Stability of additive-quadratic ρ-functional equations in Banach spaces: a fixed point approach

Choonkil Parka, Sang Og Kimb,* Cihangir Alacac

aResearch Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.
bDepartment of Mathematics, Hallym University, Chuncheon 24252, Republic of Korea.
cDepartment of Mathematics, Celal Bayar University, Muradiye Campus 45140 Manisa, Turkey.

Communicated by R. Saadati

Abstract

Let

$$M_1 f(x, y) := \frac{3}{4} f(x + y) - \frac{1}{4} f(-x - y) + \frac{1}{4} f(x - y) + \frac{1}{4} f(y - x) - f(x) - f(y),$$

$$M_2 f(x, y) := 2f\left(\frac{x + y}{2}\right) + f\left(\frac{x - y}{2}\right) + f\left(\frac{y - x}{2}\right) - f(x) - f(y).$$

We solve the additive-quadratic ρ-functional equations

$$M_1 f(x, y) = \rho M_2 f(x, y), \quad (1)$$

and

$$M_2 f(x, y) = \rho M_1 f(x, y), \quad (2)$$

where ρ is a fixed nonzero number with $\rho \neq 1$.

Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional equations (1) and (2) in Banach spaces. ©2017 All rights reserved.

Keywords: Hyers-Ulam stability, additive-quadratic ρ-functional equation, fixed point method, Banach space.

1. Introduction and preliminaries

The functional equation $f(x + y) = f(x) + f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [6] gave a first affirmative partial

*Corresponding author

Email addresses: baak@hanyang.ac.kr (Choonkil Park), sokim@hallym.ac.kr (Sang Og Kim), cihangiralaca@yahoo.com.tr (Cihangir Alaca)

doi:10.22436/jnsa.010.03.34

Received 2016-08-13
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruţa [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach. The functional equation $f(x + y) + f(x - y) = 2f(x) + 2f(y)$ is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [9] for mappings $f : E_1 \to E_2$, where E_1 is a normed space and E_2 is a Banach space. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domain E_1 is replaced by an Abelian group.

We recall a fundamental result in fixed point theory.

Theorem 1.1 ([2, 4]). Let (X, d) be a complete generalized metric space and let $J : X \to X$ be a strictly contractive mapping with Lipschitz constant $\alpha < 1$. Then for each given element $x \in X$, either

$$d(J^n x, J^{n+1} x) = \infty,$$

for all nonnegative integers n or there exists a positive integer n_0 such that

1. $d(J^n x, J^{n+1} x) < \infty, \quad \forall n \geq n_0$;
2. the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
3. y^* is the unique fixed point of J in the set $Y = \{y \in X \mid d(J^{n_0} x, y) < \infty\}$;
4. $d(y, y^*) \leq \frac{1}{1-\alpha} d(y, Jy)$, for all $y \in Y$.

In Section 2, we solve the additive-quadratic functional equation (1) and prove the Hyers-Ulam stability of the additive-quadratic functional equation (1) in Banach spaces.

In Section 3, we solve the additive-quadratic ρ-functional equation (2) and prove the Hyers-Ulam stability of the additive-quadratic ρ-functional equation (2) in Banach spaces.

Throughout this paper, assume that X is a normed space and that Y is a Banach space. Let ρ be a nonzero number with $\rho \neq 1$.

2. Additive-quadratic ρ-functional equation (1) in Banach spaces

We solve and investigate the additive-quadratic ρ-functional equation (1) in normed spaces.

Lemma 2.1.

1. If a mapping $f : X \to Y$ satisfies $M_1 f(x, y) = 0$, then $f = f_o + f_e$, where $f_o(x) := \frac{f(x) - f(-x)}{2}$ is the Cauchy additive mapping and $f_e(x) := \frac{f(x) + f(-x)}{2}$ is the quadratic mapping.
2. If a mapping $f : X \to Y$ satisfies $M_2 f(x, y) = 0$, then $f = f_o + f_e$, where $f_o(x) := \frac{f(x) - f(-x)}{2}$ is the Cauchy additive mapping and $f_e(x) := \frac{f(x) + f(-x)}{2}$ is the quadratic mapping.

Proof.

1. (i) $M_1 f_o(x, y) = f_o(x + y) - f_o(x) - f_o(y) = 0,$

 for all $x, y \in X$. So f_o is the Cauchy additive mapping.

 $M_1 f_e(x, y) = \frac{1}{2} f_e(x + y) + \frac{1}{2} f_e(x - y) - f_e(x) - f_e(y) = 0,$

 for all $x, y \in X$. So f_o is the quadratic mapping.
Lemma 2.2. If a mapping $f : X \rightarrow Y$ satisfies $f(0) = 0$ and

\[M_1 f(x, y) = \rho M_2 f(x, y), \tag{2.1} \]

for all $x, y \in X$, then $f : X \rightarrow Y$ is the sum of the Cauchy additive mapping f_o and the quadratic mapping f_e.

Proof. Letting $y = x$ in (2.1) for f_o, we get $f_o(2x) - 2f_o(x) = 0$ and so $f_o(2x) = 2f_o(x)$ for all $x \in X$. Thus

\[f_o \left(\frac{x}{2} \right) = \frac{1}{2} f_o(x), \tag{2.2} \]

for all $x \in X$.

It follows from (2.1) and (2.2) that

\[f_o(x + y) - f_o(x) - f_o(y) = \rho \left(2f_o \left(\frac{x + y}{2} \right) - f_o(x) - f_o(y) \right) = \rho (f_o(x + y) - f_o(x) - f_o(y)), \]

and so

\[f_o(x + y) = f_o(x) + f_o(y), \]

for all $x, y \in X$.

Letting $y = x$ in (2.1) for f_e, we get $\frac{1}{2} f_e(2x) - 2f_e(x) = 0$ and so $f_e(2x) = 4f_e(x)$ for all $x \in X$. Thus

\[f_e \left(\frac{x}{2} \right) = \frac{1}{4} f_e(x), \tag{2.3} \]

for all $x \in X$.

It follows from (2.1) and (2.3) that

\[
\frac{1}{2} f_e(x + y) + \frac{1}{2} f_e(x - y) - f_e(x) - f_e(y) = \rho \left(2f_e \left(\frac{x + y}{2} \right) + 2f_e \left(\frac{x - y}{2} \right) - f_e(x) - f_e(y) \right)
\]

\[= \rho \left(\frac{1}{2} f_e(x + y) + \frac{1}{2} f_e(x - y) - f_e(x) - f_e(y) \right), \]

and so

\[f_e(x + y) + f_e(x - y) = 2f_e(x) + 2f_e(y), \]

for all $x, y \in X$.

Therefore, the mapping $f : X \rightarrow Y$ is the sum of the Cauchy additive mapping f_o and the quadratic mapping f_e. \qed
Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional equation (2.1) in Banach spaces.

Theorem 2.3. Let \(\varphi : X^2 \to [0, \infty) \) be a function such that there exists an \(L < 1 \) with
\[
\varphi \left(\frac{x + y}{2}, \frac{x - y}{2} \right) \leq \frac{L}{4} \varphi(x, y),
\]
for all \(x, y \in X \). Let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \) and
\[
\|M_1 f(x, y) - \rho M_2 f(x, y)\| \leq \varphi(x, y),
\]
for all \(x, y \in X \). Then there exist a unique additive mapping \(A : X \to Y \) and a unique quadratic mapping \(Q : X \to Y \) such that
\[
\|f_o(x) - A(x)\| \leq \frac{L}{4(1 - L)} \|\varphi(x, x) + \varphi(-x, -x)\|
\]
and
\[
\|f_e(x) - Q(x)\| \leq \frac{L}{4(1 - L)} \|\varphi(x, x) + \varphi(-x, -x)\|
\]
for all \(x \in X \).

Proof. Letting \(y = x \) in (2.5) for \(f_o \), we get
\[
\|f_o(2x) - 2f_o(x)\| \leq \frac{1}{2} \varphi(x, x) + \frac{1}{2} \varphi(-x, -x),
\]
for all \(x \in X \).

Consider the set
\[
S := \{ h : X \to Y, \ h(0) = 0 \},
\]
and introduce the generalized metric on \(S \):
\[
d(g, h) = \inf \{ \mu \in \mathbb{R}_+ : \|g(x) - h(x)\| \leq \mu(\varphi(x, x) + \varphi(-x, -x)), \ \forall x \in X \},
\]
where, as usual, \(\inf \varphi = +\infty \). It is easy to show that \((S, d)\) is complete (see [7]).

Now we consider the linear mapping \(J : S \to S \) such that
\[
Jg(x) := 2g \left(\frac{x}{2} \right),
\]
for all \(x \in X \).

Let \(g, h \in S \) be given such that \(d(g, h) = \epsilon \). Then
\[
\|g(x) - h(x)\| \leq \epsilon(\varphi(x, x) + \varphi(-x, -x)),
\]
for all \(x \in X \). Since \(\frac{1}{2} \varphi(x, y) \leq \frac{1}{2} \varphi(x, x) \) for all \(x, y \in X \),
\[
\|Jg(x) - Jh(x)\| = \left\|2g \left(\frac{x}{2} \right) - 2h \left(\frac{x}{2} \right) \right\| \leq 2\epsilon \left(\varphi \left(\frac{x}{2}, \frac{x}{2} \right) + \varphi \left(-\frac{x}{2}, -\frac{x}{2} \right) \right) \leq 2\epsilon \frac{L}{2} \varphi(x, x) \leq L\epsilon(\varphi(x, x) + \varphi(-x, -x)),
\]
for all \(x \in X \). So \(d(g, h) = \epsilon \) implies that \(d(Jg, Jh) \leq L\epsilon \). This means that
\[
d(Jg, Jh) \leq Ld(g, h),
\]
for all \(g, h \in S \).

It follows from (2.6) that
\[
\left\|f_o(x) - 2f_o \left(\frac{x}{2} \right) \right\| \leq \frac{1}{2} \varphi \left(\frac{x}{2}, \frac{x}{2} \right) + \frac{1}{2} \varphi \left(-\frac{x}{2}, -\frac{x}{2} \right) \leq \frac{L}{8} \varphi(x, x) + \varphi(-x, -x),
\]
for all \(x \in X \). So \(d(f_o, Jf_o) \leq \frac{L}{8} \leq \frac{1}{4} \).

By Theorem 1.1, there exists a mapping \(A : X \to Y \) satisfying the following:
A is a fixed point of J, i.e.,
$$A(x) = 2A\left(\frac{x}{2}\right),$$
for all $x \in X$. The mapping A is a unique fixed point of J in the set
$$M = \{g \in S : d(f, g) < \infty\}.$$
This implies that A is a unique mapping satisfying (2.7) such that there exists a $\mu \in (0, \infty)$ satisfying
$$\|f_0(x) - A(x)\| \leq \mu(\varphi(x, x) + \varphi(-x, -x)),$$
for all $x \in X$;

$$d(J^lf_0, A) \to 0 \text{ as } l \to \infty.$$ This implies the equality
$$\lim_{l \to \infty} 2^n f_0\left(\frac{x}{2^n}\right) = A(x),$$
for all $x \in X$;

$$d(f_0, A) \leq \frac{1}{1 - L} d(f_0, Jf_0),$$ which implies
$$\|f_0(x) - A(x)\| \leq \frac{L}{4(1 - L)}(\varphi(x, x) + \varphi(-x, -x)),$$
for all $x \in X$.

It follows from (2.4) and (2.5) that
$$\left\|\lambda(x + y) - A(x) - A(y) - \rho\left(2A\left(\frac{x + y}{2}\right) - A(x) - A(y)\right)\right\|$$
$$= \lim_{n \to \infty} 2^n \left(f_0\left(\frac{x + y}{2^n}\right) - f_0\left(\frac{x}{2^n}\right) - f_0\left(\frac{y}{2^n}\right)\right) - 2^n \rho\left(2f_0\left(\frac{x + y}{2^{n+1}}\right) - f_0\left(\frac{x}{2^n}\right) - f_0\left(\frac{y}{2^n}\right)\right)$$
$$\leq \frac{1}{2} \lim_{n \to \infty} 2^n \varphi\left(\frac{x}{2^n}, \frac{y}{2^n}\right) + 2^n \varphi\left(-\frac{x}{2^n}, -\frac{y}{2^n}\right) = 0,$$
for all $x, y \in X$. So
$$A(x + y) - A(x) - A(y) = \rho\left(2A\left(\frac{x + y}{2}\right) - A(x) - A(y)\right),$$
for all $x, y \in X$. By Lemma 2.2, the mapping $A : X \to Y$ is additive.

Letting $y = x$ in (2.5) for f_e, we get
$$\left\|\frac{1}{2} f_e(2x) - 2f_e(x)\right\| \leq \frac{1}{2} \varphi(x, x) + \frac{1}{2} \varphi(-x, -x),$$
(2.8)
for all $x \in X$.

Now we consider the linear mapping $J : S \to S$ such that
$$Jg(x) := 4g\left(\frac{x}{2}\right),$$
for all $x \in X$.

Let $g, h \in S$ be given such that $d(g, h) = \varepsilon$. Then
$$\|g(x) - h(x)\| \leq \varepsilon(\varphi(x, x) + \varphi(-x, -x)),$$
It follows from (2.4) and (2.5) that
\[\parallel f_e(x) - 4f_e \left(\frac{x}{2} \right) \parallel \leq \varphi \left(\frac{x}{2}, \frac{x}{2} \right) + \varphi \left(-\frac{x}{2}, -\frac{x}{2} \right) \leq \frac{L}{4} (\varphi (x, x) + \varphi (-x, -x)), \]
for all \(x \in X \). So \(d(f_e, Jf_e) \leq \frac{L}{4} \). By Theorem 1.1, there exists a mapping \(Q : X \to Y \) satisfying the following:

1. \(Q \) is a fixed point of \(J \), i.e.,
 \[Q(x) = 4Q \left(\frac{x}{2} \right), \tag{2.9} \]
 for all \(x \in X \). The mapping \(Q \) is a unique fixed point of \(J \) in the set
 \[M = \{ g \in S : d(f, g) < \infty \}. \]
 This implies that \(Q \) is a unique mapping satisfying (2.9) such that there exists a \(\mu \in (0, \infty) \) satisfying
 \[\parallel f_e(x) - Q(x) \parallel \leq \mu (\varphi (x, x) + \varphi (-x, -x)), \]
 for all \(x \in X \);

2. \(d(f^l e, Q) \to 0 \) as \(l \to \infty \). This implies the equality
 \[\lim_{n \to \infty} 4^n f_e \left(\frac{x}{2^n} \right) = Q(x), \]
 for all \(x \in X \);

3. \(d(f_e, Q) \leq \frac{1}{1-L} d(f_e, Jf_e) \), which implies
 \[\parallel f_e(x) - Q(x) \parallel \leq \frac{L}{4(1-L)} (\varphi (x, x) + \varphi (-x, -x)), \]
 for all \(x \in X \).

It follows from (2.4) and (2.5) that
\[
\begin{align*}
\parallel \frac{1}{2} Q \left(\frac{x+y}{2} \right) + \frac{1}{2} Q \left(\frac{x-y}{2} \right) - Q(x) - Q(y) - \rho \left(2Q \left(\frac{x+y}{2} \right) + 2Q \left(\frac{x-y}{2} \right) - Q(x) - Q(y) \right) \parallel \\
= \lim_{n \to \infty} \parallel 4^n \left(\frac{1}{2} f_e \left(\frac{x+y}{2^{n+1}} \right) + f_e \left(\frac{x-y}{2^n} \right) - f_e \left(\frac{x}{2^n} \right) - f_e \left(\frac{y}{2^n} \right) \right) \\
- 4^n \rho \left(2f_e \left(\frac{x+y}{2^{n+1}} \right) + f_e \left(\frac{x-y}{2^n} \right) - f_e \left(\frac{x}{2^n} \right) - f_e \left(\frac{y}{2^n} \right) \right) \parallel \\
\leq \frac{1}{2} \lim_{n \to \infty} \left(4^n \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right) + 4^n \varphi \left(-\frac{x}{2^n}, -\frac{y}{2^n} \right) \right) = 0,
\end{align*}
\]
for all \(x, y \in X\). So
\[
\frac{1}{2} Q \left(\frac{x+y}{2} \right) + \frac{1}{2} Q \left(\frac{x-y}{2} \right) - Q(x) - Q(y) = \rho \left(2Q \left(\frac{x+y}{2} \right) + 2Q \left(\frac{x-y}{2} \right) - Q(x) - Q(y) \right),
\]
for all \(x, y \in X\). By Lemma 2.2, the mapping \(Q : X \rightarrow Y\) is quadratic.

Corollary 2.4. Let \(r > 2\) and \(\theta\) be nonnegative real numbers, and let \(f : X \rightarrow Y\) be a mapping satisfying \(f(0) = 0\) and
\[
\|M_1 f(x, y) - \rho M_2 f(x, y)\| \leq \theta(\|x\|^r + \|y\|^r),
\]
for all \(x, y \in X\). Then there exist a unique additive mapping \(A : X \rightarrow Y\) and a unique quadratic mapping \(Q : X \rightarrow Y\) such that
\[
\|f_o(x) - A(x)\| \leq \frac{20}{2^r - 2} \|x\|^r,
\]
\[
\|f_e(x) - Q(x)\| \leq \frac{4\theta}{2^r - 4} \|x\|^r,
\]
for all \(x \in X\).

Proof. The proof follows from Theorem 2.3 by taking \(\phi(x, y) = \theta(\|x\|^r + \|y\|^r)\) for all \(x, y \in X\). Then we can choose \(L = 2^{1-r}\) for \(f_o\) (respectively, \(L = 2^{2-r}\) for \(f_e\)) and we get the desired result.

Theorem 2.5. Let \(\phi : X^2 \rightarrow [0, \infty)\) be a function such that there exists an \(L < 1\) with
\[
\phi(x, y) \leq 2L \phi \left(\frac{x+y}{2} \right),
\]
for all \(x, y \in X\). Let \(f : X \rightarrow Y\) be a mapping satisfying \(f(0) = 0\) and (2.5). Then there exist a unique additive mapping \(A : X \rightarrow Y\) and a unique quadratic mapping \(Q : X \rightarrow Y\) such that
\[
\|f_o(x) - A(x)\| \leq \frac{1}{4(1-L)} (\phi(x, x) + \phi(-x, -x)),
\]
\[
\|f_e(x) - Q(x)\| \leq \frac{1}{4(1-L)} (\phi(x, x) + \phi(-x, -x)),
\]
for all \(x \in X\).

Proof. Let \((S, d)\) be the generalized metric space defined in the proof of Theorem 2.3.

It follows from (2.6) that
\[
\left\| f_o(x) - \frac{1}{2} f_o(2x) \right\| \leq \frac{1}{4} \phi(x, x) + \frac{1}{4} \phi(-x, -x),
\]
for all \(x \in X\).

For \(f_o\), we consider the linear mapping \(J : S \rightarrow S\) such that
\[
Jg(x) := \frac{1}{2} g(2x),
\]
for all \(x \in X\).

It follows from (2.8) that
\[
\left\| f_e(x) - \frac{1}{4} f_e(2x) \right\| \leq \frac{1}{4} \phi(x, x) + \frac{1}{4} \phi(-x, -x),
\]
for all \(x \in X\).
For \(f_e \), we consider the linear mapping \(J : S \to S \) such that
\[
Jg(x) := \frac{1}{4}g(2x),
\]
for all \(x \in X \).

The rest of the proof is similar to the proof of Theorem 2.3.

Corollary 2.6. Let \(r < 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \) and (2.10). Then there exist a unique additive mapping \(A : X \to Y \) and a unique quadratic mapping \(Q : X \to Y \) such that
\[
\|f_\alpha(x) - A(x)\| \leq \frac{2\theta}{2 - 2^r}\|x\|^r, \\
\|f_e(x) - Q(x)\| \leq \frac{4\theta}{4 - 2^r}\|x\|^r,
\]
for all \(x \in X \).

Proof. The proof follows from Theorem 2.5 by taking \(\phi(x,y) = \theta(\|x\|^r + \|y\|^r) \) for all \(x, y \in X \). Then we can choose \(L = 2^{r-1} \) for \(f_\alpha \) (respectively, \(L = 2^{r-2} \) for \(f_e \)) and we get the desired result. \(\square \)

3. Additive-quadratic \(\rho \)-functional equation (2) in Banach spaces

We solve and investigate the additive-quadratic \(\rho \)-functional equation (2) in normed spaces.

Lemma 3.1. If a mapping \(f : X \to Y \) satisfies \(f(0) = 0 \) and
\[
M_2f(x,y) = \rho M_1f(x,y), \tag{3.1}
\]
for all \(x, y \in X \), then \(f : X \to Y \) is the sum of the Cauchy additive mapping \(f_\alpha \) and the quadratic mapping \(f_e \).

Proof. Letting \(y = 0 \) in (3.1) for \(f_\alpha \), we get
\[
f_\alpha \left(\frac{x}{2} \right) = \frac{1}{2}f_\alpha(x), \tag{3.2}
\]
for all \(x \in X \).

It follows from (3.1) and (3.2) that
\[
f_\alpha(x + y) - f_\alpha(x) - f_\alpha(y) = 2f_\alpha \left(\frac{x + y}{2} \right) - f_\alpha(x) - f_\alpha(y) = \rho(f_\alpha(x + y) - f_\alpha(x) - f_\alpha(y)),
\]
and so
\[
f_\alpha(x + y) = f_\alpha(x) + f_\alpha(y),
\]
for all \(x, y \in X \).

Letting \(y = 0 \) in (3.1) for \(f_e \), we get
\[
f_e \left(\frac{x}{2} \right) = \frac{1}{4}f_e(x), \tag{3.3}
\]
for all \(x \in X \).

It follows from (3.1) and (3.3) that
\[
\frac{1}{2}f_e(x + y) + \frac{1}{2}f_e(x - y) - f_e(x) - f_e(y) = 2f_e \left(\frac{x + y}{2} \right) + 2f_e \left(\frac{x - y}{2} \right) - f_e(x) - f_e(y)
\]
\[
= \rho \left(\frac{1}{2}f_e(x + y) + \frac{1}{2}f_e(x - y) - f_e(x) - f_e(y) \right),
\]
and so
\[
f_e(x + y) + f_e(x - y) = 2f_e(x) + 2f_e(y),
\]
for all \(x, y \in X \). \(\square \)
Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic \(\rho\)-functional equation (3.1) in Banach spaces.

Theorem 3.2. Let \(\varphi : X^2 \to [0, \infty)\) be a function such that there exists an \(L < 1\) with
\[
\varphi \left(\frac{x}{2}, \frac{y}{2}\right) \leq \frac{L}{4} \varphi (x, y),
\]
for all \(x, y \in X\). Let \(f : X \to Y\) be a mapping satisfying \(f(0) = 0\) and
\[
\|M_2 f(x, y) - \rho M_1 f(x, y)\| \leq \varphi (x, y),
\]
for all \(x, y \in X\). Then there exist a unique additive mapping \(A : X \to Y\) and a unique quadratic mapping \(Q : X \to Y\) such that
\[
\|f_o(x) - A(x)\| \leq \frac{1}{2(1 - L)} (\varphi (x, 0) + \varphi (-x, 0)),
\]
\[
\|f_e(x) - Q(x)\| \leq \frac{1}{2(1 - L)} (\varphi (x, 0) + \varphi (-x, 0)),
\]
for all \(x \in X\).

Proof. Letting \(y = 0\) in (3.4) for \(f_o\), we get
\[
\left\| f_o(x) - 2f_o(\frac{x}{2}) \right\| = \left\| 2f_o(\frac{x}{2}) - f_o(x) \right\| \leq \frac{1}{2} \varphi (x, 0) + \frac{1}{2} \varphi (-x, 0),
\]
for all \(x \in X\).

Consider the set
\[
S := \{ h : X \to Y, \ h(0) = 0 \},
\]
and introduce the generalized metric on \(S\):
\[
d(g, h) = \inf \{ \mu \in \mathbb{R}_+ : \|g(x) - h(x)\| \leq \mu (\varphi (x, 0) + \varphi (-x, 0)), \ \forall x \in X \},
\]
where, as usual, \(\inf \varphi = +\infty\). It is easy to show that \((S, d)\) is complete (see [7]).

For \(f_o\), we consider the linear mapping \(J : S \to S\) such that
\[
Jg(x) := 2g \left(\frac{x}{2}\right),
\]
for all \(x \in X\).

Letting \(y = 0\) in (3.4) for \(f_e\), we get
\[
\left\| f_e(x) - 4f_e(\frac{x}{2}) \right\| = \left\| 4f_e(\frac{x}{2}) - f_e(x) \right\| \leq \frac{1}{2} \varphi (x, 0) + \frac{1}{2} \varphi (-x, 0),
\]
for all \(x \in X\).

For \(f_e\), we consider the linear mapping \(J : S \to S\) such that
\[
Jg(x) := 4g \left(\frac{x}{2}\right),
\]
for all \(x \in X\).

The rest of the proof is similar to the proof of Theorem 2.3. \(\square\)

Corollary 3.3. Let \(r > 2\) and \(\theta\) be nonnegative real numbers, and let \(f : X \to Y\) be a mapping satisfying \(f(0) = 0\) and
\[
\|M_2 f(x, y) - \rho M_1 f(x, y)\| \leq \theta (\|x\|^r + \|y\|^r),
\]
for all \(x, y \in X\). Then there exist a unique additive mapping \(A : X \to Y\) and a unique quadratic mapping \(Q : X \to Y\)
such that
\[\| f_o(x) - A(x) \| \leq \frac{2r\theta}{2r - 2} \| x \| r, \]
\[\| f_e(x) - Q(x) \| \leq \frac{2r\theta}{2r - 4} \| x \| r, \]
for all \(x \in X \).

Proof. The proof follows from Theorem 3.2 by taking \(\phi(x, y) = \theta(\| x \| r + \| y \| r) \) for all \(x, y \in X \). Then we can choose \(L = 2^{1-r} \) for \(f_o \) (respectively, \(L = 2^{2-r} \) for \(f_e \)) and we get the desired result. \(\square \)

Theorem 3.4. Let \(\varphi : X^2 \to [0, \infty) \) be a function such that there exists an \(L < 1 \) with
\[\varphi(x, y) \leq 2L\varphi\left(\frac{x}{2}, \frac{y}{2}\right), \]
for all \(x, y \in X \). Let \(f : X \to Y \) be a mapping satisfying \(f(0) = 0 \) and (3.4). Then there exist a unique additive mapping \(A : X \to Y \) and a unique quadratic mapping \(Q : X \to Y \) such that
\[\| f_o(x) - A(x) \| \leq \frac{L}{2(1-L)} (\varphi(x, 0) + \varphi(-x, 0)), \]
\[\| f_e(x) - Q(x) \| \leq \frac{L}{2(1-L)} (\varphi(x, 0) + \varphi(-x, 0)), \]
for all \(x \in X \).

Proof. Let \((S, d)\) be the generalized metric space defined in the proof of Theorem 3.2. It follows from (3.5) that
\[\left\| f_o(x) - \frac{1}{2} f_o(2x) \right\| \leq \frac{1}{4} \varphi(2x, 0) + \frac{1}{4} \varphi(-2x, 0) \leq \frac{L}{2} \varphi(x, 0) + \frac{L}{2} \varphi(-x, 0), \]
for all \(x \in X \).

For \(f_o \), we consider the linear mapping \(J : S \to S \) such that
\[Jg(x) := \frac{1}{2} g(2x), \]
for all \(x \in X \).

It follows from (3.6) that
\[\left\| f_e(x) - \frac{1}{4} f_e(2x) \right\| \leq \frac{1}{8} \varphi(2x, 0) + \frac{1}{8} \varphi(-2x, 0) \leq \frac{L}{4} \varphi(x, 0) + \frac{L}{4} \varphi(-x, 0) \leq \frac{L}{2} \varphi(x, 0) + \frac{L}{2} \varphi(-x, 0), \]
for all \(x \in X \), since \(\frac{1}{4} \varphi(x, 0) + \frac{1}{4} \varphi(-x, 0) \leq \frac{1}{8} \varphi(x, 0) + \frac{1}{8} \varphi(-x, 0) \) for all \(x \in X \).

For \(f_e \), we consider the linear mapping \(J : S \to S \) such that
\[Jg(x) := \frac{1}{4} g(2x), \]
for all \(x \in X \).

The rest of the proof is similar to the proof of Theorem 2.3. \(\square \)

Corollary 3.5. Let \(\tau < 1 \) and \(\theta \) be positive real numbers, and let \(f : X \to Y \) be a mapping satisfying (3.7). Then
there exist a unique additive mapping $A : X \to Y$ and a unique quadratic mapping $Q : X \to Y$ such that

$$
\| f_o(x) - A(x) \| \leq \frac{2^r \theta}{2 - 2^r} \| x \|^r,
$$

$$
\| f_e(x) - Q(x) \| \leq \frac{2^r \theta}{4 - 2^r} \| x \|^r,
$$

for all $x \in X$.

Proof. The proof follows from Theorem 3.2 by taking $\varphi(x, y) = \theta(\| x \|^r + \| y \|^r)$ for all $x, y \in X$. Then we can choose $L = 2^{r-1}$ for f_o (respectively, $L = 2^{r-2}$ for f_e) and we get the desired result. \qed

Acknowledgment

We would like to thank the referees for comments and suggestions. This research was supported by Hallym University Research Fund, 2016 (HRF-201606-006).

References