s)q(s)|um − um−1|ds

= kλ1T(|um − um−1|)(t)

6 · · · 6 kmλm1 Tm(|u1 − u0|)(t)

6 kmλm1 T
m−1βϕ1(t)

= βkmλm−1
1 Tm−2ϕ1(t) = βk

mλ1ϕ1(t).

Thus, for n,m ∈N, we have∣∣un+m+1 − un
∣∣ = ∣∣un+m+1 − un+m + · · ·+ un+1 − un

∣∣
6

∣∣un+m+1 − un+m
∣∣+ · · ·+ ∣∣un+1 − un

∣∣
6 β[kn+m + · · ·+ kn]λ1ϕ1(t)

= βλ1
kn(1 − km+1)

1 − k
ϕ1(t).

Therefore,

0 6 ‖un+m+1 − un‖ 6 βλ1
kn(1 − km+1)

1 − k
‖ϕ1(t)‖ → 0, as n,m→∞.
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By the completeness of E, there exists a u∗ ∈ E such that lim
n→∞un = u∗.

Thus, u∗ = lim
n→∞un+1 = lim

n→∞Aun = Au∗, A have fixed points in E.
Finally, we will show that A has at most one fixed point in E. Suppose there exist two fixed points

u, v ∈ E, u = Au, v = Av. By Lemma 2.9, there exists β = β(|u− v|) > 0, such that

(T |u− v|)(t) 6 βϕ1(t), t ∈ [0, 1].

Then for all n ∈N, the following holds

|u− v| = |Anu−Anv| 6 βknλ1ϕ1.

This means that u = v, and A has at most one fixed point in E. The proof is completed.

Remark 3.2. The iterative sequence in Theorem 3.1 starting with a simple function is helpful for calculating.
By the same method of [4], we have the following results. We omit the details.

Theorem 3.3. Suppose that there exist u0 ∈ E, K ∈ [0, λ1) such that
Dα0+u0(t) + q(t)f(t,u0(t)) > 0, 0 < t < 1, n− 1 < α 6 n,

u0(0) = u
′
0(0) = · · · = u

(n−2)
0 (0) = 0, u(i)0 (1) 6

∞∑
j=1

αjI
β
0+u0(ξj),

0 6 f(t,u) − f(t, v) 6 K(u− v), u(t) > v(t), ∀t ∈ [0, 1], u, v ∈ Ω,

where λ1 is the first eigenvalue of T , Ω = {u ∈ E|u > u0}. Then the FBVP (1.1) has a unique solution u∗ in Ω.

Theorem 3.4. Suppose that there exist u0 ∈ E, K ∈ [0, λ1) such that
Dα0+u0(t) + q(t)f(t,u0(t)) 6 0, 0 < t < 1, n− 1 < α 6 n,

u0(0) = u
′
0(0) = · · · = u

(n−2)
0 (0) = 0, u(i)0 (1) >

∞∑
j=1

αjI
β
0+u0(ξj),

0 6 f(t,u) − f(t, v) 6 K(u− v), u(t) > v(t), ∀t ∈ [0, 1], u, v ∈ Ω,

where λ1 is the first eigenvalue of T , Ω = {u ∈ E|u 6 u0}. Then the FBVP (1.1) has a unique solution u∗ in Ω.

4. An example

Example 4.1. Consider the following problem
D

7/2
0+ u(t) + λ0(1 − t)−1/2[

1
3
u+ 2 + 5t3 + sin t+

1
2
t2u] = 0, 0 < t < 1,

u(0) = u ′(0) = u ′′(0) = 0, u ′(1) =
∞∑
j=1

8
j2
I

3/2
0+ u

(
1
2j

)
,

(4.1)

where α = 7
2 , i = 1, αj = 8

j2
, β = 3

2 , ξj = 1
2j , Γ(

7
2) ≈ 3.32335, ∆ = 2.5, p(0) = ∆−

∑∞
j=1

Γ(α)
Γ(α+β)αjξ

α+β−1
j ≈

2.38611 > 0, and q(t) = (1 − t)−1/2, f(t,u(t)) = λ0[
1
3u+ 2 + 5t3 + sin t+ 1

2t
2u], 0 < λ0 < λ1, λ1 is the first

eigenvalue of the operator T .
It is clear that (A1), (A2) hold. For all u, v ∈ E, we have∣∣f(t,u(t)) − f(t, v(t))∣∣ 6 λ0

∣∣[1
3
(u− v) +

1
2
t2(u− v)]

∣∣ 6 λ1
5
6
|u− v|.

It follows from Theorem 3.1 that FBVP (4.1) has a unique solution, moreover, for any u0 ∈ E, there
exists iterative sequence {un}

∞
n=0 with

un+1 = Aun, lim
n→∞un = u∗, n = 0, 1, 2, . . . .
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