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Abstract
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1. Introduction

Fractional calculus refers to integration or differentiation of any order. The field has a history as old
as calculus itself, which did not attract enough attention for a long time. In the past decades, the theory
of fractional differential equations has become an important area of investigation because of its wide
applicability in many branches of physics, economics and technical sciences. For a nice introduction,
we refer the reader to [6, 12–14] and references cited therein. The main methods used in the research of
fractional differential equations are some fixed theorems, the coincidence degree theory and the monotone
iterative methods. On the other hand, critical point theory and the variational methods have been very
useful in dealing with the existence and multiplicity of solutions for integer order differential equations
with some boundary conditions. We refer readers to the books (or surveys) and the papers [5, 16, 19] and
the references therein. The variational methods are also a very useful tool in dealing with the fractional
differential equations; see [1, 4, 10, 11, 15, 22–24]. In [10], Jiao and Zhou considered the following fractional
boundary value problems{

−1
2
d
dt(0D

−β
t + tD

−β
T )u ′(t) = ∇F(t,u(t)), a.e. t ∈ [0, T ],

u(0) = u(T) = 0,
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where β ∈ [0, 1), 0D
−β
t and tD

−β
T are the left and right Riemann-Loiuville fractional derivatives, respec-

tively. F : [0, T ]× RN → R (with N > 1) is a suitable given function and ∇F(t, x) is the gradient of F with
respect to x.

By using the least action principle and Mountain Pass theorem, they obtained some sufficient condi-
tions for the existence of one solution. The authors in [4, 8, 9, 15, 22] further studied the existence and
multiplicity of solutions for the above problem or related problems with the critical point theory. And the
above problem arises from the phenomena of advection dispersion and was first investigated by Ervin
and Loop in [7].

Impulsive effects are common phenomena due to short-term perturbations whose duration is neg-
ligible in comparison with the total duration of the original process. The governing equations of such
phenomena may be modeled as impulsive differential equations. In recent years, there has been a grow-
ing interest in the study of impulsive differential equations as these equations provide a natural frame-
work for mathematical modeling of many real world phenomena, namely in the control theory, physics,
chemistry, population dynamics, biotechnology, economics, and medical fields [17, 21].

Recently, the study of fractional differential equations with impulses has been studied by many au-
thors. But for almost all the works, the main methods are some fixed theorems, the coincidence degree
theory, and the monotone iterative methods. To our best knowledge, the fractional boundary value prob-
lems with impulses using variational methods and critical point theory have received considerably less
attention [3, 18, 20]. Bonanno et al. [3] and Rodrı́guez-López and Tersian [20] studied the following
Dirichlet’s boundary value problem for fractional differential equations with impulses:

tD
α
T (
c
0D
α
t u(t)) + a(t)u(t) = λf(t,u(t)), t 6= tj, a.e. t ∈ [0, T ],

4(tD
α−1
T (c0D

α
t u))(tj) = µIj(u(tj)), j = 1, 2, . . . ,n,

u(0) = u(T) = 0,

where λ ∈ (0,+∞) and µ ∈ (0,+∞) are two parameters. They obtained the existence of triple solutions
by using variatioanl methods and a three critical points theorem due to Bonanno and Marano [2].

In [18], the authors investigated the following fractional differential equations with impulses:
tD
α
T (
c
0D
α
t u(t)) + a(t)u(t) = f(t,u(t)), t 6= tj, a.e. t ∈ [0, T ],

4(tD
α−1
T (c0D

α
t u))(tj) = Ij(u(tj)), j = 1, 2, . . . ,n,

u(0) = u(T) = 0.

By using critical point theory and variational methods, the authors give some criteria to guarantee that
the above-mentioned impulsive problems have at least one solution and infinitely many solutions.

Motivated by the work above, we consider the following problem (1.1) of impulsive fractional differ-
ential equations:

−
1
2
d

dt
(0D

−β
t + tD

−β
T )u ′(t) = a(t)u(t) + λ∇F(t,u(t)), t 6= tk, a.e. t ∈ [0, T ],

4(Dαt u)(tk) = µIk(u(tk)), tk ∈ (0, T),k = 1, 2, . . . , l,
u(0) = u(T) = 0,

(1.1)

where β ∈ [0, 1),α = 1 − β
2 ∈

(1
2 , 1
]
, 0D

−β
t , tD

−β
T are the left and right Riemann-Liouville fractional inte-

grals of order β, c0Dαt and c
tD
α
T are the left and right Caputo fractional derivative of order α, respectively,

0 = t0 < t1 < t2 < . . . < tl < tl+1 = T , F : [0, T ]× RN → R a given function satisfying some assumptions
and ∇F(t, x) is the gradient of F at x, Ik ∈ C([0, T ],R),a ∈ C[0, T ] and

(Dαt u)(t) =
1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t),

4(Dαt u)(tk) =
1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t+k )
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−
1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t−k ),

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t+k ) = lim

t→t+k

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t),

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t−k ) = lim

t→t−k

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t)

for k = 1, · · · , l.
In this paper, the existence results of infinitely many solutions of (1.1) are established. Our method is

different from [3, 18, 20] and our results for (1.1) are new. The rest of this paper is organized as follows.
In Section 2, some definitions and lemmas which are essential to prove our main results are stated. In
Section 3, we give the main results. At last, one example is offered to demonstrate the application of our
main results.

2. Preliminaries

At first, we present the necessary definitions for the fractional calculus theory and several lemmas
which are used further in this paper.

Definition 2.1 ([12]). Let f be a function defined on [a,b]. The left and right Riemann-Liouville fractional
integrals of order α for function f are denoted by aD

−α
t and tD

−α
b , respectively, and are defined by

aD
−α
t f(t) =

1
Γ(α)

∫t
a

(t− s)α−1f(s)ds,

tD
−α
b f(t) =

1
Γ(α)

∫b
t

(s− t)α−1f(s)ds,

for t ∈ [a,b],α > 0.
The left and right Riemann-Liouville fractional derivatives of order α for function f are denoted by

aD
−α
t f(t) and tD

−α
b f(t), respectively, and are defined by

aD
−α
t f(t) =

dn

dtn a
Dα−nt f(t) =

1
Γ(n−α)

dn

dtn

∫t
a

(t− s)n−α−1f(s)ds,

tD
−α
b f(t) = (−1)n

dn

dtn t
Dα−nb f(t) =

(−1)n

Γ(n−α)

dn

dtn

∫b
t

(s− t)n−α−1f(s)ds,

for t ∈ [a,b],n− 1 6 α < n,n ∈ N.

The above conditions ensure that the right hand side integral is well-defined as pointwise on [a,b].

Lemma 2.2 ([12]). The left and right Riemann-Liouville fractional integral operators have the property of a semi-
group, i.e.

aD
−γ1
t (aD

−γ2
t f(t)) = aD

−γ1−γ2
t f(t) and tD

−γ1
b (tD

−γ2
b f(t)) = tD

−γ1−γ2
b f(t), ∀ γ1,γ2 > 0,

for a.e. t ∈ [a,b] and f ∈ L1([a,b],RN).

Definition 2.3 ([12]). If α ∈ (n− 1,n) and f ∈ ACn([a,b],R), then the left and right Caputo fractional
derivatives of order of a function f are denoted by c

aD
α
t f(t) and c

tD
α
bf(t), respectively, and are defined by

c
aD

α
t f(t) = aD

α−n
t

dn

dtn
f(t) =

1
Γ(n−α)

∫t
a

(t− s)n−α−1f(n)(s)ds,

c
tD
α
bf(t) = (−1)n tD

α−n
b

dn

dtn
f(t) =

(−1)n

Γ(n−α)

∫b
t

(s− t)n−α−1f(n)(s)ds,

for t ∈ [a,b].
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In view of Definition 2.1 and Lemma 2.2, we can easily transfer (1.1) to the following problem
d
dt

{
1
2 0D

α−1
t (c0D

α
t u(t)) −

1
2 tD

α−1
T (ctD

α
Tu(t))

}
+a(t)u(t) + λ∇F(t,u(t)) = 0,

t 6= tk, a.e. t ∈ [0, T ],

4(Dαt u)(tk) = µIk(u(tk)), tk ∈ (0, T),k = 1, 2, . . . , l,
u(0) = u(T) = 0,

(2.1)

where α = 1 − β
2 ∈

(1
2 , 1
]
, 0D

α−1
t , tD

α−1
T are the left and right Riemann-Liouville fractional integrals of

order 1 −α, c0Dαt and c
tD
α
T are the left and right Caputo fractional derivative of order α, respectively, and

(Dαt u)(tk) =
1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(tk) for k = 1, . . . , l.

Then the problem (1.1) is equivalent to the problem (2.1). Therefore a solution of the problem (2.1)
corresponds to a solution of the BVP (1.1).

In order to establish a variational structure which enables us to reduce the existence of solution of
problem (2.1) to the existence of the critical point of corresponding functional, we construct the following
appropriate function spaces.

Let us recall that for any fixed t ∈ [0, T ] and 1 6 p 6∞,

∥∥u∥∥∞ = max
t∈[0,T ]

∣∣u(t)∣∣, ∥∥u∥∥
Lp

=
(∫T

0

∣∣u(s)∣∣pds) 1
p

.

Let 0 < α 6 1, we define the fractional derivative spaces Eα0 by the closure of C∞0 ([0, T ]) with respect
to the weighted norm ‖u‖α = (

∫T
0

∣∣c
0D
α
t u(t)

∣∣2dt+ ∫T0 ∣∣u(t)∣∣2dt) 1
2 , for all u ∈ Eα0 , where

C∞0 ([0, T ]) =
{
u ∈ C∞0 ([0, T ]) : u(0) = u(T)

}
.

Clearly, the fractional derivative space Eα0 is the space of functions u ∈ L2([0, T ] \ {t1, t2, . . . , tl}) hav-
ing α-order Caputo left and right fractional derivatives and Riemann-Liouville left and right fractional
derivatives, c0D

α
t , ctDαT , 0D

α
t ∈ L2([0, T ] \ {t1, t2, . . . , tl}) and u(0) = u(T) = 0.

Lemma 2.4 ([10]). Let 1
2 < α 6 1 and 1 < p <∞ for all u ∈ Eα0 , one has∥∥u∥∥

Lp
6

Tα

Γ(α+ 1)

∥∥∥c0Dαt u∥∥∥
Lp

. (2.2)

Moreover, if α > 1
p and 1

p + 1
q = 1, then

∥∥u∥∥∞ 6
Tα− 1/p

Γ(α)
(
(α− 1)q+ 1

) 1
q

∥∥∥c0Dαt u∥∥∥
Lp

. (2.3)

Then we can conclude that ‖u‖α=(
∫T

0

∣∣c
0D
α
t u(t)

∣∣2dt+∫T0 ∣∣u(t)∣∣2dt) 1
2 is equivalent to ‖u‖α=(

∫T
0

∣∣c
0D
α
t u(t)

∣∣2dt) 1
2 ,

for all u ∈ Eα0 .

In the following, we will consider the fractional derivative spaces Eα0 with respect to the norm ‖u‖α =

(
∫T

0

∣∣c
0D
α
t u(t)

∣∣2dt) 1
2 . By the discussion in [10], we know Eα0 is a reflexive and separable Banach space with

the norm ‖u‖α = (
∫T

0

∣∣c
0D
α
t u(t)

∣∣2dt) 1
2 .

The following concepts are similar to Definition 2.1 and 2.2 in [3].

Definition 2.5.

u ∈

{
u ∈ AC([0, T ]) :

∫tj+1

tj

(∫T
0

∣∣c
0D
α
t u(t)

∣∣2 + ∫T
0

∣∣u(t)∣∣2) 1
2
dt <∞, j = 0, . . . , l

}
,

is called a classic solution of the problem (2.1) if
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(i)

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t+k ) = lim

t→t+k

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t),

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t−k ) = lim

t→t−k

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t),

exist and satisfy the impulsive condition4(Dαt )(tk) = Ik(u(tk)) and the boundary condition u(0) =
u(T) = 0 holds;

(ii) u satisfies (1.1) a.e. on t ∈ [0, T ] \ {t1, t2, . . . , tl}.

Definition 2.6. A function u ∈ Eα0 is called a weak solution of the problem (2.1) if∫T
0

{
−

1
2
[
c
0D
α
t u(t)

c
tD
α
T v(t) +

c
tD
α
Tu(t)

c
0D
α
t v(t)

]
− a(t)u(t)v(t)

}
dt

+ µ

l∑
j=1

Ij(u(tj))v(tj) − λ

∫T
0
∇F(t,u(t))v(t)dt = 0,

for all v(t) ∈ Eα0 .

Similar to the proof of Lemma 2.1 in [3], we have the following lemma.

Lemma 2.7. The function u ∈ Eα0 is a classical solution of (2.1) if and only if u is a weak solution of (2.1).

Proof. By standard arguments, if u ∈ Eα0 is a classical solution of (2.1), then u is a weak solution of (2.1).
Conversely, let u ∈ Eα0 be a weak solution of (2.1), we prove that u is a classical solution of (2.1).

If u ∈ Eα0 is a weak solution of (2.1), for a fixed j ∈ {0, 1, . . . , l}, we choose a function wj such that
wj = 0, for t ∈ [0, tj]∪ [tj+1, T ]. Similar to the proof of Lemma 2.1 in [3], we can obtain∫tj+1

tj

−
1
2
[
c
0D
α
t u(t)

c
tD
α
Twj(t) +

c
tD
α
Tu(t)

c
0D
α
t wj(t)

]
dt =

∫tj+1

tj

[
a(t)u(t) + λ∇F(t,u(t))

]
wj(t)dt

with ∫tj+1

tj

−
1
2
[
c
0D
α
t u(t)

c
tD
α
Twj(t) +

c
tD
α
Tu(t)

c
0D
α
t wj(t)

]
dt <∞,

which shows

d

dt

{1
2 0D

α−1
t (c0D

α
t u(t)) −

1
2 t
Dα−1
T (ctD

α
Tu(t))

}
+ a(t)u(t) + λ∇F(t,u(t)) = 0,

for almost all t ∈ (tj, tj+1). Then u satisfies the first equation of (2.1) for almost all t ∈ (0, T).
Also similar to the proof of Lemma 2.1 in [3], we can prove

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
∈ AC([tj, tj+1]),

and there exist the limits

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t+k ) = lim

t→t+k

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t),

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t−k ) = lim

t→t−k

1
2

{
0D
α−1
t (c0D

α
t u) − tD

α−1
T (ctD

α
Tu)
}
(t).
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Multiplying 4(Dαt u)(tk) by v ∈ Eα0 and integrating by parts, due to the definition of weak solution and
Proposition 2.4 in [3], we can get

l∑
k=1

4(Dαt u)(tk)v(tk) =

l∑
k=1

µIk(u(tk))v(tk). (2.4)

Let vj(tk) = δjk, it follows from (2.4) that 4(Dαt u)(tk) = µIk(u(tk)),k = 1, 2, . . . , l. Then the impulsive
conditions of (2.1) are satisfied. Hence u is a classical solution of (2.1).

Similar to some properties in [10], we have the following results.

Lemma 2.8. Let 0 < α 6 1. The fractional derivative space Eα0 is a reflexive and a separable Banach space.

Lemma 2.9. Let 1
2 < α 6 1 and the sequence {uk} converges weakly to u in Eα0 . Then uk → u in C([0, T ],R), that

is,
∥∥uk − u∥∥∞ → 0 as k→∞.

Lemma 2.10. Let 1
2 < α 6 1. For any u ∈ Eα0 , one has∣∣cos(πα)

∣∣∥∥u∥∥2
α
6 −

∫T
0

c
0D
α
t u(t)

c
tD
α
Tu(t)dt 6

1∣∣cos(πα)
∣∣∥∥u∥∥2

α
.

Proof. Noticing that cos(πα) ∈ [−1, 0) for α ∈
(1

2 , 1
]
, by calculation, we have

−

∫T
0

c
0D
α
t u(t)

c
tD
α
Tu(t)dt > − cos(πα)

∫T
0

∣∣
0D
α
t u(t)

∣∣2dt = ∣∣cos(πα)
∣∣ ∫T

0

∣∣c
0D
α
t u(t)

∣∣2dt = ∣∣cos(πα)
∣∣∥∥u∥∥2

α
.

By using Young’s inequality and a standard derivation, we can get another inequality.
For more details, one can see Proposition 4.1 in [10].

Finally, we recall the following critical point theorem.

Lemma 2.11. Let X be a reflexive real Banach space Φ,Ψ : X → R be two Gâteaux differentiable functionals such
that Φ is sequentially weakly lower semi-continuous, strongly continuous, and coercive, and Ψ is sequentially
weakly upper semicontinuous. For every r > infXΦ, let us put

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

sup
v∈Φ−1(]−∞,r[)

Ψ(v) −Ψ(u)

r−Φ(u)

and
γ = lim inf

r→+∞ ϕ(r), δ = lim inf
r→(infXΦ)+

ϕ(r).

(1) If γ < +∞, then, for each λ ∈ ]0, 1
γ [, the following alternative holds: either the functional Φ− λΨ has a global

minimum, or there exists a sequence {un} of critical points (local minima) ofΦ− λΨ such that lim
n→+∞Φ(un) =

+∞.

(2) If δ < +∞, then, for each λ ∈ ]0, 1
δ [, the following alternative holds: either there exists a global minimum of Φ

which is a local minimum of Φ− λΨ, or there exists a sequence {un} of pairwise distinct critical points (local
minima) of Φ− λΨ, with lim

n→+∞Φ(un) = infXΦ, which weakly converges to a global minimum of Φ.

3. Main results

Define

Φ(u) =

∫T
0
−

1
2
c
0D
α
t u(t)

c
tD
α
Tu(t)dt−

1
2

∫T
0
a(t)u2(t)dt, (3.1)



P. Li, H. Wang, Z. Li, J. Nonlinear Sci. Appl., 10 (2017), 990–1003 996

Ψ(u) =

∫T
0
F(t,u(t))dt−

µ

λ

l∑
j=1

∫u(tj)
0

Ij(s)ds. (3.2)

Clearly, Φ,Ψ are Gâteaux differentiable functionals whose Gâteaux derivatives at the point u ∈ Eα0 are
given by

Φ ′(u)v =

∫T
0
−

1
2
[
c
0D
α
t u(t)

c
tD
α
T v(t) +

c
tD
α
Tu(t)

c
0D
α
t v(t)

]
dt−

∫T
0
a(t)u(t)v(t)dt,

Ψ ′(u)v =

∫T
0
∇F(t,u(t))v(t)dt− µ

λ

l∑
j=1

Ij(u(tj))v(tj).

Then the critical point of Φ− λΨ is exactly the weak solution of the problem (2.1). By Lemma 2.7, it
is the classical solution of the problem (2.1). By the equivalence of (1.1) and (2.1), we know it is also a
classical solution of (1.1).

Throughout this paper, we assume that

(H1) λ,µ > 0 are real parameters, β ∈ [0, 1),α = 1 − β
2 ∈

(1
2 , 1
]
, F : [0, T ] × R → R is a function such

that F(·, x) is continuous in [0, T ] for every x ∈ R, F(·, x) is a C1-function in R for any t ∈ [0, T ], and
∇F(t, x) is the gradient of F at x,a ∈ C[0, T ] and there exist two positive constants a1 and a2 such
that 0 < a1 6 a 6 a2, Ij ∈ C([0, T ],R+), j = 1, . . . , l.

By the assumptions (H1), (3.1), (3.2), we can easily get the following lemma.

Lemma 3.1. Let α ∈
(1

2 , 1
]

and assumption (H1) be satisfied. If u ∈ Eα0 , then the functional Φ : Eα → RN denoted
by (3.1) is convex and continuous on Eα0 .

Proof. From Definition 2.3, (H1), and (3.1), it is easy to see that Φ : Eα → RN is continuous. From (H1),
by a standard argument, we can easily prove that 1

2

∫T
0 a(t)u

2(t)dt is convex. So in order to show Φ is
convex, we only need to prove the convexity of

∫T
0 −

1
2
c
0D
α
t u(t)

c
tD
α
Tu(t)dt.

We denote

H(u) =

∫T
0
−

1
2
c
0D
α
t u(t)

c
tD
α
Tu(t)dt.

Let λ ∈ (0, 1),u, v ∈ Eα0 ,u, v be the extension of u and v by zero on R/[0, T ]. Since the Caputo fractional
derivative operator is linear operator, then by Lemma 5.1 in [10], we have

H[(1 − λ)u+ λv] = −
1
2

∫T
0

c
0D
α
t

[
(1 − λ)u(t) + λv(t)

]
c
tD
α
T

[
(1 − λ)u(t) + λv(t)

]
dt

=

∣∣cos(πα)
∣∣

2

∫+∞
−∞
∣∣
−∞Dαt [(1 − λ)u(t) + λv(t)

]∣∣2dt
6

∣∣cos(πα)
∣∣

2

∫+∞
−∞
[
(1 − λ)

∣∣
−∞Dαt u(t)∣∣2 + λ∣∣−∞Dαt v(t)∣∣2]dt

=

∫T
0

[
−

1 − λ

2
(c0D

α
t u(t)

c
tD
α
Tu(t)) −

λ

2
(c0D

α
t v(t)

c
tD
α
T v(t))

]
dt

= (1 − λ)H(u) + λH(v).

Then H(u) is convex on Eα0 , which also implies the convexity of Φ. The proof is complete.

For convenience, we put

M = Γ(α)

√
(2α− 1)

T
[∣∣cos(πα)

∣∣T 2(α−1) − a2Γ 2(α)(2α− 1)
] ,
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λ1 =
1

2
[
M2T(d+ 1) +B(α, T)

] , λ2 =
1

2M2T(d+ 1)
,

where

B(α, T) =
36
T 2

{
1 + ( 1

6)
3−2α + ( 5

6)
3−2α

3 − 2α
T 3−2α − 2

∫T
T
6

[t(t−
1
6
T)](1−α)dt

− 2
∫T

5T
6

[
(t(t−

5T
6
))(1−α) − ((t−

1
6
T)(t−

5T
6
))(1−α)

]
dt

}
.

Theorem 3.2. Let (H1) hold. Assume

7B(α, T)
3
∣∣cos(πα)

∣∣Γ 2(2 −α)T
< a1 6 a2 <

∣∣cos(πα)
∣∣

Γ 2(α)(2α− 1)
T 2(α−1). (3.3)

If there exists a positive constant µ0 such that µ0b 6 a1
8 and the following hypotheses (H2)-(H3) are satisfied:

(H2) F(t,u) > 0 for (t,u) ∈ [0, T ]× R+ and lim sup
s→+∞

F(t,s)
s2 = d < +∞, for a.e t ∈ [0, T ].

(H3) For any j = 1, . . . , l, there exists bj > 0 such that

lim sup
|s|→∞

Ij(s)

s2 6 bj,

where b = max
16j6l

bj. Then for any λ ∈ ]λ1, λ2[,µ ∈ [0,µ0[, the problem (1.1) possesses an unbounded sequence

of solutions in Eα0 .

Proof. We note that (H3) implies there exist a positive constant a3 large enough such that

Ij(s) < bjs
2 for |s| > a3, j = 1, . . . , l.

For any j = 1, . . . , l, from the continuity of Ij(s), we conclude that Ij(s) is bounded for |s| 6 a3, t ∈ [0, T ].
Then there exist constants cj > 0 such that

Ij(s) < cj,

for |s| 6 a3, j = 1, . . . , l.
Hence, for s ∈ R, j = 1, . . . , l, we can get

Ij(s) < cj + bjs
2.

Then it follows that
l∑
j=1

∫u(tj)
0

Ij(s)ds 6 b
∫T

0
s2ds+ c0T , (3.4)

where b = max
16j6l

bj, c0 = max
16j6l

cj.

From (H2), there exists a positive constant e0 large enough such that

F(t, s) < (d+ 1)s2 for |s| > e0.

From (H1), we know F(t, ·) is a function in R for any t ∈ [0, T ]. So we conclude that F(t, s) is bounded for
|s| 6 e0, t ∈ [0, T ]. Then there exists a constant d1 > 0 such that∣∣F(t, s)∣∣ < d1,
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for |s| 6 e0, t ∈ [0, T ].
Hence, for s ∈ R, t ∈ [0, T ], we have ∣∣F(t, s)∣∣ < d1 + (d+ 1)s2. (3.5)

Now, we prove all the conditions of Lemma 2.11 hold.
By Lemma 3.1 and (H1), we know that Φ is continuously Gâteaux differentiable and convex. Let

un ⇀ u weakly in Eα0 , by Lemma 2.9, it is easy to know

lim inf
n→∞ Φ(un) = lim inf

n→∞
∫T

0
−

1
2
c
0D
α
t un(t)

c
tD
α
Tun(t)dt >

∫T
0
−

1
2
c
0D
α
t u(t)

c
tD
α
Tu(t)dt = Φ(u),

so Φ is weakly sequentially lower semi-continuous.
Moreover, it follows from (2.2) and Lemma 2.10 that Φ is coercive.
From (H1) and (3.2), we can conclude that the functional Ψ is continuously Gâteaux differentiable with

Ψ ′(u)v =
∫T

0 ∇F(t,u(t))v(t)dt−
µ
λ

l∑
j=1
Ij(u(tj))v(tj). By a standard procedure (see [19]), we can prove the

derivative of Ψ is compact. By Fatou’s Lemma, one has

lim sup
n→∞

∫T
0
F(t,un(t))dt 6

∫T
0
F(t,u(t))dt.

Then we can easily get that Ψ is sequentially weakly upper semicontinuous.
Next, we divide our proof into three steps.

Step 1. We prove that γ < +∞. Let ρn be a sequence of positive numbers such that lim
n→∞ ρn = +∞. We

choose rn = ρ2
n

2M2 for all n ∈ N. For v ∈ Eα0 , if Φ(v) 6 rn, by Lemma 2.10 and (2.3), it follows that

ρ2
n

2M2 = rn > Φ(v) =

∫T
0
−

1
2
c
0D
α
t u(t)

c
tD
α
Tu(t)dt−

1
2

∫T
0
a(t)u2(t)dt

>
1
2

[∣∣cos(πα)
∣∣∥∥u∥∥2

α
− a2T

∥∥u∥∥2∞
]

>
1
2

[∣∣cos(πα)
∣∣ T 2α−1

Γ 2(α)(2α− 1)
− a2T

]∥∥u∥∥2∞.

By (3.3), we know
1
2

[∣∣cos(πα)
∣∣ T 2α−1

Γ 2(α)(2α− 1)
− a2T

]
> 0.

Then it is easily gotten that
∥∥u∥∥∞ 6 ρn, which implies that

Φ−1(]−∞, rn[) = {v : Φ(v) < rn} ⊆ {v :
∥∥v∥∥∞ < ρn} ⊆ {v :

∣∣v∣∣ < ρn}.
It follows from (3.2), (3.5), and (H1) that

γ = lim inf
r→+∞ ϕ(r) 6 lim inf

n→+∞ϕ(rn) = lim inf
n→+∞ inf

u∈Φ−1(]−∞,rn[)

sup
v∈Φ−1(]−∞,rn[)

Ψ(v) −Ψ(u)

rn −Φ(u)

6 lim inf
n→+∞

sup
v∈Φ−1(]−∞,rn[)

Ψ(v)

rn

6 lim
n→∞ sup

|v|<ρn

2M2

∫T
0 F(t, v(t))dt

ρ2
n

6 lim
n→∞ 2M2 T [d1 + (d+ 1)ρ2

n]

ρ2
n

= 2M2T(d+ 1) < +∞.
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Step 2. We show that ]λ1, λ2[ ⊂ ]0, 1
γ [.

From the proof of Step 1, we have

γ > 2M2T(d+ 1) =
1
λ2

. (3.6)

Assume {xn} is a positive real sequence with xn → +∞ as n→ +∞. We define functions ωn by

ωn =



6Γ(2 −α)xnt

T
, t ∈

[
0,
T

6

)
,

Γ(2 −α)xn, t ∈
[
T

6
,

5T
6

]
,

6Γ(2 −α)xn
T

(T − t), t ∈
(

5T
6

, T
]

.

It is easy to verify that ωn(0) = ωn(T) = 0 and ωn ∈ L2[0, T ]. By Definition 2.3, we can directly
calculate the left Caputo fractional derivative of order α for ωn.

If t ∈
[
0, T6

)
, one has

C
0D
α
t f(t) =

1
T(1 −α)

∫t
0
(t− s)−α

6Γ(2 −α)xn
T

ds =
6Γ(2 −α)xn

T

(t− s)1−α

1 −α

∣∣∣∣0
t

=
6xnt1−α

T
.

If t ∈
[
T
6 , 5T

6

]
, we get

C
0D
α
t f(t) =

1
T(1 −α)

∫t
0
(t− s)−αf ′(s)ds

=
1

T(1 −α)

[∫ T
6

0
(t− s)−α

6Γ(2 −α)xn
T

ds+

∫t
T
6

(t− s)−α0ds
]

=
6Γ(2 −α)xn

T

(t− s)1−α

1 −α

∣∣∣∣0
T
6

=
6xn(t1−α − (t− T

6 )
1−α)

T
.

If t ∈
(5T

6 , T
]
, we can obtain

C
0D
α
t f(t) =

1
T(1 −α)

∫t
0
(t− s)−αf ′(s)ds

=
1

T(1 −α)

[∫ T
6

0
(t− s)−α

6Γ(2 −α)xn
T

ds+

∫ 5T
6

T
6

(t− s)−α0ds−
∫t

5T
6

(t− s)−α
6Γ(2 −α)xn

T
ds

]

=
6Γ(2 −α)xn

T

[
(t− s)1−α

1 −α

∣∣∣∣0
T
6

−
(t− s)1−α

1 −α

∣∣∣∣ 5T
6

t

]

=
6xn

[
t1−α − (t− T

6 )
1−α) − (t− 5T

6 )1−α
]

T
.

Then ∥∥ωn∥∥2
α
=

∫T
0

[
C
0D
α
tωn(t)

]2
dt

=

∫ T
6

0

(
6xnt1−α

T

)2

dt+

∫ 5T
6

T
6

[6xn
(
t1−α −

(
t− T

6

)1−α
)

T

]2

dt
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+

∫T
5T
6

[6xn
[
t1−α −

(
t− T

6

)1−α
−
(
t− 5T

6

)1−α
]

T

]2

dt

=
36x2

n

T 2

{∫T
0
t2(1−α)dt+

∫ 5T
6

T
6

(t−
1
6
T)2(1−α)dt+

∫T
5T
6

(t−
5T
6
)2(1−α)dt

− 2
∫T
T
6

[
t
(
t−

1
6
T
)](1−α)

dt− 2
∫T

5T
6

[(
t
(
t−

5T
6
))(1−α)

−
((
t−

T

6
)(
t−

5T
6
))(1−α)]

dt

}

=
36x2

n

T 2

{
1 +

(1
6

)3−2α
+
(5

6

)3−2α

3 − 2α
T 3−2α − 2

∫T
T
6

[
t
(
t−

1
6
T
)](1−α)

dt

− 2
∫T

5T
6

[(
t
(
t−

5T
6
))(1−α)

−
((
t−

T

6
)(
t−

5T
6
))(1−α)]

dt

}
= B(α, T)x2

n.

So we can see B(α, T) =

∥∥ωn∥∥2

α

x2
n

> 0. It follows that

0 < λ1 =
1

2
[
M2T(d+ 1) +B(α, T)

] < λ2. (3.7)

Together with (3.6) and (3.7), we can obtain that

]λ1, λ2[ ⊂ ]0,
1
γ
[.

Step 3. We verify that the operator Φ− λΨ is unbounded from below, which implies Φ− λΨ has no global
minimum. By (3.1) and Lemma 2.10, for ωn ∈ Eα0 , one has

Φ(ωn) =

∫T
0
−

1
2
c
0D
α
tωn(t)

c
tD
α
Tωn(t)dt−

1
2

∫T
0
a(t)ω2

n(t)dt

6
1

2
∣∣cos(πα)

∣∣∥∥ωn∥∥2
α
−

1
2

∫T
0
a(t)ω2

n(t)dt

=
1
2

[
1∣∣cos(πα)

∣∣B(α, T)x2
n −

∫T
0
a(t)ω2

n(t)dt

]
.

(3.8)

From (3.2) and (3.4), for ωn ∈ Eα0 , and any λ ∈ ]λ1, λ2[,µ ∈ [0,µ0[, we have

Ψ(Ψ) =

∫T
0
F(t,ωn(t))dt−

µ

λ

l∑
j=1

∫u(tj)
0

Ij(s)ds

>

∫T
0
F(t,ωn(t))dt−

µ0

λ

(
b

∫T
0
ω2
nds+ c0T

)
=

∫T
0
F(t,ωn(t))dt−

µ0b

λ

∫T
0
ω2
n(t)dt−

c0µ0T

λ
.

(3.9)

It follows from (3.3), (3.8), (3.9), and the condition µ0b 6 a1
8 that

Φ(ωn) − λΨ(ωn) <
1
2

[
1∣∣cos(πα)

∣∣B(α, T)x2
n −

1
2

∫T
0
a(t)ω2

n(t)dt.
]

− λ

∫T
0
F(t,ωn(t))dt+ µ0b

∫T
0
ω2
n(t)dt+ c0µ0T
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6
1
2

[
1∣∣cos(πα)

∣∣B(α, T)x2
n −

∫T
0
a(t)ω2

n(t)dt+ µ0b

∫T
0
ω2
n(t)dt+ c0µ0T

=
1

2
∣∣cos(πα)

∣∣B(α, T)x2
n −

(a1

2
− µ0b

){∫ T6
0

[6Γ(2 −α)xnt

T

]2
dt

+

∫ 5T
6

T
6

[Γ(2 −α)xn]
2dt+

∫T
5T
6

[6Γ(2 −α)xn
T

(T − t)
]2
dt

}
+ c0µ0T

<
1

2
∣∣cos(πα)

∣∣B(α, T)x2
n −

(a1

2
− µ0b

) ∫ 5T
6

T
6

[Γ(2 −α)xn]
2dt+ c0µ0T

= x2
n

[
B(α, T)

2
∣∣cos(πα)

∣∣ − 2TΓ 2(2 −α)

3
(a1

2
− µ0b

)]
+ c0µ0T

< −
B(α, T)

12
∣∣cos(πα)

∣∣x2
n + c0µ0T

→ −∞, as n→ +∞.

Hence, one can obtain
lim
n→+∞Φ(ωn) − λΨ(ωn) = −∞,

which yields Φ− λΨ is unbounded from below, then Φ− λΨ has no global minimum.
So all the conditions of case 1 in Lemma 2.11 are satisfied. By virtue of Lemma 2.11, the functional

Φ− λΨ admits a sequence {un} of critical points (local minima) such that lim
n→+∞Φ(un) = +∞. It follows

from (3.1) and Lemma 2.10 that

Φ(un) =

∫T
0
−

1
2
c
0D
α
t un(t)

c
tD
α
Tun(t)dt−

1
2

∫T
0
a(t)u2

n(t)dt

6
∫T

0
−

1
2
c
0D
α
t un(t)

c
tD
α
Tun(t)dt 6

1
2
∣∣cos(πα)

∣∣∥∥u∥∥2
α

,

which implies lim
n→+∞

∥∥un∥∥2
α
= +∞. Then {un} is an unbounded sequence. That is, the boundary value

problem (2.1) has an unbounded sequence of weak solutions. As a consequence of Lemma 2.7, we deduce
that the boundary value problem (2.1) possesses an unbounded sequence of classical solutions in Eα0 .
Then the problem (1.1) has an unbounded sequence of classical solutions in Eα0 .

Remark 3.3. The assumption (H2) includes the asymptotically quadratic case and subquadratic case for
F(t, s). If F(t, s) in (H2) is superquadratic, we cannot obtain the result by Lemma 2.11. In fact, in this case,

lim inf
n→+∞

sup
v∈Φ−1(]−∞,rn[)

Ψ(v)

rn
→ +∞.

Next, by the case 2 of Lemma 2.11 and a similar proof, we can get the following existence result of
infinitely many solutions of (1.1) converging at zero.

We denote
λ3 =

1
2
[
M2T(d ′ + 1) +B(α, T)

] , λ4 =
1

2M2T(d ′ + 1)
.

Theorem 3.4. Let (H1) hold. Assume

7B(α, T)
3
∣∣cos(πα)

∣∣Γ 2(2 −α)T
< a1 6 a2 <

∣∣cos(πα)
∣∣

Γ 2(α)(2 −α)
T 2(α−1).

If there exists a positive constant µ ′0 such that µ ′0 b
′ < a1

8 and the following hypotheses are satisfied:
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(H2)’ F(t,u) > 0 for (t,u) ∈ [0, T ]× R+ and lim sup
s→0+

F(t,s)
s2 = d ′ > 0 for a.e. t ∈ [0, T ];

(H3)’ for any j = 1, . . . , l, there exists b ′j > 0 such that

lim sup
|s|→0+

Ij(s)

s2 6 b ′j,

where b ′ = max
16j6l

b ′j, then for any λ ∈ ]λ3, λ4[,µ ∈ [0,µ ′0[, the problem (1.1) possesses a sequence {un} of solutions

with {un} converging strongly to 0 in Eα0 .

Finally, we give an example to illustrate the usefulness of our main result. Consider the following
impulsive system of fractional differential equations.

Example 3.5.
−

1
2
d

dt
(0D

−0.5
t + tD

−0.5
1 )u ′(t) = 0.069u(t) + λ∇F(t,u(t)), t 6= 50, a.e., t ∈ [0, 100],

4(Dαt u)(50) = µ
u2(50)

50
,

u(0) = u(100) = 0.

(3.10)

From (3.10), we can see that β = 0.5,α = 0.75,a = 0.069, I(u) = u2

50 , T = 100.
Let F(t,u(t)) = u2

6 , then it easy to verify the assumptions (H1)-(H3) hold with b = 1
50 ,d = 1

6 ,a1 =
0.066,a2 = 0.07.

We choose µ0 = 0.41, a direct calculation shows that

7B(α, T)
3
∣∣cos(πα)

∣∣Γ 2(2 −α)T
< a1 = 0.066 6 a2 = 0.07 <

∣∣cos(πα)
∣∣

Γ 2(α)(2 −α)
T 2(α−1), µ0 b = 0.0082 < 0.008 25 =

a1

8
.

Then our results can be applied to the problem (3.10), which shows that the problem (3.10) possesses
an unbounded sequence of solutions in Eα0 for λ ∈ [0.3, 61],µ ∈ [0, 0.41].
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