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Abstract
A fixed point method is introduced for solving the split common fixed point problem of demicontractive operators in

Hilbert spaces. By virtue of this fixed point method, we construct an iteration based on Mann’s method for solving the split
common fixed point problem of demicontractive operators. Weak convergence analysis is given under some mild assumptions.
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1. Introduction

The main purpose of the present paper is to study the split common fixed point problem. To begin
with, let us state the related background.

Throughout, H1 and H2 are two real Hilbert spaces, 〈·, ·〉 denotes the inner product, and ‖ · ‖ stands
for the corresponding norm. Let U : H1 → H1 and T : H2 → H2 be two nonlinear operators. We use Fix(U)
and Fix(T) to denote the fixed point sets of U and T , respectively. Let A : H1 → H2 be a bounded linear
operator with its adjoint A∗.

Recall that the split common fixed point problem is to seek an element x∗ ∈ H1 such that

x∗ ∈ Fix(U) and Ax∗ ∈ Fix(T). (1.1)

Remark 1.1. The split common fixed point problem (1.1) is a generalization of the split feasibility problem
arising from signal processing and image restoration ([3, 4, 10, 13, 14, 16, 20]), which is to find a point x∗

such that
x∗ ∈ C and Ax∗ ∈ Q, (1.2)

where C ⊂ H1 and Q ⊂ H2 are two nonempty closed convex sets.
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Problem (1.1) was firstly introduced by Censor and Segal [5]. Note that, solving (1.1) can be translated
to solve the fixed point equation

x∗ = U(x∗ − τA∗(I− T)Ax∗), τ > 0.

Whereafter, Censor and Segal proposed the following algorithm for directed operators.

Algorithm 1.2. Initialization: let x∗ ∈ H1 := Rn be arbitrary.
Iterative step: for n > 0, let

xn+1 = U(xn − τA∗(I− T)Axn), n > 0, (1.3)

where U : Rn → Rn and T : Rm → Rm are two directed operators and τ ∈ (0, 2/λ) with λ being the
spectral radius of the operator A∗A.

Furthermore, Moudafi [8] considered the following relaxation version of (1.3) for k-demicontractive
operators.

Algorithm 1.3. Initialization: let x0 ∈ H1 be arbitrary.
Iterative step: for n > 1, assume the n-th iteration xn is constructed. Compute the (n+ 1)-th iteration

xn+1 by the following form {
yn = xn − τA∗(I− T)Axn,
xn+1 = (1 −αn)yn +αnU(yn), n > 1,

where αn ∈ (0, 1) and τ ∈ (0, 1−k
γ ) with γ being the spectral radius of the operator A∗A.

Since then, there has been growing interest in the split common fixed point problem [6, 14, 19]. In
particular, Wang [9] noted that problem (1.1) can be cast as solving the following fixed-point equation

x = x− τ[(x−Ux) +A∗(I− T)Ax], (1.4)

where τ > 0 is a constant and U and T are directed operators.
Based on the equation (1.4), Wang [9] suggested the following iterative scheme:

xn+1 = xn − τ[(xn −Uxn) +A
∗(I− T)Axn],n > 0,

where the stepsize τ is in the interval (0, 1
max{1,‖A‖2}

) and proved weak convergence of the sequence {xn}

to the solution of problem (1.1).
Very recently, Yao et al. [17] further suggested another new fixed point equation

x = Ux− τA∗(I− T)Ax, (1.5)

where τ > 0 is a constant and U and T are directed operators.
Remark 1.4. Fixed point equation (1.5) is different from (1.4). Fixed point equations (1.4) and (1.5) rely on
the properties of the operators U and T .

On the other hand, construction of fixed points of nonlinear operators is an important and active
research area. Iterative methods for finding fixed points of nonexpansive mappings have received vast
investigation by Browder and Petryshyn [2], Wittmann [11], Xu [12], Yao et al. [15, 18, 21], and Zegeye et
al. [22]. An important way for finding fixed points of nonexpansive mappings is Mann’s method which
generates a sequence {xn} by the form

xn+1 = (1 −αn)xn +αnTxn, n > 0,

where αn ∈ (0, 1).
Inspired by the work in the literature, the main purpose of this paper is to apply the fixed point

method for solving the split common fixed point problem (1.1). We first extend fixed point equation from
the directed operators to the demicontractive operators. Subsequently, we construct an iteration based on
Mann’s method for solving the split common fixed point problem. Weak convergence theorem is given
under some mild assumptions.
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2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H.

Definition 2.1. An operator T : C→ C is said to be directed if

‖Tx− x†‖2 6 ‖x− x†‖2 − ‖Tx− x‖2

for all x ∈ C and x† ∈ Fix(T).

The class of directed operators is an important class since it includes the orthogonal projections and
the subgradient projectors which are fundamental in the convex optimization.

Definition 2.2. An operator T is called demicontractive if there exists a constant β ∈ [0, 1) such that

‖Tx− q‖2 6 ‖x− q‖2 +β‖x− Tx‖2,

or equivalently

〈x− Tx, x− q〉 > 1 −β

2
‖x− Tx‖2 (2.1)

for all (x,q) ∈ H× Fix(T).

Remark 2.3. It is clear that the demicontractive operators include the directed operators as special cases.
The class of demicontractive operators is fundamental because many common types of operators arising
in optimization belong to this class, see for example [7] and references therein.

Definition 2.4. An operator T is said to be demiclosed if for any sequence {xn} which weakly converges
to x̃, and if the sequence {T(xn)} strongly converges to z, then T(x̃) = z.

In what follows, only the particular case of demiclosedness at zero will be used, which is the particular
case when z = 0. This notion is frequently used in the study of Mann-type iteration.

Recall that the (nearest point or metric) projection from H onto C, denoted by projC, assigns to each
x ∈ H, the unique point projC(x) ∈ C with the property

‖x− projC(x)‖ = inf{‖x− y‖ : y ∈ C}.

The metric projection projC of H onto C is characterized by

〈x− projC(x),y− projC(x)〉 > 0

for all x ∈ H,y ∈ C.

Definition 2.5. A sequence {xn} is called Fejér-monotone with respect to a given nonempty set Ω if for
every x ∈ Ω

‖xn+1 − x‖ 6 ‖xn − x‖ for all n > 0.

Next we adopt the following notations:

• xn ⇀ x means that xn converges weakly to x;

• ωw(xn) := {x : ∃xnj ⇀ x} is the weak ω-limit set of the sequence {xn}.

Lemma 2.6 ([1]). Let Ω be a nonempty closed convex subset in H. If the sequence {xn} is Fejér monotone with
respect to Ω, then we have the following conclusions:

(i) xn ⇀ x† ∈ Ω iff ωw(xn) ⊂ Ω;
(ii) the sequence {projΩ(xn)} converges strongly;

(iii) if xn ⇀ x† ∈ Ω, then x† = limn→∞ projΩ(xn).
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3. Main results

In this section, we will consider the split common fixed point problem (1.1) under the following
assumptions.

Let H1 and H2 be two real Hilbert spaces. Let U : H1 → H1 and T : H2 → H2 be two demicontractive
operators with constants β and µ, respectively. Let A : H1 → H2 be a bounded linear operator with its
adjoint operator A∗.

Denote the solution set of problem (1.1) by Ω, that is,

Ω = {z∗ : z∗ ∈ Fix(U) and Az∗ ∈ Fix(T)}.

The following lemma plays a key role for solving problem (1.1).

Lemma 3.1. z∗ solves (1.1) iff z∗ ∈ Fix(U− τA∗(I− T)A) for any τ > 0.

Proof. If z∗ solves (1.1), then z∗ = Uz∗ and (I− T)Az∗ = 0. It is obvious that z∗ ∈ Fix(U− τA∗(I− T)A) for
any τ > 0.

To see the converse, let z∗ ∈ Fix(U− τA∗(I− T)A), ∀τ > 0. Then,

z∗ = Uz∗ − τA∗(I− T)Az∗. (3.1)

Taking z ∈ Ω, from (3.1), we obtain

0 = 〈z∗ −Uz∗ + τA∗(I− T)Az∗, z∗ − z〉 = 〈z∗ −Uz∗, z∗ − z〉+ τ〈A∗(I− T)Az∗, z∗ − z〉
= 〈z∗ −Uz∗, z∗ − z〉+ τ〈(I− T)Az∗,Az∗ −Az〉.

Since U and T are demicontractve, from (2.1), we deduce

〈z∗ −Uz∗, z∗ − z〉 > 1 −β

2
‖z∗ −Uz∗‖2,

and
〈(I− T)Az∗,Az∗ −Az〉 > 1 − µ

2
‖(I− T)Az∗‖2.

Hence,

0 = 〈z∗ −Uz∗ + τA∗(I− T)Az∗, z∗ − z〉 > 1 −β

2
‖z∗ −Uz∗‖2 +

1 − µ

2
τ‖(I− T)Az∗‖2.

Thus, z∗ ∈ Fix(U) and Az∗ ∈ Fix(T) for τ > 0 and β,µ ∈ [0, 1). Therefore, z∗ solves problem (1.1). The
proof is completed.

By using Lemma 3.1, we can construct the following Mann’s algorithm for solving problem (1.1).

Algorithm 3.2. Initialization: let x0 be arbitrary.
Iterative step: for n > 0, given the current iterate xn, calculate the next iterate xn+1 by the following

Mann’s form
xn+1 = (1 − γ)xn + γ[Uxn − τA∗(I− T)Axn], n > 0, (3.2)

where γ ∈ (0, 1−β
2 ) is a constant.

Theorem 3.3. Assume that I−U and I− T are demiclosed at zero. If Ω 6= ∅, then the sequence {xn} generated by
(3.2) converges weakly to a solution z∗(= limn→∞ projΩ(xn)) of problem (1.1) provided τ ∈ (0, 1−µ

2γ‖A‖2 ).
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Proof. Firstly, we show that the sequence {xn} is Fejér-monotone with respect to Ω. Taking any z ∈ Ω,
from (2.1), we have

〈xn −Uxn + τA∗(I− T)Axn, xn − z〉 = 〈xn −Uxn, xn − z〉+ τ〈A∗(I− T)Axn, xn − z〉
= 〈xn −Uxn, xn − z〉+ τ〈(I− T)Axn,Axn −Az〉

>
1 −β

2
‖xn −Uxn‖2 +

1 − µ

2
τ‖(I− T)Axn‖2.

(3.3)

By (3.2), we get

‖xn+1 − z‖2 = ‖(1 − γ)xn + γ[Uxn − τA∗(I− T)Axn] − z‖2

= ‖xn − z− γ[xn −Uxn + τA∗(I− T)Axn]‖2

= |xn − z‖2 − 2γ〈xn −Uxn + τA∗(I− T)Axn, xn − z〉+ γ2‖xn −Uxn + τA∗(I− T)Axn‖2

6 |xn − z‖2 − 2γ〈xn −Uxn + τA∗(I− T)Axn, xn − z〉+ γ2[‖xn −Uxn‖+ ‖τA∗(I− T)Axn‖]2

6 |xn − z‖2 − 2γ〈xn −Uxn + τA∗(I− T)Axn, xn − z〉
+ γ2[2‖xn −Uxn‖2 + 2τ2‖A‖2‖(I− T)Axn‖2].

This together with (3.3) implies that

‖xn+1 − z‖2 6 ‖xn − z‖2 − γ[(1 −β)‖xn −Uxn‖2 + (1 − µ)τ‖(I− T)Axn‖2]

+ γ2[2‖xn −Uxn‖2 + 2τ2‖A‖2‖(I− T)Axn‖2]

= ‖xn − z‖2 − γ(1 −β− 2γ)‖xn −Uxn‖2 − γτ(1 − µ− 2γτ‖A‖2)‖(I− T)Axn‖2.

(3.4)

By virtue of (3.4), we deduce that the sequence {xn} is Fejér monotone due to γ ∈ (0, 1−β
2 ) and τ ∈

(0, 1−µ
2γ‖A‖2 ).
Next, we show that every weak cluster point of the sequence {xn} belongs to the solution set of problem

(1.1), i.e., ωw(xn) ⊂ Ω.
From the Fejér-monotonicity of {xn} it follows that the sequence {xn} is bounded. Further, from (3.4),

we obtain

γ(1 −β− 2γ)‖xn −Uxn‖2 + γτ(1 − µ− 2γτ‖A‖2)‖(I− T)Axn‖2 6 ‖xn − z‖2 − ‖xn+1 − z‖2.

An induction induces that

γ(1 −β− 2γ)
n∑
i=1

‖xi −Uxi‖2 + γτ(1 − µ− 2γτ‖A‖2)

n∑
i=1

‖(I− T)Axi‖2 6 ‖x0 − z‖2 − ‖xn+1 − z‖2

6 ‖x0 − z‖2.

Therefore,

γ(1 −β− 2γ)
∞∑
i=1

‖xi −Uxi‖2 + γτ(1 − µ− 2γτ‖A‖2)

∞∑
i=1

‖(I− T)Axi‖2 <∞,

which implies that
lim
n→∞ ‖xn −Uxn‖ = 0 and lim

n→∞ ‖(I− T)Axn‖ = 0.

By the demiclosedness (at zero) of I−U and I− T , we deduce immediately ωw(xn) ⊂ Ω. To this end,
the conditions of Lemma 2.6 are all satisfied. Consequently, xn ⇀ z∗ = limn→∞ projΩ(xn). The proof is
completed.



X.-X. Zheng, Y.-H. Yao, Y.-C. Liou, L.-M. Leng, J. Nonlinear Sci. Appl., 10 (2017), 1263–1269 1268

Remark 3.4. Note that (3.2) can be rewritten as

xn+1 = xn − γ[xn −Uxn + τA∗(I− T)Axn], n > 0,

where γ is stepsize. In general, γ depends on the norm of the transformation A. However, we can relax
γ without relying on the norm of the transformation A.

We can apply our results to the split feasibility problem (1.2).

Algorithm 3.5. Initialization: let x0 be arbitrary.
Iterative step: for n > 0, given the current iterate xn calculate the next iterate xn+1 by the following

Mann’s form
xn+1 = (1 − γ)xn + γ[projCxn − τA∗(I− projQ)Axn], n > 0, (3.5)

where γ ∈ (0, 1−β
2 ) is a constant.

Theorem 3.6. Assume that the problem (1.2) is consistent (i.e., its solution set is nonempty). Then the sequence
{xn} generated by (3.5) converges weakly to a solution of the split feasibility problem (1.2) provided τ ∈ (0, 1−µ

2γ‖A‖2 ).
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