# Stability of additive-quadratic $\rho$-functional equations in Banach spaces: a fixed point approach 

Choonkil Park ${ }^{\text {a }}$, Sang Og Kim ${ }^{\mathrm{b}, *}$, Cihangir Alaca ${ }^{\mathrm{C}}$<br>${ }^{a}$ Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.<br>${ }^{b}$ Department of Mathematics, Hallym University, Chuncheon 24252, Republic of Korea.<br>${ }^{c}$ Department of Mathematics, Celal Bayar University, Muradiye Campus 45140 Manisa, Turkey.

Communicated by R. Saadati

$$
\begin{aligned}
& \text { Abstract } \\
& \qquad \begin{array}{l}
\text { Let } \\
\qquad \begin{array}{l}
M_{1} f(x, y):=\frac{3}{4} f(x+y)-\frac{1}{4} f(-x-y)+\frac{1}{4} f(x-y)+\frac{1}{4} f(y-x)-f(x)-f(y), \\
\\
M_{2} f(x, y):=2 f\left(\frac{x+y}{2}\right)+f\left(\frac{x-y}{2}\right)+f\left(\frac{y-x}{2}\right)-f(x)-f(y) .
\end{array}
\end{array} .
\end{aligned}
$$

We solve the additive-quadratic $\rho$-functional equations

$$
\begin{equation*}
M_{1} f(x, y)=\rho M_{2} f(x, y) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2} f(x, y)=\rho M_{1} f(x, y), \tag{2}
\end{equation*}
$$

where $\rho$ is a fixed nonzero number with $\rho \neq 1$.
Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic $\rho$-functional equations (1) and (2) in Banach spaces. ©(2017 All rights reserved.

Keywords: Hyers-Ulam stability, additive-quadratic $\rho$-functional equation, fixed point method, Banach space. 2010 MSC: 39B52, 39B62, 47H10.

## 1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [10] concerning the stability of group homomorphisms.

The functional equation $f(x+y)=f(x)+f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [6] gave a first affirmative partial

[^0]answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The functional equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [9] for mappings $f: E_{1} \rightarrow E_{2}$, where $E_{1}$ is a normed space and $E_{2}$ is a Banach space. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domain $E_{1}$ is replaced by an Abelian group.

We recall a fundamental result in fixed point theory.
Theorem 1.1 ( $[2,4])$. Let ( $\mathrm{X}, \mathrm{d}$ ) be a complete generalized metric space and let $\mathrm{J}: \mathrm{X} \rightarrow \mathrm{X}$ be a strictly contractive mapping with Lipschitz constant $\alpha<1$. Then for each given element $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty,
$$

for all nonnegative integers $n$ or there exists a positive integer $n_{0}$ such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty, \quad \forall n \geqslant n_{0}$;
(2) the sequence $\left\{\mathrm{J}^{\mathrm{n}} \mathrm{x}\right\}$ converges to a fixed point $\mathrm{y}^{*}$ of J ;
(3) $y^{*}$ is the unique fixed point of J in the set $\mathrm{Y}=\left\{\mathrm{y} \in \mathrm{X} \mid \mathrm{d}\left(\mathrm{J}^{\mathrm{n}_{0}} \mathrm{x}, \mathrm{y}\right)<\infty\right\}$;
(4) $\mathrm{d}\left(\mathrm{y}, \mathrm{y}^{*}\right) \leqslant \frac{1}{1-\alpha} \mathrm{d}(\mathrm{y}, \mathrm{J} y)$, for all $\mathrm{y} \in \mathrm{Y}$.

In Section 2, we solve the additive-quadratic functional equation (1) and prove the Hyers-Ulam stability of the additive-quadratic functional equation (1) in Banach spaces.

In Section 3, we solve the additive-quadratic $\rho$-functional equation (2) and prove the Hyers-Ulam stability of the additive-quadratic $\rho$-functional equation (2) in Banach spaces.

Throughout this paper, assume that $X$ is a normed space and that $Y$ is a Banach space. Let $\rho$ be a nonzero number with $\rho \neq 1$.

## 2. Additive-quadratic $\rho$-functional equation (1) in Banach spaces

We solve and investigate the additive-quadratic $\rho$-functional equation (1) in normed spaces.

## Lemma 2.1.

(i) If a mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ satisfies $\mathrm{M}_{1} \mathrm{f}(\mathrm{x}, \mathrm{y})=0$, then $\mathrm{f}=\mathrm{f}_{\mathrm{o}}+\mathrm{f}_{e}$, where $\mathrm{f}_{\mathrm{o}}(\mathrm{x}):=\frac{\mathrm{f}(\mathrm{x})-\mathrm{f}(-\mathrm{x})}{2}$ is the Cauchy additive mapping and $\mathrm{f}_{\mathrm{e}}(\mathrm{x}):=\frac{\mathrm{f}(\mathrm{x})+\mathrm{f}(-\mathrm{x})}{2}$ is the quadratic mapping.
(ii) If a mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ satisfies $\mathrm{M}_{2} \mathrm{f}(\mathrm{x}, \mathrm{y})=0$, then $\mathrm{f}=\mathrm{f}_{\mathrm{o}}+\mathrm{f}_{\mathrm{e}}$, where $\mathrm{f}_{\mathrm{o}}(\mathrm{x}):=\frac{\mathrm{f}(\mathrm{x})-\mathrm{f}(-\mathrm{x})}{2}$ is the Cauchy additive mapping and $\mathrm{f}_{\mathrm{e}}(\mathrm{x}):=\frac{\mathrm{f}(\mathrm{x})+\mathrm{f}(-\mathrm{x})}{2}$ is the quadratic mapping.

Proof.
(i)

$$
M_{1} f_{o}(x, y)=f_{o}(x+y)-f_{o}(x)-f_{o}(y)=0,
$$

for all $x, y \in X$. So $f_{o}$ is the Cauchy additive mapping.

$$
M_{1} f_{e}(x, y)=\frac{1}{2} f_{e}(x+y)+\frac{1}{2} f_{e}(x-y)-f_{e}(x)-f_{e}(y)=0
$$

for all $x, y \in X$. So $f_{o}$ is the quadratic mapping.
(ii)

$$
M_{2} f_{o}(x, y)=2 f_{o}\left(\frac{x+y}{2}\right)-f_{o}(x)-f_{o}(y)=0
$$

for all $x, y \in X$. Since $M_{2} f(0,0)=0, f(0)=0$ and $f_{o}$ is the Cauchy additive mapping.

$$
M_{2} f_{e}(x, y)=2 f_{e}\left(\frac{x+y}{2}\right)+2 f_{e}\left(\frac{x-y}{2}\right)-f_{e}(x)-f_{e}(y)=0
$$

for all $x, y \in X$. Since $M_{2} f(0,0)=0, f(0)=0$ and $f_{e}$ is the quadratic mapping.
Therefore, the mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is the sum of the Cauchy additive mapping and the quadratic mapping.

From now on, for a given mapping $f: X \rightarrow Y$, define $f_{o}(x):=\frac{f(x)-f(-x)}{2}$ and $f_{e}(x):=\frac{f(x)+f(-x)}{2}$ for all $x \in X$. Then $f_{o}$ is an odd mapping and $f_{e}$ is an even mapping.

Lemma 2.2. If a mapping $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ satisfies $\mathrm{f}(0)=0$ and

$$
\begin{equation*}
M_{1} f(x, y)=\rho M_{2} f(x, y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, then $f: X \rightarrow Y$ is the sum of the Cauchy additive mapping $f_{o}$ and the quadratic mapping $f_{e}$.
Proof. Letting $y=x$ in (2.1) for $f_{o}$, we get $f_{o}(2 x)-2 f_{o}(x)=0$ and so $f_{o}(2 x)=2 f_{o}(x)$ for all $x \in X$. Thus

$$
\begin{equation*}
\mathrm{f}_{\mathrm{o}}\left(\frac{\mathrm{x}}{2}\right)=\frac{1}{2} \mathrm{f}_{\mathrm{o}}(\mathrm{x}) \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
It follows from (2.1) and (2.2) that

$$
f_{o}(x+y)-f_{o}(x)-f_{o}(y)=\rho\left(2 f_{o}\left(\frac{x+y}{2}\right)-f_{o}(x)-f_{o}(y)\right)=\rho\left(f_{o}(x+y)-f_{o}(x)-f_{o}(y)\right)
$$

and so

$$
f_{o}(x+y)=f_{o}(x)+f_{o}(y)
$$

for all $x, y \in X$.
Letting $y=x$ in (2.1) for $f_{e}$, we get $\frac{1}{2} f_{e}(2 x)-2 f_{e}(x)=0$ and so $f_{e}(2 x)=4 f_{e}(x)$ for all $x \in X$. Thus

$$
\begin{equation*}
f_{e}\left(\frac{x}{2}\right)=\frac{1}{4} f_{e}(x) \tag{2.3}
\end{equation*}
$$

for all $x \in X$.
It follows from (2.1) and (2.3) that

$$
\begin{aligned}
\frac{1}{2} f_{e}(x+y)+\frac{1}{2} f_{e}(x-y)-f_{e}(x)-f_{e}(y) & =\rho\left(2 f_{e}\left(\frac{x+y}{2}\right)+2 f_{e}\left(\frac{x-y}{2}\right)-f_{e}(x)-f_{e}(y)\right) \\
& =\rho\left(\frac{1}{2} f_{e}(x+y)+\frac{1}{2} f_{e}(x-y)-f_{e}(x)-f_{e}(y)\right)
\end{aligned}
$$

and so

$$
f_{e}(x+y)+f_{e}(x-y)=2 f_{e}(x)+2 f_{e}(y)
$$

for all $x, y \in X$.
Therefore, the mapping $f: X \rightarrow Y$ is the sum of the Cauchy additive mapping $f_{o}$ and the quadratic mapping $f_{e}$.

Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic $\rho$-functional equation (2.1) in Banach spaces.
Theorem 2.3. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with

$$
\begin{equation*}
\varphi\left(\frac{x}{2}, \frac{y}{2}\right) \leqslant \frac{L}{4} \varphi(x, y) \tag{2.4}
\end{equation*}
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\left\|M_{1} f(x, y)-\rho M_{2} f(x, y)\right\| \leqslant \varphi(x, y) \tag{2.5}
\end{equation*}
$$

for all $x, y \in X$. Then there exist a unique additive mapping $A: X \rightarrow Y$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{aligned}
& \left\|f_{o}(x)-A(x)\right\| \leqslant \frac{L}{4(1-L)}(\varphi(x, x)+\varphi(-x,-x)) \\
& \left\|f_{e}(x)-Q(x)\right\| \leqslant \frac{L}{4(1-L)}(\varphi(x, x)+\varphi(-x,-x))
\end{aligned}
$$

for all $x \in X$.
Proof. Letting $y=x$ in (2.5) for $f_{o}$, we get

$$
\begin{equation*}
\left\|f_{o}(2 x)-2 f_{o}(x)\right\| \leqslant \frac{1}{2} \varphi(x, x)+\frac{1}{2} \varphi(-x,-x) \tag{2.6}
\end{equation*}
$$

for all $x \in X$.
Consider the set

$$
S:=\{h: X \rightarrow Y, \quad h(0)=0\}
$$

and introduce the generalized metric on S :

$$
d(g, h)=\inf \left\{\mu \in \mathbb{R}_{+}:\|g(x)-h(x)\| \leqslant \mu(\varphi(x, x)+\varphi(-x,-x)), \quad \forall x \in X\right\}
$$

where, as usual, $\inf \phi=+\infty$. It is easy to show that ( $S, d$ ) is complete (see [7]).
Now we consider the linear mapping $J: S \rightarrow S$ such that

$$
\mathrm{Jg}(\mathrm{x}):=2 \mathrm{~g}\left(\frac{x}{2}\right)
$$

for all $x \in X$.
Let $g, h \in S$ be given such that $d(g, h)=\varepsilon$. Then

$$
\|g(x)-h(x)\| \leqslant \varepsilon(\varphi(x, x)+\varphi(-x,-x))
$$

for all $x \in X$. Since $\frac{L}{4} \varphi(x, y) \leqslant \frac{L}{2} \varphi(x, y)$ for all $x, y \in X$,

$$
\begin{aligned}
\|\operatorname{Jg}(x)-\operatorname{Jh}(x)\| & =\left\|2 g\left(\frac{x}{2}\right)-2 h\left(\frac{x}{2}\right)\right\| \leqslant 2 \varepsilon\left(\varphi\left(\frac{x}{2}, \frac{x}{2}\right)+\varphi\left(-\frac{x}{2},-\frac{x}{2}\right)\right) \\
& \leqslant 2 \varepsilon \frac{L}{2}(\varphi(x, x)+\varphi(-x,-x))=\operatorname{L\varepsilon }(\varphi(x, x)+\varphi(-x,-x))
\end{aligned}
$$

for all $x \in X$. So $d(g, h)=\varepsilon$ implies that $d(J g, J h) \leqslant L \varepsilon$. This means that

$$
d(J g, J h) \leqslant \operatorname{Ld}(g, h)
$$

for all $g, h \in S$.
It follows from (2.6) that

$$
\left\|f_{o}(x)-2 f_{o}\left(\frac{x}{2}\right)\right\| \leqslant \frac{1}{2} \varphi\left(\frac{x}{2}, \frac{x}{2}\right)+\frac{1}{2} \varphi\left(-\frac{x}{2},-\frac{x}{2}\right) \leqslant \frac{L}{8}(\varphi(x, x)+\varphi(-x,-x)),
$$

for all $x \in X$. So $d\left(f_{o}, J f_{o}\right) \leqslant \frac{L}{8} \leqslant \frac{L}{4}$.
By Theorem 1.1, there exists a mapping $A: X \rightarrow Y$ satisfying the following:
(1) $A$ is a fixed point of J, i.e.,

$$
\begin{equation*}
A(x)=2 A\left(\frac{x}{2}\right) \tag{2.7}
\end{equation*}
$$

for all $x \in X$. The mapping $A$ is a unique fixed point of $J$ in the set

$$
M=\{g \in S: d(f, g)<\infty\}
$$

This implies that $A$ is a unique mapping satisfying (2.7) such that there exists a $\mu \in(0, \infty)$ satisfying

$$
\left\|f_{o}(x)-A(x)\right\| \leqslant \mu(\varphi(x, x)+\varphi(-x,-x))
$$

for all $x \in X$;
(2) $d\left(J^{l} f_{o}, A\right) \rightarrow 0$ as $l \rightarrow \infty$. This implies the equality

$$
\lim _{l \rightarrow \infty} 2^{n} f_{o}\left(\frac{x}{2^{n}}\right)=A(x)
$$

for all $x \in X$;
(3) $d\left(f_{o}, A\right) \leqslant \frac{1}{1-L} d\left(f_{o}, J f_{o}\right)$, which implies

$$
\left\|f_{o}(x)-A(x)\right\| \leqslant \frac{L}{4(1-L)}(\varphi(x, x)+\varphi(-x,-x))
$$

for all $x \in X$.
It follows from (2.4) and (2.5) that

$$
\begin{aligned}
& \left\|A(x+y)-A(x)-A(y)-\rho\left(2 A\left(\frac{x+y}{2}\right)-A(x)-A(y)\right)\right\| \\
& \quad=\lim _{n \rightarrow \infty}\left\|2^{n}\left(f_{o}\left(\frac{x+y}{2^{n}}\right)-f_{o}\left(\frac{x}{2^{n}}\right)-f_{o}\left(\frac{y}{2^{n}}\right)\right)-2^{n} \rho\left(2 f_{o}\left(\frac{x+y}{2^{n+1}}\right)-f_{o}\left(\frac{x}{2^{n}}\right)-f_{o}\left(\frac{y}{2^{n}}\right)\right)\right\| \\
& \quad \leqslant \frac{1}{2} \lim _{n \rightarrow \infty}\left(2^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)+2^{n} \varphi\left(-\frac{x}{2^{n}},-\frac{y}{2^{n}}\right)\right)=0
\end{aligned}
$$

for all $x, y \in X$. So

$$
A(x+y)-A(x)-A(y)=\rho\left(2 A\left(\frac{x+y}{2}\right)-A(x)-A(y)\right)
$$

for all $x, y \in X$. By Lemma 2.2, the mapping $A: X \rightarrow Y$ is additive.
Letting $y=x$ in (2.5) for $f_{e}$, we get

$$
\begin{equation*}
\left\|\frac{1}{2} f_{e}(2 x)-2 f_{e}(x)\right\| \leqslant \frac{1}{2} \varphi(x, x)+\frac{1}{2} \varphi(-x,-x) \tag{2.8}
\end{equation*}
$$

for all $x \in X$.
Now we consider the linear mapping $\mathrm{J}: \mathrm{S} \rightarrow \mathrm{S}$ such that

$$
\mathrm{Jg}(\mathrm{x}):=4 \mathrm{~g}\left(\frac{x}{2}\right)
$$

for all $x \in X$.
Let $g, h \in S$ be given such that $d(g, h)=\varepsilon$. Then

$$
\|g(x)-h(x)\| \leqslant \varepsilon(\varphi(x, x)+\varphi(-x,-x))
$$

for all $x \in X$. Hence

$$
\begin{aligned}
\|\operatorname{Jg}(x)-\operatorname{Jh}(x)\| & =\left\|4 g\left(\frac{x}{2}\right)-4 h\left(\frac{x}{2}\right)\right\| \leqslant 4 \varepsilon\left(\varphi\left(\frac{x}{2}, \frac{x}{2}\right)+\varphi\left(-\frac{x}{2},-\frac{x}{2}\right)\right) \\
& \leqslant 4 \varepsilon \frac{L}{4}(\varphi(x, x)+\varphi(-x,-x))=\operatorname{L\varepsilon }(\varphi(x, x)+\varphi(-x,-x))
\end{aligned}
$$

for all $x \in X$. So $d(g, h)=\varepsilon$ implies that $d(J g, J h) \leqslant L \varepsilon$. This means that

$$
d(J g, J h) \leqslant \operatorname{Ld}(g, h)
$$

for all $g, h \in S$.
It follows from (2.8) that

$$
\left\|f_{e}(x)-4 f_{e}\left(\frac{x}{2}\right)\right\| \leqslant \varphi\left(\frac{x}{2}, \frac{x}{2}\right)+\varphi\left(-\frac{x}{2},-\frac{x}{2}\right) \leqslant \frac{L}{4}(\varphi(x, x)+\varphi(-x,-x))
$$

for all $x \in X$. So $d\left(f_{e}, J f_{e}\right) \leqslant \frac{L}{4}$.
By Theorem 1.1, there exists a mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ satisfying the following:
(1) $Q$ is a fixed point of J, i.e.,

$$
\begin{equation*}
\mathrm{Q}(x)=4 \mathrm{Q}\left(\frac{x}{2}\right) \tag{2.9}
\end{equation*}
$$

for all $x \in X$. The mapping $Q$ is a unique fixed point of $J$ in the set

$$
M=\{g \in S: d(f, g)<\infty\}
$$

This implies that $Q$ is a unique mapping satisfying (2.9) such that there exists a $\mu \in(0, \infty)$ satisfying

$$
\left\|f_{e}(x)-Q(x)\right\| \leqslant \mu(\varphi(x, x)+\varphi(-x,-x))
$$

for all $x \in X ;$
(2) $d\left(J^{l} f_{e}, Q\right) \rightarrow 0$ as $l \rightarrow \infty$. This implies the equality

$$
\lim _{n \rightarrow \infty} 4^{n} f_{e}\left(\frac{x}{2^{n}}\right)=Q(x)
$$

for all $x \in X$;
(3) $d\left(f_{e}, Q\right) \leqslant \frac{1}{1-L} d\left(f_{e}, J f_{e}\right)$, which implies

$$
\left\|f_{e}(x)-Q(x)\right\| \leqslant \frac{L}{4(1-L)}(\varphi(x, x)+\varphi(-x,-x))
$$

for all $x \in X$.
It follows from (2.4) and (2.5) that

$$
\begin{aligned}
\| \frac{1}{2} Q & \left(\frac{x+y}{2}\right)+\frac{1}{2} Q\left(\frac{x-y}{2}\right)-Q(x)-Q(y)-\rho\left(2 Q\left(\frac{x+y}{2}\right)+2 Q\left(\frac{x-y}{2}\right)-Q(x)-Q(y)\right) \| \\
= & \lim _{n \rightarrow \infty} \| 4^{n}\left(\frac{1}{2} f_{e}\left(\frac{x+y}{2^{n}}\right)+\frac{1}{2} f_{e}\left(\frac{x-y}{2^{n}}\right)-f_{e}\left(\frac{x}{2^{n}}\right)-f_{e}\left(\frac{y}{2^{n}}\right)\right) \\
& -4^{n} \rho\left(2 f_{e}\left(\frac{x+y}{2^{n+1}}\right)+2 f_{e}\left(\frac{x-y}{2^{n+1}}\right)-f_{e}\left(\frac{x}{2^{n}}\right)-f_{e}\left(\frac{y}{2^{n}}\right)\right) \| \\
\leqslant & \frac{1}{2} \lim _{n \rightarrow \infty}\left(4^{n} \varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)+4^{n} \varphi\left(-\frac{x}{2^{n}},-\frac{y}{2^{n}}\right)\right)=0
\end{aligned}
$$

for all $x, y \in X$. So

$$
\frac{1}{2} Q\left(\frac{x+y}{2}\right)+\frac{1}{2} Q\left(\frac{x-y}{2}\right)-Q(x)-Q(y)=\rho\left(2 Q\left(\frac{x+y}{2}\right)+2 Q\left(\frac{x-y}{2}\right)-Q(x)-Q(y)\right)
$$

for all $x, y \in X$. By Lemma 2.2, the mapping $Q: X \rightarrow Y$ is quadratic.
Corollary 2.4. Let $\mathrm{r}>2$ and $\theta$ be nonnegative real numbers, and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a mapping satisfying $\mathrm{f}(0)=0$ and

$$
\begin{equation*}
\left\|M_{1} f(x, y)-\rho M_{2} f(x, y)\right\| \leqslant \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{2.10}
\end{equation*}
$$

for all $x, y \in X$. Then there exist a unique additive mapping $A: X \rightarrow Y$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{aligned}
& \left\|f_{o}(x)-A(x)\right\| \leqslant \frac{2 \theta}{2^{r}-2}\|x\|^{r} \\
& \left\|f_{e}(x)-Q(x)\right\| \leqslant \frac{4 \theta}{2^{r}-4}\|x\|^{r}
\end{aligned}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 2.3 by taking $\varphi(x, y)=\theta\left(\|x\|^{r}+\|y\|^{r}\right)$ for all $x, y \in X$. Then we can choose $L=2^{1-r}$ for $f_{o}$ (respectively, $L=2^{2-r}$ for $f_{e}$ ) and we get the desired result.

Theorem 2.5. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with

$$
\varphi(x, y) \leqslant 2 \operatorname{L} \varphi\left(\frac{x}{2}, \frac{y}{2}\right)
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (2.5). Then there exist a unique additive mapping $\mathrm{A}: \mathrm{X} \rightarrow \mathrm{Y}$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{aligned}
& \left\|f_{o}(x)-A(x)\right\| \leqslant \frac{1}{4(1-L)}(\varphi(x, x)+\varphi(-x,-x)) \\
& \left\|f_{e}(x)-Q(x)\right\| \leqslant \frac{1}{4(1-L)}(\varphi(x, x)+\varphi(-x,-x))
\end{aligned}
$$

for all $x \in X$.
Proof. Let $(\mathrm{S}, \mathrm{d})$ be the generalized metric space defined in the proof of Theorem 2.3.
It follows from (2.6) that

$$
\left\|f_{o}(x)-\frac{1}{2} f_{o}(2 x)\right\| \leqslant \frac{1}{4} \varphi(x, x)+\frac{1}{4} \varphi(-x,-x)
$$

for all $x \in X$.
For $f_{o}$, we consider the linear mapping $J: S \rightarrow S$ such that

$$
\mathrm{Jg}(x):=\frac{1}{2} g(2 x)
$$

for all $x \in X$.
It follows from (2.8) that

$$
\left\|f_{e}(x)-\frac{1}{4} f_{e}(2 x)\right\| \leqslant \frac{1}{4} \varphi(x, x)+\frac{1}{4} \varphi(-x,-x)
$$

for all $x \in X$.

For $f_{e}$, we consider the linear mapping $J: S \rightarrow S$ such that

$$
\mathrm{Jg}(\mathrm{x}):=\frac{1}{4} \mathrm{~g}(2 x)
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.3.
Corollary 2.6. Let $\mathrm{r}<1$ and $\theta$ be nonnegative real numbers, and let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a mapping satisfying $\mathrm{f}(0)=0$ and (2.10). Then there exist a unique additive mapping $\mathrm{A}: \mathrm{X} \rightarrow \mathrm{Y}$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{aligned}
& \left\|f_{o}(x)-A(x)\right\| \leqslant \frac{2 \theta}{2-2^{r}}\|x\|^{r} \\
& \left\|f_{e}(x)-Q(x)\right\| \leqslant \frac{4 \theta}{4-2^{r}}\|x\|^{r}
\end{aligned}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 2.5 by taking $\varphi(x, y)=\theta\left(\|x\|^{r}+\|y\|^{r}\right)$ for all $x, y \in X$. Then we can choose $L=2^{r-1}$ for $f_{o}$ (respectively, $L=2^{r-2}$ for $f_{e}$ ) and we get the desired result.

## 3. Additive-quadratic $\rho$-functional equation (2) in Banach spaces

We solve and investigate the additive-quadratic $\rho$-functional equation (2) in normed spaces.
Lemma 3.1. If a mapping $f: X \rightarrow Y$ satisfies $f(0)=0$ and

$$
\begin{equation*}
M_{2} f(x, y)=\rho M_{1} f(x, y) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$, then $f: X \rightarrow Y$ is the sum of the Cauchy additive mapping $f_{o}$ and the quadratic mapping $f_{e}$.
Proof. Letting $y=0$ in (3.1) for $f_{o}$, we get

$$
\begin{equation*}
\mathrm{f}_{\mathrm{o}}\left(\frac{x}{2}\right)=\frac{1}{2} \mathrm{f}_{\mathrm{o}}(\mathrm{x}) \tag{3.2}
\end{equation*}
$$

for all $x \in X$.
It follows from (3.1) and (3.2) that

$$
f_{o}(x+y)-f_{o}(x)-f_{o}(y)=2 f_{o}\left(\frac{x+y}{2}\right)-f_{o}(x)-f_{o}(y)=\rho\left(f_{o}(x+y)-f_{o}(x)-f_{o}(y)\right)
$$

and so

$$
f_{o}(x+y)=f_{o}(x)+f_{o}(y)
$$

for all $x, y \in X$.
Letting $y=0$ in (3.1) for $f_{e}$, we get

$$
\begin{equation*}
f_{e}\left(\frac{x}{2}\right)=\frac{1}{4} f_{e}(x) \tag{3.3}
\end{equation*}
$$

for all $x \in X$.
It follows from (3.1) and (3.3) that

$$
\begin{aligned}
\frac{1}{2} f_{e}(x+y)+\frac{1}{2} f_{e}(x-y)-f_{e}(x)-f_{e}(y) & =2 f_{e}\left(\frac{x+y}{2}\right)+2 f_{e}\left(\frac{x-y}{2}\right)-f_{e}(x)-f_{e}(y) \\
& =\rho\left(\frac{1}{2} f_{e}(x+y)+\frac{1}{2} f_{e}(x-y)-f_{e}(x)-f_{e}(y)\right)
\end{aligned}
$$

and so

$$
f_{e}(x+y)+f_{e}(x-y)=2 f_{e}(x)+2 f_{e}(y)
$$

for all $x, y \in X$.

Using the fixed point method, we prove the Hyers-Ulam stability of the additive-quadratic $\rho$-functional equation (3.1) in Banach spaces.
Theorem 3.2. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with

$$
\varphi\left(\frac{x}{2}, \frac{y}{2}\right) \leqslant \frac{L}{4} \varphi(x, y)
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\left\|M_{2} f(x, y)-\rho M_{1} f(x, y)\right\| \leqslant \varphi(x, y) \tag{3.4}
\end{equation*}
$$

for all $x, y \in X$. Then there exist a unique additive mapping $A: X \rightarrow Y$ and a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{aligned}
& \left\|f_{o}(x)-A(x)\right\| \leqslant \frac{1}{2(1-L)}(\varphi(x, 0)+\varphi(-x, 0)) \\
& \left\|f_{e}(x)-Q(x)\right\| \leqslant \frac{1}{2(1-L)}(\varphi(x, 0)+\varphi(-x, 0))
\end{aligned}
$$

for all $x \in X$.
Proof. Letting $y=0$ in (3.4) for $f_{o}$, we get

$$
\begin{equation*}
\left\|f_{o}(x)-2 f_{o}\left(\frac{x}{2}\right)\right\|=\left\|2 f_{o}\left(\frac{x}{2}\right)-f_{o}(x)\right\| \leqslant \frac{1}{2} \varphi(x, 0)+\frac{1}{2} \varphi(-x, 0) \tag{3.5}
\end{equation*}
$$

for all $x \in X$.
Consider the set

$$
S:=\{h: X \rightarrow Y, \quad h(0)=0\}
$$

and introduce the generalized metric on $S$ :

$$
d(g, h)=\inf \left\{\mu \in \mathbb{R}_{+}:\|g(x)-h(x)\| \leqslant \mu(\varphi(x, 0)+\varphi(-x, 0)), \quad \forall x \in X\right\}
$$

where, as usual, $\inf \phi=+\infty$. It is easy to show that ( $S, d$ ) is complete (see [7]).
For $f_{o}$, we consider the linear mapping $J: S \rightarrow S$ such that

$$
\mathrm{Jg}(\mathrm{x}):=2 \mathrm{~g}\left(\frac{\mathrm{x}}{2}\right)
$$

for all $x \in X$.
Letting $y=0$ in (3.4) for $f_{e}$, we get

$$
\begin{equation*}
\left\|f_{e}(x)-4 f_{e}\left(\frac{x}{2}\right)\right\|=\left\|4 f_{e}\left(\frac{x}{2}\right)-f_{e}(x)\right\| \leqslant \frac{1}{2} \varphi(x, 0)+\frac{1}{2} \varphi(-x, 0), \tag{3.6}
\end{equation*}
$$

for all $x \in X$.
For $f_{e}$, we consider the linear mapping $J: S \rightarrow S$ such that

$$
\operatorname{Jg}(x):=4 g\left(\frac{x}{2}\right)
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.3.
Corollary 3.3. Let $r>2$ and $\theta$ be nonnegative real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\left\|M_{2} f(x, y)-\rho M_{1} f(x, y)\right\| \leqslant \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{3.7}
\end{equation*}
$$

for all $x, y \in X$. Then there exist a unique additive mapping $\mathrm{A}: \mathrm{X} \rightarrow \mathrm{Y}$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$
such that

$$
\begin{aligned}
& \left\|f_{o}(x)-A(x)\right\| \leqslant \frac{2^{r} \theta}{2^{r}-2}\|x\|^{r} \\
& \left\|f_{e}(x)-Q(x)\right\| \leqslant \frac{2^{r} \theta}{2^{r}-4}\|x\|^{r}
\end{aligned}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 3.2 by taking $\varphi(x, y)=\theta\left(\|x\|^{r}+\|y\|^{r}\right)$ for all $x, y \in X$. Then we can choose $L=2^{1-r}$ for $f_{o}$ (respectively, $L=2^{2-r}$ for $f_{e}$ ) and we get the desired result.

Theorem 3.4. Let $\varphi: X^{2} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with

$$
\varphi(x, y) \leqslant 2 \operatorname{L} \varphi\left(\frac{x}{2}, \frac{y}{2}\right)
$$

for all $x, y \in X$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (3.4). Then there exist a unique additive mapping $A: X \rightarrow Y$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{aligned}
& \left\|f_{o}(x)-A(x)\right\| \leqslant \frac{L}{2(1-L)}(\varphi(x, 0)+\varphi(-x, 0)) \\
& \left\|f_{e}(x)-Q(x)\right\| \leqslant \frac{L}{2(1-L)}(\varphi(x, 0)+\varphi(-x, 0))
\end{aligned}
$$

for all $x \in X$.
Proof. Let ( $\mathrm{S}, \mathrm{d}$ ) be the generalized metric space defined in the proof of Theorem 3.2.
It follows from (3.5) that

$$
\left\|f_{o}(x)-\frac{1}{2} f_{o}(2 x)\right\| \leqslant \frac{1}{4} \varphi(2 x, 0)+\frac{1}{4} \varphi(-2 x, 0) \leqslant \frac{L}{2} \varphi(x, 0)+\frac{L}{2} \varphi(-x, 0)
$$

for all $x \in X$.
For $f_{o}$, we consider the linear mapping $J: S \rightarrow S$ such that

$$
\mathrm{Jg}(x):=\frac{1}{2} g(2 x)
$$

for all $x \in X$.
It follows from (3.6) that

$$
\left\|f_{e}(x)-\frac{1}{4} f_{e}(2 x)\right\| \leqslant \frac{1}{8} \varphi(2 x, 0)+\frac{1}{8} \varphi(-2 x, 0) \leqslant \frac{L}{4} \varphi(x, 0)+\frac{L}{4} \varphi(-x, 0) \leqslant \frac{L}{2} \varphi(x, 0)+\frac{L}{2} \varphi(-x, 0)
$$

for all $x \in X$, since $\frac{L}{4} \varphi(x, 0)+\frac{L}{4} \varphi(-x, 0) \leqslant \frac{L}{2} \varphi(x, 0)+\frac{L}{2} \varphi(-x, 0)$ for all $x \in X$.
For $f_{e}$, we consider the linear mapping $J: S \rightarrow S$ such that

$$
\mathrm{Jg}(\mathrm{x}):=\frac{1}{4} \mathrm{~g}(2 x)
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.3.
Corollary 3.5. Let $r<1$ and $\theta$ be positive real numbers, and let $f: X \rightarrow Y$ be a mapping satisfying (3.7). Then
there exist a unique additive mapping $\mathrm{A}: \mathrm{X} \rightarrow \mathrm{Y}$ and a unique quadratic mapping $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{aligned}
& \left\|f_{o}(x)-A(x)\right\| \leqslant \frac{2^{r} \theta}{2-2^{r}}\|x\|^{r} \\
& \left\|f_{e}(x)-Q(x)\right\| \leqslant \frac{2^{r} \theta}{4-2^{r}}\|x\|^{r}
\end{aligned}
$$

for all $x \in \mathrm{X}$.
Proof. The proof follows from Theorem 3.2 by taking $\varphi(x, y)=\theta\left(\|x\|^{r}+\|y\|^{r}\right)$ for all $x, y \in X$. Then we can choose $\mathrm{L}=2^{\mathrm{r}-1}$ for $\mathrm{f}_{\mathrm{o}}$ (respectively, $\mathrm{L}=2^{r-2}$ for $\mathrm{f}_{e}$ ) and we get the desired result.

## Acknowledgment

We would like to thank the referees for comments and suggestions. This research was supported by Hallym University Research Fund, 2016 (HRF-201606-006).

## References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. 1
[2] L. Cădariu, V. Radu, Fixed points and the stability of Jensen's functional equation, JIPAM. J. Inequal. Pure Appl. Math., 4 (2003), 7 pages. 1.1
[3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86. 1
[4] J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309. 1.1
[5] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. 1
[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A., 27 (1941), 222-224. 1
[7] D. Miheț, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572. 2, 3
[8] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. 1
[9] F. Skof, Local properties and approximation of operators, (Italian) Geometry of Banach spaces and related topics, Italy, Milan, (1983), Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129. 1
[10] S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, New York-London, (1960). 1


[^0]:    *Corresponding author
    Email addresses: baak@hanyang.ac.kr (Choonkil Park), sokim@hallym.ac.kr (Sang Og Kim), cihangiralaca@yahoo.com.tr (Cihangir Alaca)

