Estimates of initial coefficients for certain subclasses of bi-univalent functions involving quasi-subordination

Obaid Algahtani
Department of Mathematics, College of Science, King Saud University, P. O. Box 231428, Riyadh 11321, Saudi Arabia.

Communicated by A. Atangana

Abstract

The object of the present paper is to introduce and investigate new subclasses of the function class Σ of bi-univalent functions defined in the open unit disk \mathcal{U}, involving quasi subordination. The coefficients estimate $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses are also obtained. © 2017 All rights reserved.

Keywords: Univalent functions, bi-univalent functions, quasi-subordination, subordination.
2010 MSC: 30C45, 30C50.

1. Introduction

Let \mathcal{A} be the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathcal{U}=\{z \in \mathbb{C} ;|z|<1\}$.
Suppose \mathcal{S} denotes the class of all functions of \mathcal{A} which satisfy normalized condition $f(0)=0$ and $f^{\prime}(0)=1$ which are univalent in \mathcal{U}.

Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk \mathcal{U}. In fact, the Koebe-one quarter theorem [1] ensures that the image of \mathcal{U} under every univalent function $f \in \mathcal{A}$ contains a disk of radius $1 / 4$. Thus, every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z))=z,(z \in \mathcal{U})$, and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geqslant 1 / 4\right) .
$$

In fact, the inverse function f^{-1} is given by

$$
\mathrm{f}^{-1}(w)=w-\mathrm{a}_{2} w^{2}+\left(2 \mathrm{a}_{2}^{2}-\mathrm{a}_{3}\right) w^{3}-\left(5 \mathrm{a}_{2}^{3}-5 \mathrm{a}_{2} \mathrm{a}_{3}+\mathrm{a}_{4}\right) w^{4}+\cdots .
$$

[^0]A function $\mathrm{f} \in \mathcal{A}$ is said to be bi-univalent in \mathcal{U} if both f and f^{-1} are univalent in \mathcal{U}. Let Σ denote the class of bi-univalent functions defined in \mathcal{U}.

An analytic function $f(z)$ is subordinate to an analytic function $g(z)$ if there exists an analytic function $w(z)$ in U satisfying $w(0)=0$ and $|w(z)|<1(z \in \mathcal{U})$ satisfying $f(z)=g(w(z))$. We denote this subordination by, cf. [5, p. 226],

$$
\mathrm{f}(z) \prec \mathrm{g}(z) \quad(z \in \mathcal{U})
$$

Further, a function $f(z)$ is said to be quasi-subordinate to $g(z)$ in the open unit disk \mathcal{U} if there exists an analytic function $\varphi(z)$ such that $f(z) / \varphi(z)$ is analytic in U,

$$
\frac{\mathrm{f}(z)}{\varphi(z)} \prec \mathrm{g}(z) \quad(z \in \mathcal{U})
$$

and $|\varphi(z)| \leqslant 1(z \in \mathcal{U})$. We also denote this quasi-subordination by

$$
\begin{equation*}
\mathrm{f}(z) \prec_{\mathrm{q}} \mathrm{~g}(z) \quad(z \in \mathcal{U}) \tag{1.2}
\end{equation*}
$$

Note that the quasi-subordination (1.2) is equivalent to

$$
\begin{equation*}
f(z)=\varphi(z) g(w(z)) \quad(z \in \mathcal{U}) \tag{1.3}
\end{equation*}
$$

where $|\varphi(z)| \leqslant 1(z \in \mathcal{U})$.
In the quasi-subordination (1.3), if $\varphi(z) \equiv 1$, then (1.3) becomes the subordination (1.3).
For analytic functions $f(z)$ and $g(z)$ in U, we say $f(z)$ is majorized by $g(z)$ if there exists an analytic function $\varphi(z)$ in \mathcal{U} satisfying $|\varphi(z)| \leqslant 1$ and $f(z)=\varphi(z) g(z)(z \in \mathcal{U})$. See $[7,11,12]$ for works related to quasi-subordination.

Lewin [8] investigated the bi-univalent function class Σ and showed that $\left|\mathrm{a}_{2}\right|<1.51$. Subsequently, Brannan et al. [1] conjectured that $\left|a_{2}\right|<\sqrt{2}$. Netanyahu [10], on the other hand, showed that $\max _{f \in \Sigma}\left|a_{2}\right|=$ $\frac{4}{3}$. Brannan and Taha [2] obtained initial coefficient bounds for certain subclasses of bi-univalent functions, similar to the familiar subclasses of univalent functions consisting of strongly starlike, starlike and convex functions. Later, Srivastava et al. [13] introduced and investigated subclasses of bi-univalent functions and obtained bounds for the initial coefficients. Many researchers (see [3, 4, 6, 13, 14]) have recently introduced and investigated several interesting subclasses of the bi-univalent function class Σ and they have found non-sharp estimates of initial coefficient bounds $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

In the present paper, the coefficient bounds of $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for certain classes involving the quasisubordination are obtained. The subclasses in this paper are motivated essentially by corresponding subclasses investigated in [7].

2. Coefficient estimates

Let us assume that there exists a function $\phi(z)$ analytic in the open unit disk \mathcal{U} and $|\varphi(z)| \leqslant 1$ s.t.

$$
\begin{equation*}
\phi(z)=A_{0}+A_{1} z+A_{2} z^{2}+\cdots \quad(|z|<1) \tag{2.1}
\end{equation*}
$$

Since $\phi(z)$ is analytic and bounded in \mathcal{U}, we have [9, page 172]

$$
\begin{equation*}
\left|A_{n}\right| \leqslant 1-\left|A_{0}\right|^{2} \leqslant 1 \quad(n>0) . \tag{2.2}
\end{equation*}
$$

Also, let $h(z)$ be an analytic function with positive real part in U, satisfying $h(0)=1, h^{\prime}(0)>0$ and $h(U)$ is symmetric with respect to the real axis. Such a function has a Taylor series of the form

$$
h(z)=1+B_{1} z+B_{2} z^{2}+\cdots, B_{1}>0 .
$$

Suppose that $\mathfrak{u}(z)$ and $v(z)$ are analytic in \mathcal{U} with $\mathfrak{u}(0)=v(0)=0,|\mathfrak{u}(z)|<1,|v(z)|<1$, and suppose that

$$
u(z)=b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n}, \quad v(z)=c_{1} z+\sum_{n=2}^{\infty} c_{n} z^{n} \quad(|z|<1) .
$$

It is well-known that

$$
\begin{equation*}
\left|b_{1}\right| \leqslant 1, \quad\left|b_{2}\right| \leqslant 1-\left|b_{1}\right|^{2}, \quad\left|c_{1}\right| \leqslant 1, \quad\left|c_{2}\right| \leqslant 1-\left|c_{1}\right|^{2} \tag{2.3}
\end{equation*}
$$

By a simple calculation, we have

$$
h(u(z))=1+B_{1} b_{1} z+\left(B_{1} b_{2}+B_{2} b_{1}^{2}\right) z^{2}+\cdots,|z|<1
$$

and

$$
h(v(w))=1+\mathrm{B}_{1} \mathrm{c}_{1} w+\left(\mathrm{B}_{1} \mathrm{c}_{2}+\mathrm{B}_{2} \mathrm{c}_{1}^{2}\right) w^{2}+\cdots,|w|<1
$$

We define a subclass of Σ as follows:
Definition 2.1. A function $f \in \Sigma$ is said to be in the class $H_{q}(\Sigma, h)$ if and only if:

$$
\mathrm{f}^{\prime}(z)-1 \prec_{\mathrm{q}} h(z)-1, \quad \mathrm{~g}^{\prime}(w)-1 \prec_{\mathrm{q}} \mathrm{~h}(w)-1,
$$

or

$$
f^{\prime}(z)-1=\phi(z)(h(u(z))-1), \quad g^{\prime}(w)-1=\phi(w)(h(v(w))-1)
$$

where $|\phi(z)| \leqslant 1(z \in \mathcal{U})$ and $g(w)=f^{-1}(w)$.
On taking $\phi(z) \equiv 1$ in Definition 2.1, we get the following subordination class:

$$
f^{\prime}(z) \prec h(z), \quad g^{\prime}(w) \prec h(w) .
$$

We name this class as $\mathrm{H}(\Sigma, h)$.
Now, we first derive following coefficient estimates for the subclass $\mathrm{H}_{\mathrm{q}}(\Sigma, h)$:
Theorem 2.2. If f given by (1.1) is in the subclass $\mathrm{H}_{\mathrm{q}}^{\Sigma}(\mathrm{h})$, then

$$
\left|a_{2}\right| \leqslant \min \left\{\frac{\mathrm{B}_{1}}{2}, \sqrt{\frac{\mathrm{~B}_{1}+\left|\mathrm{B}_{2}\right|}{3}}\right\}, \quad\left|\mathrm{a}_{3}\right| \leqslant \min \left\{\frac{\mathrm{B}_{1}^{2}}{4}+\frac{2}{3} \mathrm{~B}_{1}, \frac{\left|\mathrm{~B}_{2}\right|}{3}+\mathrm{B}_{1}\right\}
$$

Proof. Let $\mathrm{f} \in \mathrm{H}_{\mathrm{q}}^{\Sigma}(\mathrm{h})$ and $\mathrm{g}=\mathrm{f}^{-1}$. Then, there are analytic functions $u, v: \mathcal{U} \rightarrow \mathcal{U}$ given by (2.2) and a function $\phi(z)$ in \mathcal{U} defined by (2.1) satisfying

$$
f^{\prime}(z)-1=\phi(z)\left(h(u(z)-1), \quad g^{\prime}(w)-1=\phi(w)(h(v(w)-1)\right.
$$

Since

$$
f^{\prime}(z)=1+2 a_{2} z+3 a_{3} z^{2}+\cdots, \quad g^{\prime}(w)=1-2 a_{2} w+3\left(2 a_{2}^{2}-a_{3}\right) w^{2}+\cdots
$$

and

$$
\begin{equation*}
\phi(z)\left(h(u(z)-1)=A_{0} B_{1} b_{1} z+\left[A_{1} B_{1} b_{1}+A_{0}\left(B_{1} b_{2}+B_{2} b_{1}^{2}\right)\right] z^{2}+\cdots\right. \tag{2.4}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi(w)\left(h(v(w)-1)=A_{0} B_{1} c_{1} w+\left[A_{1} B_{1} c_{1}+A_{0}\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right)\right] w^{2}+\cdots\right. \tag{2.5}
\end{equation*}
$$

It follows that

$$
\begin{align*}
2 a_{2} & =A_{0} B_{1} b_{1} \tag{2.6}\\
3 a_{3} & =A_{1} B_{1} b_{1}+A_{0}\left(B_{1} b_{2}+B_{2} b_{1}^{2}\right), \tag{2.7}\\
-2 a_{2} & =A_{0} B_{1} c_{1} \tag{2.8}\\
3\left(2 a_{2}^{2}-a_{3}\right) & =A_{1} B_{1} c_{1}+A_{0}\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right) . \tag{2.9}
\end{align*}
$$

From (2.6) and (2.8), we have

$$
\begin{equation*}
\mathrm{b}_{1}=-\mathrm{c}_{1} \tag{2.10}
\end{equation*}
$$

Squaring and adding (2.6) and (2.8), and then using (2.10), we have

$$
\begin{equation*}
4 a_{2}^{2}=A_{0}^{2} B_{1}^{2} c_{1}^{2} \tag{2.11}
\end{equation*}
$$

Adding (2.7) and (2.9), we have

$$
\begin{equation*}
6 \mathrm{a}_{2}^{2}=A_{0}\left[\mathrm{~B}_{1}\left(\mathrm{~b}_{2}+\mathrm{c}_{2}\right)+2 \mathrm{~B}_{2} \mathrm{c}_{1}^{2}\right] \tag{2.12}
\end{equation*}
$$

By using (2.2) and (2.3), we have from (2.11) and (2.12) that

$$
\begin{equation*}
\left|a_{2}\right| \leqslant \frac{B_{1}}{2} \text { and }\left|a_{2}\right| \leqslant \sqrt{\frac{B_{1}+\left|\mathrm{B}_{2}\right|}{3}} \tag{2.13}
\end{equation*}
$$

respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (2.1).
Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (2.9) from (2.7). Thus, we get

$$
6 a_{3}-6 a_{2}^{2}=A_{1} B_{1}\left(b_{1}-c_{1}\right)+A_{0}\left[B_{1}\left(b_{2}-c_{2}\right)+B_{2}\left(b_{1}^{2}-c_{1}^{2}\right)\right]
$$

Therefore (2.10), (2.11), and (2.13) yield

$$
6 a_{3}=\frac{3}{2} A_{0}^{2} B_{1}^{2} c_{1}^{2}-2 c_{1} A_{1} B_{1}+A_{0} B_{1}\left(b_{2}-c_{2}\right)
$$

Thus, we find by using (2.2) and (2.3) that

$$
\left|a_{3}\right| \leqslant \frac{1}{4} B_{1}^{2}+\frac{2}{3} B_{1}
$$

Also from (2.10), (2.11), and (2.13), we have

$$
6 a_{3}=A_{0}\left[B_{1}\left(b_{2}+c_{2}\right)+2 B_{2} c_{1}^{2}\right]-2 c_{1} A_{1} B_{1}+A_{0} B_{1}\left(b_{2}-c_{2}\right)
$$

Thus, we find by (2.2) and (2.3) that

$$
\left|a_{3}\right| \leqslant B_{1}+\frac{\left|B_{2}\right|}{3}
$$

This evidently completes the proof of Theorem 2.2.
Theorem 2.3. If f given by (1.1) is in the subclass $\mathrm{H}(\Sigma, h)$ then

$$
\left|\mathrm{a}_{2}\right| \leqslant \min \left\{\frac{\mathrm{B}_{1}}{2}, \sqrt{\frac{\mathrm{~B}_{1}+\left|\mathrm{B}_{2}\right|}{3}}\right\}
$$

and

$$
\left|a_{3}\right| \leqslant \min \left\{\frac{B_{1}^{2}}{4}+\frac{B_{1}}{6}, \frac{\left|B_{2}\right|+2 B_{1}}{3}\right\}
$$

Proof. The result is obvious, by taking $\phi(z) \equiv 1(z \in \mathrm{U})$ and using the similar procedure as in Theorem 2.2.

Definition 2.4. A function $f \in \Sigma$ is said to be in the class $S_{q}^{*}(\Sigma, h)$ if and only if:

$$
\frac{z f^{\prime}(z)}{f(z)}-1 \prec_{\mathrm{q}} h(z)-1, \quad \frac{w g^{\prime}(z)}{g(w)}-1 \prec_{\mathrm{q}} h(w)-1,
$$

where $|\phi|(z) \leqslant 1(z \in \mathcal{U})$ and $g(w)=f^{-1}(w)$.

On taking $\phi(z) \equiv 1$ in Definition 2.1, we get the following subordination class:

$$
\frac{z f^{\prime}(z)}{f(z)} \prec h(z), \quad \frac{w g^{\prime}(z)}{g(w)} \prec h(w)
$$

We name this class as $S^{*}(\Sigma, h)$, where $g(w)=f^{-1}(w)$.
Theorem 2.5. If f given by (1.1) is in the subclass $\mathrm{S}_{\mathrm{q}}^{*}(\Sigma, \mathrm{~h})$ then

$$
\begin{equation*}
\left|a_{2}\right| \leqslant \min \left\{B_{1}, \sqrt{B_{1}+\left|B_{2}\right|}\right\} \tag{2.14}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leqslant \min \left\{B_{1}\left(1+B_{1}\right), 3 B_{1}\right\}
$$

Proof. Let $\mathrm{f} \in \mathrm{S}_{\mathrm{q}}^{*}(\Sigma, h)$ and $\mathrm{g}=\mathrm{f}^{-1}$. Then there are analytic functions $u, v: \mathcal{U} \rightarrow \mathcal{U}$ given by (2.2) and a function $\phi(z)$ in \mathcal{U} defined by (2.1) satisfying

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}-1=\phi(z)\left(h(u(z)-1), \quad \frac{w g^{\prime}(w)}{g(w)}-1=\phi(w)(h(v(w)-1)\right. \tag{2.15}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=1+a_{2} z+\left(2 a_{3}-a_{2}^{2}\right) z^{2}+\cdots, \quad \frac{w g^{\prime}(w)}{g(w)}=1-2 a_{2} w+\left(3 a_{2}^{2}-2 a_{3}\right) w^{2}+\cdots \tag{2.16}
\end{equation*}
$$

By using (2.4), (2.5), (2.15), and (2.16), we have

$$
\begin{align*}
a_{2} & =A_{0} B_{1} b_{1} \tag{2.17}\\
2 a_{3}-a_{2}^{2} & =A_{1} B_{1} b_{1}+A_{0}\left(B_{1} b_{2}+B_{2} b_{1}^{2}\right) \tag{2.18}\\
-a_{2} & =A_{0} B_{1} c_{1} \tag{2.19}\\
3 a_{2}^{2}-2 a_{3} & =A_{1} B_{1} c_{1}+A_{0}\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right) \tag{2.20}
\end{align*}
$$

From (2.17) and (2.19), we have

$$
\begin{equation*}
\mathrm{b}_{1}=-\mathrm{c}_{1} \tag{2.21}
\end{equation*}
$$

Squaring and adding (2.17) and (2.19), and then using (2.21), we have

$$
\begin{equation*}
\mathrm{a}_{2}^{2}=\mathrm{A}_{0}^{2} \mathrm{~B}_{1}^{2} \mathrm{c}_{1}^{2} \tag{2.22}
\end{equation*}
$$

Adding (2.18) and (2.20), and then using (2.21), we have

$$
\begin{equation*}
2 a_{2}^{2}=A_{0}\left[B_{1}\left(b_{2}+c_{2}\right)+2 B_{2} c_{1}^{2}\right] \tag{2.23}
\end{equation*}
$$

By using (2.2) and (2.3), we have from (2.22) and (2.23) that

$$
\left|a_{2}\right| \leqslant B_{1} \text { and }\left|a_{2}\right| \leqslant \sqrt{B_{1}+\left|B_{2}\right|}
$$

respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (2.14).
Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (2.20) from (2.18). Thus, we get

$$
\begin{equation*}
4 a_{3}-4 a_{2}^{2}=A_{1} B_{1}\left(b_{1}-c_{1}\right)+A_{0}\left[B_{1}\left(b_{2}-c_{2}\right)+B_{2}\left(b_{1}^{2}-c_{1}^{2}\right)\right] \tag{2.24}
\end{equation*}
$$

Therefore, (2.21), (2.22), and (2.24) yield

$$
4 a_{3}=4 A_{0}^{2} B_{1}^{2} c_{1}^{2}-2 c_{1} A_{1} B_{1}+A_{0} B_{1}\left(b_{2}-c_{2}\right)
$$

Hence, we find by using (2.2) and (2.3) that

$$
\left|a_{3}\right| \leqslant B_{1}\left(1+B_{1}\right)
$$

Also from (2.21), (2.22), and (2.24), we have

$$
4 a_{3}=2 A_{0}\left[B_{1}\left(b_{2}+c_{2}\right)+2 B_{2} c_{1}^{2}\right]-2 c_{1} A_{1} B_{1}+A_{0} B_{1}\left(b_{2}-c_{2}\right)
$$

Thus, we find by (2.2) and (2.3) that

$$
\left|a_{3}\right| \leqslant 3 B_{1}
$$

This evidently completes the proof of Theorem 2.5.
Theorem 2.6. If f given by (1.1) is in the subclass $\mathrm{S}^{*}(\Sigma, h)$, then

$$
\left|a_{2}\right| \leqslant \min \left\{B_{1}, \sqrt{\mathrm{~B}_{1}+\left|\mathrm{B}_{2}\right|}\right\}
$$

and

$$
\left|a_{3}\right| \leqslant \min \left\{B_{1}^{2}+\frac{B_{1}}{2}, \frac{3}{2} B_{1}+\left|B_{2}\right|\right\}
$$

Proof. The result is obvious, by taking $\phi(z) \equiv 1(z \in \mathcal{U})$ and using the similar procedure as in Theorem 2.5.

Definition 2.7. A function $f \in \Sigma$ is said to be in the class $C_{q}(\Sigma, h)$ if and only if:

$$
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec_{\mathrm{q}} \mathrm{~h}(z)-1, \quad \frac{w g^{\prime \prime}(z)}{g^{\prime}(w)} \prec_{\mathrm{q}} \mathrm{~h}(w)-1,
$$

where $|\phi(z)| \leqslant 1(z \in \mathcal{U})$ and $g(w)=f^{-1}(w)$.
On taking $\phi(z) \equiv 1$ in Definition 2.1, we get the following subordination class:

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec h(z), \quad 1+\frac{w g^{\prime \prime}(z)}{g^{\prime}(w)} \prec h(w)
$$

We name this class as $C(\Sigma, h)$.
Theorem 2.8. If f given by (1.1) is in the subclass $\mathrm{C}_{\mathrm{q}}(\Sigma, h)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqslant \min \left\{\frac{\mathrm{B}_{1}}{2}, \frac{\sqrt{\mathrm{~B}_{1}+\left|\mathrm{B}_{2}\right|}}{2}\right\} \tag{2.25}
\end{equation*}
$$

and

$$
\left|a_{3}\right| \leqslant \min \left\{\frac{1}{4} B_{1}^{2}+\frac{1}{3} B_{1}, \frac{5}{6} B_{1}+\frac{1}{2}\left|B_{2}\right|\right\}
$$

Proof. Let $\mathrm{f} \in \mathrm{K}_{\mathrm{q}}^{\Sigma}(\mathrm{h})$ and $\mathrm{g}=\mathrm{f}^{-1}$. Then, there are analytic functions $u, v: \mathcal{U} \rightarrow \mathcal{U}$ given by (2.2) and a function $\phi(z)$ in \mathcal{U} defined by (2.1) satisfying

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\phi(z)\left(h(u(z)-1), \quad \frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}=\phi(w)(h(v(w)-1)\right. \tag{2.26}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=2 a_{2} z+\left(6 a_{3}-4 a_{2}^{2}\right) z^{2}+\cdots, \quad \frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}=-2 a_{2} w+\left(8 a_{2}^{2}-6 a_{3}\right) w^{2}+\cdots \tag{2.27}
\end{equation*}
$$

By using (2.4), (2.5), (2.26), and (2.27), we have

$$
\begin{align*}
2 a_{2} & =A_{0} B_{1} b_{1} \tag{2.28}\\
6 a_{3}-4 a_{2}^{2} & =A_{1} B_{1} b_{1}+A_{0}\left(B_{1} b_{2}+B_{2} b_{1}^{2}\right) \tag{2.29}\\
-2 a_{2} & =A_{0} B_{1} c_{1} \tag{2.30}\\
8 a_{2}^{2}-6 a_{3} & =A_{1} B_{1} c_{1}+A_{0}\left(B_{1} c_{2}+B_{2} c_{1}^{2}\right) \tag{2.31}
\end{align*}
$$

From (2.28) and (2.30), we have

$$
\begin{equation*}
\mathrm{b}_{1}=-\mathrm{c}_{1} \tag{2.32}
\end{equation*}
$$

Squaring and adding (2.28) and (2.30), and then using (2.32), we have

$$
\begin{equation*}
4 a_{2}^{2}=A_{0}^{2} B_{1}^{2} c_{1}^{2} \tag{2.33}
\end{equation*}
$$

Adding (2.29) and (2.31), and then using (2.32), we have

$$
\begin{equation*}
4 \mathrm{a}_{2}^{2}=\mathrm{A}_{0}\left[\mathrm{~B}_{1}\left(\mathrm{~b}_{2}+\mathrm{c}_{2}\right)+2 \mathrm{~B}_{2} \mathrm{c}_{1}^{2}\right] \tag{2.34}
\end{equation*}
$$

By using (2.2) and (2.3), we have from (2.33) and (2.34) that

$$
\left|a_{2}\right| \leqslant \frac{B_{1}}{2} \text { and }\left|a_{2}\right| \leqslant \frac{\sqrt{\mathrm{B}_{1}+\left|\mathrm{B}_{2}\right|}}{2}
$$

respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (2.25).
Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (2.31) from (2.29). Thus, we get

$$
\begin{equation*}
12 a_{3}-12 a_{2}^{2}=A_{1} B_{1}\left(b_{1}-c_{1}\right)+A_{0}\left[B_{1}\left(b_{2}-c_{2}\right)+B_{2}\left(b_{1}^{2}-c_{1}^{2}\right)\right] \tag{2.35}
\end{equation*}
$$

Therefore the equations (2.32), (2.33), and (2.34) yield

$$
12 a_{3}=3 A_{0}^{2} B_{1}^{2} c_{1}^{2}-2 c_{1} A_{1} B_{1}+A_{0} B_{1}\left(b_{2}-c_{2}\right)
$$

Thus, we find by using (2.2) and (2.3) that

$$
\left|a_{3}\right| \leqslant \frac{1}{4} B_{1}^{2}+\frac{1}{3} B_{1}
$$

Also from (2.32), (2.34), and (2.35), we have

$$
12 a_{3}=3 A_{0}\left[B_{1}\left(b_{2}+c_{2}\right)+2 B_{2} c_{1}^{2}\right]-2 c_{1} A_{1} B_{1}+A_{0} B_{1}\left(b_{2}-c_{2}\right)
$$

Hence, we find by (2.2) and (2.3) that

$$
\left|a_{3}\right| \leqslant \frac{5}{6} B_{1}+\frac{1}{2}\left|B_{2}\right| .
$$

This evidently completes the proof of Theorem 2.8.
Theorem 2.9. If f given by (1.1) is in the subclass $\mathrm{C}(\Sigma, \mathrm{h})$, then

$$
\left|a_{2}\right| \leqslant \min \left\{\frac{B_{1}}{2}, \sqrt{\frac{B_{1}+\left|B_{2}\right|}{2}}\right\}
$$

and

$$
\left|a_{3}\right| \leqslant \min \left\{\frac{B_{1}^{2}}{4}+\frac{B_{1}}{6}, \frac{2}{3} B_{1}+\frac{\left|B_{2}\right|}{2}\right\}
$$

Proof. The result is obvious, by taking $\phi(z) \equiv 1 \quad(z \in \mathcal{U})$ and using the similar procedure as in Theorem 2.8.

3. Conclusion

In the paper, classes of analytic bi-univalent are introduced with the help of quasi-subordination. Further, coefficient estimates of initial Maclaurin coefficients are also obtained.

Acknowledgment

This project is supported by College of Science Research Center, Deanship of Scientific Research, King Saud University. Author is also thankful to anonymous reviewers for their fruitful comments.

References

[1] D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math., 22 (1970), 476-485. 1, 1
[2] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babe-Bolyai Math., 31 (1986), 70-77. 1
[3] M. Çağlar, H. Orhan, N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), 1165-1171. 1
[4] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2 (2013), 49-60. 1
[5] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York, (1983). 1
[6] S. P. Goyal, P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20 (2012), 179-182. 1
[7] M. Haji Mohd, M. Darus, Fekete-Szegő problems for quasi-subordination classes, Abstr. Appl. Anal., 2012 (2012), 14 pages. 1
[8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68. 1
[9] Z. Nehari, Conformal Mapping, Reprinting of the 1952 edition, Dover, New York, NY, USA, (1975). 2
[10] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $z<1$, Arch. Rational Mech. Anal., 32 (1969), 100-112. 1
[11] F. Y. Ren, S. Owa, S. Fukui, Some inequalities on quasi-subordinate functions, Bull. Austral. Math. Soc., 43 (1991), 317-329. 1
[12] M. S. Robertson, Quasi-subordination and coefficient conjectures, Bull. Amer. Math. Soc., 76 (1970), 1-9. 1
[13] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. 1
[14] Q.-H. Xu, H.-G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461-11465. 1

[^0]: Email address: obalgahtani@ksu.edu.sa (Obaid Algahtani)
 doi:10.22436/jnsa.010.03.12

